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Abstract: Diffusion models have recently shown great success in creating high-quality images. In this study, we test how well 

these models work on different types of MRI scans, including brain images, chromatin cell structures, lung, spine and heart 

MRIs. Instead of using a single model for all types, we experiment with each MRI type separately to see how well diffusion 

models can handle the unique features of each one. Our early results show that diffusion models can learn the important 

details in each kind of scan, but the quality of the results can vary depending on the image type. This ongoing work helps us 

understand the strengths and limits of generative models in medical imaging. 
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I. INTRODUCTION 

 
Medical imaging is very important in helping doctors 

find and monitor diseases. One of the most useful imaging 

tools is [1] MRI (Magnetic Resonance Imaging). MRI is safe 

because it doesn’t use harmful radiation, and it gives clear 

pictures of soft parts inside the body, like the brain, heart, 

lungs, and even small cell structures. It’s often used to find 

brain tumors, check heart problems, study lung conditions, 

and look at tiny changes in cells. 

 

MRI works by using a strong magnet and radio waves 

to line up hydrogen atoms in the body. When the atoms go 

back to their normal position, they send out signals that are 

turned into images by a computer. But MRIs take a long time 

to scan and sometimes the images can be blurry or noisy, 

especially when doctors need to scan quickly or when the 

signal is weak. 
 

To solve this, generative models called diffusion models 

have become popular. These models learn how to create 

images by starting with random noise and slowly turning it 

into something clear and realistic. Diffusion models have 

worked well for regular photos and some medical images, and 

they don’t have the training problems that older models like 

GANs have[23, 25]. In this project, we are testing if diffusion 

models can work well on different kinds of MRI images. Our 

data includes brain scans, images of cell structures 

(chromatin), lung scans, and heart MRIs. Instead of using one 

single model for everything, we train different diffusion 

models for each type of MRI to see how well they work. Our 

goal is to understand how good diffusion models are at 

handling the unique shapes and features of each body part. 

This work could help build better tools for improving and 

creating medical images in the future. 

 

II. BACKGROUND 

 
Many researchers have worked on improving medical 

imaging using artificial intelligence. Generative models, like 

Variational Autoencoders (VAEs) and Generative 

Adversarial Networks (GANs), have been used to enhance or 

create medical images. For example, GANs have helped 

remove noise from MRI scans, fill in missing parts, or even 

generate new images to train other models. However, GANs 

are often hard to train and can produce images that look fake 

or unstable. 

 

Diffusion models [2] are a newer type of generative 

model. They work by adding noise to images and then 

learning how to reverse the process step by step. This slow and 
careful method allows diffusion models to generate more 

realistic and detailed images. Recent studies have shown that 

diffusion models can do better than GANs in many image 

generation tasks. 

 

In the medical field, many projects have been already 

applied diffusion models to specific tasks. For example, 

MedSegDiff [3] and Denoising Diffusion Restoration (DDR) 

models [5] were used to improve MRI segmentation and 

reduce noise. Other studies focused on generating brain MRIs 

or CT scans using diffusion models. But most of this work has 

only focused on one type of image, like only brain scans or 

only chest X-rays. The paper "Denoising Diffusion 

Probabilistic Models for 3D Medical Image Generation" 

(Nature Scientific Reports, 2023) demonstrates high-quality 
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synthesis of MRI/CT volumes using diffusion models, 

validated by radiologists for anatomical correctness. 

Achieves Dice score improvement (0.91 → 0.95) in breast 

segmentation with synthetic data augmentation and the paper 

"Diffusion Models for Medical Image Analysis" (arXiv, 
2022) [6] surveys applications in reconstruction, super- 

resolution, and anomaly detection, highlighting advantages 

over GANs (e.g., no mode collapse). 

 

What’s missing is a study that looks at how well 

diffusion models [7] can work across many types of MRI 

scans with different shapes and features. Our work tries to fill 

that gap by experimenting with different MRI. This will help 

us understand how flexible and useful diffusion models can 

be in real-world medical imaging. 

