Authors :
Sony Annem
Volume/Issue :
Volume 10 - 2025, Issue 5 - May
Google Scholar :
https://tinyurl.com/544sx7wd
DOI :
https://doi.org/10.38124/ijisrt/25may829
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
Diffusion models have recently shown great success in creating high-quality images. In this study, we test how well
these models work on different types of MRI scans, including brain images, chromatin cell structures, lung, spine and heart
MRIs. Instead of using a single model for all types, we experiment with each MRI type separately to see how well diffusion
models can handle the unique features of each one. Our early results show that diffusion models can learn the important
details in each kind of scan, but the quality of the results can vary depending on the image type. This ongoing work helps us
understand the strengths and limits of generative models in medical imaging.
References :
- Choi, S., Lee, H., & Paik, M. C. (2023). MRI super-resolution using conditional diffusion probabilistic models. IEEE Transactions on Medical Imaging, 42(4), 871–882.
- Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. Advances in Neural Information Processing Systems, 33, 6840–6851. https://arxiv.org/abs/2006.11239
- Song, Y., & Ermon, S. (2020). Score-based generative modeling through stochastic differential equations. International Conference on Learning Representations (ICLR). https://arxiv.org/abs/2011.13456
- Dhariwal, P., & Nichol, A. (2021). Diffusion models beat GANs on image synthesis. Advances in Neural Information Processing Systems, 34, 8780–8794. https://arxiv.org/abs/2105.05233
- Wolleb, J., Sandkühler, P., Karimi, D., & Cattin, P. C. (2021). Diffusion models for medical image analysis. arXiv preprint. https://arxiv.org/abs/2111.07891
- Pinaya, W. H. L., Mechelli, A., & Sato, J. R. (2022). Brain imaging generation with latent diffusion models. Medical Image Analysis, 82, 102605. https://arxiv.org/abs/2209.07162
- Choi, S., Lee, H., & Paik, M. C. (2023). MRI super-resolution using conditional diffusion probabilistic models. IEEE Transactions on Medical Imaging, 42(4), 871–882.
- Lyu, Q., Zhang, K., Fu, Y., et al. (2023). 4D diffusion models for dynamic MRI reconstruction. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14698–14708.
- Dorjsembe, B., & Park, B. (2022). Generating realistic brain MR images using diffusion models. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). https://arxiv.org/abs/2209.15199
- Wolleb, J., Sandkühler, P., & Cattin, P. C. (2023). Diffusion models for medical image segmentation. Medical Image Analysis, 85, 102732. https://arxiv.org/abs/2208.02973
- Zhou, Z., Wang, J., & Bai, J. (2022). Latent diffusion models for 3D medical image generation. arXiv preprint. https://arxiv.org/abs/2211.13867
- Mittal, R., Mewada, R., & Sharma, M. (2023). Denoising diffusion models for multi-modal medical image synthesis. Neurocomputing, 532, 119804.
- Luo, Y., Chen, M., Zhang, Y., et al. (2022). Multi-conditional diffusion model for medical image synthesis. IEEE Transactions on Medical Imaging. https://arxiv.org/abs/2211.01734
- Ternes, L., Schneider, M., Möller, H. E., & Teschendorff, A. E. (2022). Image denoising and reconstruction in MRI using denoising diffusion models. Magnetic Resonance Imaging, 90, 27–39.
- Haque, A., Bi, J., & Khan, A. (2022). Brain MRI tumor segmentation using diffusion-based image generation. Biomedical Signal Processing and Control, 78, 103920.
- Tzeng, E., Yang, J., & Sun, W. (2022). Diffusion models for MR image enhancement and reconstruction. Computerized Medical Imaging and Graphics, 97, 102066.
- Yu, L., Wang, S., Li, C., et al. (2022). A latent diffusion approach for PET-to-MRI synthesis. IEEE Journal of Biomedical and Health Informatics, 26(7), 3314–3323.
- Schilling, K. G., et al. (2021). Diffusion models for tractography in diffusion MRI: Principles and challenges. NeuroImage, 245, 118702.
- Todorov, M. I., Müller, S., & Schifferer, M. (2022). Revolutionizing medical imaging with denoising diffusion models. Nature Machine Intelligence, 4, 843–853.