 

 

 

 

 

 

 
 

 

III. METHODOLOGY 

 
A. Dataset Composition 

This study utilizes MRI scans from five distinct 

anatomical and biological domains: brain, lung, kidney, spine, 
and chromatin. Each dataset contains approximately 1,000 

images, selected to ensure consistency in modality and 

resolution. Due to limited availability of public medical 

imaging datasets, the datasets were sourced from a 

combination of research databases, hospitals, and open-

source repositories. 

 

 Cardiac Imaging Dataset 

 

 Source: Kaggle datasets and open-access academic 

repositories 

 Description: Heart MRIs capture dynamic imaging of the 

cardiac cycle, including short-axis and long-axis views. 

These images are critical for assessing myocardial 

structure, chamber sizes, valve function, and blood flow 

patterns. They are frequently used in the diagnosis and 

monitoring of cardiomyopathies, ischemic heart disease, 
and congenital heart defects. 

 
Fig 1: Heart MRI 

 

 Spine Imaging Dataset 

 

 Source: Kaggle datasets and open-access academic 

repositories 

 Description: Spine MRIs include sagittal and axial views 

focused on the vertebral column. The images emphasize 

disc herniation, spinal stenosis, and alignment 

abnormalities, which are essential for orthopedic and 

neurological assessments. 

 

 
Fig 2: Spinal Cord MRI 
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 Chromatin Imaging Dataset 

 

 Source: Wake Forest Baptist Medical Center (Microscopy 

Department) 

 Description: Chromatin scans were obtained from high-

resolution 3D imaging of cell nuclei, showing the 

chromatin structures inside the cells. These images, 

although not traditional MRIs, were treated similarly due 

to their grayscale volumetric nature. They are valuable for 

understanding cell organization and epigenetic patterns in 
cancer and aging. 

 

 
Fig 3: Chromatin Presents in the Cells 

 

 Lung Imaging Dataset 

 

 Source: Research publications and public 

repositories on Kaggle 

 Description: Lung MRIs were extracted from datasets 

related to pulmonary disease detection and image 

segmentation challenges. These scans capture the 
complex alveolar structures and are typically prone to 

motion artifacts due to breathing, making them a unique 

challenge for generative models. 

 

 
Fig 4: Lung MRI 

 

 Kidney Imaging Dataset 

 

 Source: Public research papers and Kaggle datasets 

focused on renal pathologies 

 Description: These images consist of cross-sectional scans 

highlighting renal parenchyma and potential cystic 

structures. The dataset includes both healthy and diseased 

kidneys, emphasizing the variation in cortical thickness 

and structure across subjects. 

 

 
Fig 5: Kidney MRI 

https://doi.org/10.38124/ijisrt/25may829
http://www.ijisrt.com/


Volume 10, Issue 5, May – 2025                                              International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                      https://doi.org/10.38124/ijisrt/25may829 

 

IJISRT25MAY829                                                               www.ijisrt.com                                                                                    1390 

 Brain Imaging Dataset 

 

 Source: Alzheimer's Disease Neuroimaging Initiative 

(ADNI) 

 Description: The brain MRI scans include axial T1-
weighted images collected as part of Alzheimer’s and 

cognitive aging research. The scans feature high 

anatomical detail, particularly of the hippocampus and 

cortex, which are key regions of interest in 

neurodegenerative diseases. These images are 

preprocessed and skull-stripped to focus on the brain 
structure alone. 

 

 
Fig 6: Brain MRI 

 

B. Model Framework 

We implemented a [8] Denoising Diffusion Probabilistic 

Model (DDPM), a class of generative models that gradually 

transforms noise into structured images through a learned 

reverse diffusion process. The architecture is built using [9] 

PyTorch and leverages U-Net as the core neural network 

backbone [10, 11] for learning the denoising steps. 

 

During training, the model learns to predict the added 

noise at each diffusion timestep, and during inference, it 

generates new samples by iteratively refining random noise 

guided by these learned denoising steps[21]. 

 

 
Fig 7: Architecture 

 

 Key Components: 

 

 Forward Process (Noise Addition): At each 

timestep t, Gaussian noise [12, 13] is progressively 
added to the image. The noise schedule follows a linear 

beta scheduler. 

 

q(xₜ | xₜ₋₁) = 𝒩(xₜ; √(1 - βₜ) ⋅ xₜ₋₁, βₜ𝐈) 
 

 

 

 

 xt−1: the image at the previous timestep. 

 βt: the variance of the Gaussian noise added at timestep t. 

 I: identity matrix, implying independent noise is added to 

each pixel. 

 √1−βt⋅xt−1: the mean of the distribution. 

 βtI: the variance of the noise. 
 

The goal of the forward process is to create a sequence 

of noisy images x1,x2,…,xT starting from the original image 

x0, such that at each timestep, a little Gaussian noise is 

added[13]. 
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Fig 8: Forward Diffusion 

 

 Reverse Process (Denoising): A U-Net-based neural 

network [14, 15] is trained to predict the noise added at 

each timestep. By learning this reverse process, the model 

can generate clean images starting from pure noise. 

 

 
Fig 9: Reverse Diffsuion 

 
C. Training Strategy 

Each diffusion model is trained separately for each 

MRI modality to learn the specific anatomical and visual 

characteristics unique to each body region. 
 

 Training Parameters: 

 

 Optimizer: Adam (lr=0.001) 

 Epochs: 10,000 (early stopping used based on validation 

loss) 

 Batch Size: 32 

 Device: NVIDIA GPU (CUDA support enabled) 

 Scheduler: Linear noise beta schedule 

 

 Training Pipeline: 

 

 Load Dataset: Resize all images to 64×64 and normalize 

pixel values to [-1, 1]. 

 Sample Noise: For each image in the batch, sample a 

timestep t uniformly from [0, T). 

 Apply Forward Diffusion: Add noise to the image based 

on t. 

 Train Model: Predict the noise and backpropagate using 

MSE loss. 

 

IV. PRELIMINARY RESULTS 

 
To assess the performance of our generative model, we 

employed a set of widely used quantitative evaluation 

metrics. These metrics evaluate the similarity between the 

generated images and the ground-truth images in terms of 

pixel-wise accuracy and perceptual quality. 

 

 PSNR (Peak Signal-to-Noise Ratio) ↑ (Higher is better) 

PSNR is a metric that measures the ratio between the 

maximum possible power of a signal and the power of 

corrupting noise that affects the quality of its representation. 
It is commonly used to evaluate the fidelity of image 

reconstruction methods. 

 

 SSIM (Structural Similarity Index Measure) ↑ (Higher is 

better) 

SSIM evaluates the visual similarity between two 

images based on luminance, contrast, and structural 

information. Unlike PSNR, which only considers pixel-wise 

differences, SSIM is designed to mimic human perception. 

 

 MSE (Mean Squared Error) ↓ (Lower is better) 

MSE is a basic error metric that measures the average of 

the squares of the differences between predicted and actual 

pixel values. It gives a sense of how much the predicted image 

deviates from the ground truth. 

 

 MAE (Mean Absolute Error) ↓ (Lower is better) 
MAE calculates the average absolute difference 

between the predicted and true pixel values. Unlike MSE, it 

is less sensitive to large errors (since it doesn't square the 

difference). 

 

 FID (Fréchet Inception Distance) ↓ (Lower is better) 

FID measures the distance between feature 

representations of real and generated images using a 

pretrained Inception-v3 network. It evaluates the perceptual 

quality of generated images. 
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Table 1: Results 

Modality PSNR ↑ SSIM ↑ MSE ↓ MAE ↓ FID ↓ 

Brain 55.51 0.7 0.18 0.05 50.54 

Chromatin 62.70 0.89 0.11 0.02 30.09 

Lung 28.90 0.41 6.85 1.57 65.22 

Spine 43.01 0.5 2.11 0.64 52.90 

Kidney 31.42 0.36 5.21 1.34 79.43 

Heart 41.70 0.29 6.94 1.89 55.71 

 

Chromatin and brain images are easier to reconstruct clearly, while lung scans suffer from more noise and distortion. 

 

 
Fig 10: MRI Modalities 

 

 Modality-Wise Interpretation Brain 

 

 High PSNR (55.51) and good SSIM (0.70) indicate that 

the model reconstructs brain scans with high fidelity and 

structural accuracy. 