- Han, J., Zhang, C., Huang, Y., et al. (2023). DDPM-MedSeg: Diffusion-based medical image segmentation. arXiv preprint. https://arxiv.org/abs/2302.05420
- Bouchacourt, D., Lee, Y., & Alahi, A. (2022). Masked conditional diffusion models for medical image inpainting. MICCAI Workshops. https://arxiv.org/abs/2210.00939
- Lyu, Q., Zhang, K., Fu, Y., et al. (2023). 4D diffusion models for dynamic MRI reconstruction. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14698–14708.
- Dorjsembe, B., & Park, B. (2022). Generating realistic brain MR images using diffusion models. International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI). https://arxiv.org/abs/2209.15199
- Wolleb, J., Sandkühler, P., & Cattin, P. C. (2023). Diffusion models for medical image segmentation. Medical Image Analysis, 85, 102732. https://arxiv.org/abs/2208.02973
- Zhou, Z., Wang, J., & Bai, J. (2022). Latent diffusion models for 3D medical image generation. arXiv preprint. https://arxiv.org/abs/2211.13867
- Mittal, R., Mewada, R., & Sharma, M. (2023). Denoising diffusion models for multi-modal medical image synthesis. Neurocomputing, 532, 119804.
- Luo, Y., Chen, M., Zhang, Y., et al. (2022). Multi-conditional diffusion model for medical image synthesis. IEEE Transactions on Medical Imaging. https://arxiv.org/abs/2211.01734
- Ternes, L., Schneider, M., Möller, H. E., & Teschendorff, A. E. (2022). Image denoising and reconstruction in MRI using denoising diffusion models. Magnetic Resonance Imaging, 90, 27–39.
- Haque, A., Bi, J., & Khan, A. (2022). Brain MRI tumor segmentation using diffusion-based image generation. Biomedical Signal Processing and Control, 78, 103920.
- Tzeng, E., Yang, J., & Sun, W. (2022). Diffusion models for MR image enhancement and reconstruction. Computerized Medical Imaging and Graphics, 97, 102066.
- Yu, L., Wang, S., Li, C., et al. (2022). A latent diffusion approach for PET-to-MRI synthesis. IEEE Journal of Biomedical and Health Informatics, 26(7), 3314–3323.
- Schilling, K. G., et al. (2021). Diffusion models for tractography in diffusion MRI: Principles and challenges. NeuroImage, 245, 118702.
- Todorov, M. I., Müller, S., & Schifferer, M. (2022). Revolutionizing medical imaging with denoising diffusion models. Nature Machine Intelligence, 4, 843–853.
- Han, J., Zhang, C., Huang, Y., et al. (2023). DDPM-MedSeg: Diffusion-based medical image segmentation. arXiv preprint. https://arxiv.org/abs/2302.05420
- Bouchacourt, D., Lee, Y., & Alahi, A. (2022). Masked conditional diffusion models for medical image inpainting. MICCAI Workshops. https://arxiv.org/abs/2210.00939
- Lin, Z., Wang, Z., Yu, L., et al. (2023). Reconstruction of undersampled MRI using score- based diffusion models. Medical Image Analysis, 88, 102848.
- Wang, Y., He, Y., Yang, D., et al. (2023). Diffusion model for unsupervised anomaly detection in MRI. Computer Methods and Programs in Biomedicine, 234, 107454.
- Wu, X., Qiu, H., & Li, H. (2023). Conditional DDPM for low-dose MRI reconstruction. IEEE Access, 11, 20433–20443.
- Zhu, C., & Li, X. (2023). DDPM-based joint super-resolution and denoising of multi- sequence MRI. Neural Computing and Applications, 35, 12759–12774.
- Fan, Y., Liao, H., Huang, S., Luo, Y., Fu, H., & Qi, H. (2023). A Survey of Emerging Applications of Diffusion Probabilistic Models in MRI. arXiv preprint arXiv:2311.11383. https://arxiv.org/abs/2311.11383
- Jiang, Y., Wang, Y., & Zhang, X. (2023). Diffusion Models in Medical Imaging: A Comprehensive Survey. Medical Image Analysis, 85, 102732.