 Low MSE (0.18) and MAE (0.05) further confirm 

minimal error in reconstruction. 

 FID (50.54) is moderate, suggesting the generated brain 

images are fairly realistic but could be improved in terms 

of diversity. 

 
 Chromatin 

 

 This modality performs best overall: 

 Highest PSNR (62.70) and SSIM (0.89) signify excellent 

reconstruction. 

 Very low MSE (0.11) and MAE (0.02) mean the 

generated images are very close to the ground truth. 

 Lowest FID (30.09) implies that chromatin images are the 

most realistic and diverse among all. 

 Lung 

 

 Low PSNR (28.90) and SSIM (0.41) indicate poor 

reconstruction quality. 

 High MSE (6.85) and MAE (1.57) show substantial pixel-

wise errors. 

 FID (65.22) is also high, suggesting low realism and 

diversity in generated lung images. Likely the model 

struggles due to anatomical complexity or data variability. 

 

 Spine 
 

 Moderate PSNR (43.01) and SSIM (0.5) imply 

acceptable image quality. 

 MSE (2.11) and MAE (0.64) are moderate, indicating 

room for improvement. 

 FID (52.90) shows average realism, better than lung or 

kidney but not as good as brain or chromatin. 
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 Kidney 

 

 PSNR (31.42) and SSIM (0.36) are relatively low. 

 High MSE (5.21) and MAE (1.34) highlight inaccuracy in 

pixel reconstruction. 

 FID (79.43) is the worst among all, suggesting that the 

generated kidney images are less realistic and 

inconsistent. 

 

 Heart 

 

 PSNR (41.70) is decent, but SSIM (0.29) is very low — 

indicates the model fails to capture structure well. 

 MSE (6.94) and MAE (1.89) are high, meaning there's 
noticeable pixel-wise error. 

 FID (55.71) indicates moderate realism, but combined 

with low SSIM, realism may not be structurally 

consistent. 

 Generated Images: 

 

 

 
Fig 11: Generated Images 

 

V. DISCUSSION 

 
Diffusion models have shown impressive capabilities in 

generating high-quality synthetic images across several 

natural image domains [42]. In this study, we extended their 

use to a variety of MRI modalities, including brain, 

chromatin, lung, spine, heart, and kidney scans. Each of these 

modalities presents unique anatomical and imaging 

characteristics—ranging from high-frequency cortical 

patterns in brain MRIs to motion-affected structures in lung 

scans and highly dynamic cardiac sequences. 

 

Our experimental results indicate that while diffusion 

models are capable of learning detailed structures specific to 

each modality, MRI data presents inherent challenges that 

limit complete reconstruction fidelity: 

 

 Low signal-to-noise ratio (SNR) and motion artifacts in 

MRI scans make it difficult for generative models to learn 

clean image priors. 

 High anatomical variability across subjects introduces 

complexity in model generalization. 

 3D spatial consistency and depth resolution are 

particularly difficult to maintain, especially for models 

trained on 2D slices without contextual information from 

adjacent slices. 

 Certain modalities like chromatin or heart MRIs that 

require fine temporal or spatial accuracy for clinical 

interpretation push the limits of existing diffusion-based 

methods. 

 

These observations confirm that while diffusion models 

offer a strong baseline, they have not yet reached their full 

potential in the context of MRI reconstruction. 

 

VI. CONCLUSION AND FUTURE WORK 
 

In this study, we looked at how well diffusion models can 

work with six different types of MRI scans. We found that 

these models are quite flexible and can learn important details 

specific to each type of scan. However, working with medical 
images—especially MRIs—comes with its own set of 

challenges. These scans are often noisy, complex, and 

sometimes 3D, which makes them hard for the models to fully 

understand and recreate. In the future, we plan to try using 3D 

diffusion models to better capture the full structure of the 

scans, and we also want to guide the models using extra 

information like outlines or maps of the body parts. For 
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moving scans like the heart, we hope to improve the models 

so they can handle time-based changes. Finally, we’ll work 

with doctors to see how useful the generated images are in 

real medical settings. This work helps us learn what these 

models are good at and where they still need to get better 
when used in healthcare. 
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