- https://www.sciencedirect.com/science/article/abs/pii/S1361841523001068
- Xiang, T., Yurt, M., Syed, A. B., Setsompop, K., & Chaudhari, A. (2023). DDM²: Self-Supervised Diffusion MRI Denoising with Generative Diffusion Models. arXiv preprint arXiv:2302.03018. https://arxiv.org/abs/2302.03018
- Khader, F., Mueller-Franzes, G., Arasteh, S. T., Han, T., Haarburger, C., Schulze-Hagen, M., ... & Truhn, D. (2022). Medical Diffusion: Denoising Diffusion Probabilistic Models for 3D Medical Image Generation. arXiv preprint arXiv:2211.03364. https://arxiv.org/abs/2211.03364
- Dorjsembe, Z., Pao, H. K., Odonchimed, S., & Xiao, F. (2023). Conditional Diffusion Models for Semantic 3D Brain MRI Synthesis. arXiv preprint arXiv:2305.18453. https://arxiv.org/abs/2305.18453
- Wolleb, J., Sandkühler, P., Karimi, D., & Cattin, P. C. (2021). Diffusion Models for Medical Image Analysis. arXiv preprint arXiv:2111.07891. https://arxiv.org/abs/2111.07891
- Todorov, M. I., Müller, S., & Schifferer, M. (2022). Revolutionizing Medical Imaging with Denoising Diffusion Models. Nature Machine Intelligence, 4, 843–853.
- Lyu, Q., Zhang, K., Fu, Y., et al. (2023). 4D Diffusion Models for Dynamic MRI Reconstruction. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 14698–14708.
- Choi, S., Lee, H., & Paik, M. C. (2023). MRI Super-Resolution Using Conditional Diffusion Probabilistic Models. IEEE Transactions on Medical Imaging, 42(4), 871–882.
- Pinaya, W. H. L., Mechelli, A., & Sato, J. R. (2022). Brain Imaging Generation with Latent Diffusion Models. Medical Image Analysis, 82, 102605.
- Zhou, Z., Wang, J., & Bai, J. (2022). Latent Diffusion Models for 3D Medical Image Generation. arXiv preprint arXiv:2211.13867. https://arxiv.org/abs/2211.13867
- Mittal, R., Mewada, R., & Sharma, M. (2023). Denoising Diffusion Models for Multi-Modal Medical Image Synthesis. Neurocomputing, 532, 119804.
- Luo, Y., Chen, M., Zhang, Y., et al. (2022). Multi-Conditional Diffusion Model for Medical Image Synthesis. IEEE Transactions on Medical Imaging. https://arxiv.org/abs/2211.01734.
- Ternes, L., Schneider, M., Möller, H. E., & Teschendorff, A. E. (2022). Image Denoising and Reconstruction in MRI Using Denoising Diffusion Models. Magnetic Resonance Imaging, 90, 27–39.
- Haque, A., Bi, J., & Khan, A. (2022). Brain MRI Tumor Segmentation Using Diffusion-Based Image Generation. Biomedical Signal Processing and Control, 78, 103920.
- Tzeng, E., Yang, J., & Sun, W. (2022). Diffusion Models for MR Image Enhancement and Reconstruction. Computerized Medical Imaging and Graphics, 97, 102066.
- Yu, L., Wang, S., Li, C., et al. (2022). A Latent Diffusion Approach for PET-to-MRI Synthesis. IEEE Journal of Biomedical and Health Informatics, 26(7), 3314–3323.
- Schilling, K. G., et al. (2021). Diffusion Models for Tractography in Diffusion MRI: Principles and Challenges. NeuroImage, 245, 118702.
- Han, J., Zhang, C., Huang, Y., et al. (2023). DDPM-MedSeg: Diffusion-Based Medical Image Segmentation. arXiv preprint arXiv:2302.05420. https://arxiv.org/abs/2302.05420
- Bouchacourt, D., Lee, Y., & Alahi, A. (2022). Masked Conditional Diffusion Models for Medical Image Inpainting. MICCAI Workshops. https://arxiv.org/abs/2210.00939
Diffusion models have recently shown great success in creating high-quality images. In this study, we test how well
these models work on different types of MRI scans, including brain images, chromatin cell structures, lung, spine and heart
MRIs. Instead of using a single model for all types, we experiment with each MRI type separately to see how well diffusion
models can handle the unique features of each one. Our early results show that diffusion models can learn the important
details in each kind of scan, but the quality of the results can vary depending on the image type. This ongoing work helps us
understand the strengths and limits of generative models in medical imaging.