Dynamical Behavior and Optimal Control Analysis of a Stochastic Influenza Model with Quarantine


Authors : Md. Habibur Rahman; Md. Abdullah Bin Masud; Mostak Ahmed; Tania Annur; Sharmina Rahman

Volume/Issue : Volume 11 - 2026, Issue 1 - January


Google Scholar : https://tinyurl.com/4vk62m9b

Scribd : https://tinyurl.com/bp96cx4d

DOI : https://doi.org/10.38124/ijisrt/26jan951

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : This study investigates the transmission dynamics of influenza through an SEIQR framework incorporating both deterministic and stochastic effects. The model explicitly accounts for quarantine, vaccination, social distancing, and treatment as time-dependent control strategies. The analytical investigation involves computing the basic reproduction number and establishing both local and global stability properties of the disease-free and endemic equilibrium states through Lyapunov-based techniques. An optimal control problem is formulated to minimize the combined cost of infection prevalence, quarantine burden, and intervention efforts, and the necessary optimality conditions are obtained via Pontryagin’s Maximum Principle. To capture environmental and behavioral uncertainties, stochastic perturbations driven by independent Wiener processes are introduced, and numerical solutions are obtained using the Euler–Maruyama scheme. Simulation results demonstrate that the implementation of optimal combined control strategies significantly suppresses infection levels and reduces stochastic fluctuations compared to uncontrolled scenarios. The findings highlight the effectiveness and robustness of integrated intervention policies for mitigating influenza outbreaks under uncertainty.

Keywords : Influenza, Optimal Control, Pontryagin’s Maximum Principle, Stochastic Model, Brownian Motion,

References :

  1. [Abdoon and Alzahrani, 2024]  Abdoon, M. A. and Alzahrani, A. B. M. (2024).  Comparative analysis of influenza modeling using novel fractional operators with real data.   Symmetry, 16(9):1126.
  2. [Abdoon et~al., 2023]  Abdoon, M. A., Saadeh, R., Berir, M., Guma, F. E., and Ali, M. (2023).  Analysis, modeling and simulation of a fractional-order influenza model.   Alexandria Engineering Journal, 74:231–240.
  3. [Ahmed et~al., 2023]  Ahmed, M., Masud, M. A. B., and Sarker, M. M. A. (2023).  Bifurcation analysis and optimal control of discrete sir model for covid-19. Chaos, Solitons & Fractals, 174:113899.
  4. [Alexander et~al., 2004]  Alexander, M. E., Bowman, C., Moghadas, S. M., Summers, R., Gumel, A. B., and Sahai, B. M. (2004).  A vaccination model for the transmission dynamics of influenza.   SIAM Journal on Applied Dynamical Systems, 3(4):503–524.
  5. [Almutairi et~al., 2023]  Almutairi, D., Abdoon, M. A., Berir, M., Saadeh, R., and Qazza, A. (2023).  A numerical confirmation of a fractional seitr influenza model efficiency.   Applied Mathematics & Information Sciences, 17(5):741–749.
  6. [Alsubaie et~al., 2024]  Alsubaie, N. E., Guma, F. E., Boulehmi, K., Al-Kuleab, N., and Abdoon, M. A. (2024).  Improving influenza epidemiological models under caputo fractional-order calculus.   Symmetry, 16(7):929.
  7. [Alzahrani et~al., 2023]  Alzahrani, S. M., Saadeh, R., Abdoon, M. A., Qazza, A., Guma, F. E. L., and Berir, M. (2023).  Numerical simulation of an influenza epidemic: prediction with fractional seir and the arima model.   Applied Mathematics & Information Sciences, 18(1):1–12.
  8. [Andreu-Vilarroig et~al., 2024]  Andreu-Vilarroig, C., Villanueva, R. J., and González-Parra, G. (2024).  Mathematical modeling for estimating influenza vaccine efficacy: a case study of the valencian community, spain.   Infectious Disease Modelling, 9(3):744–762.
  9. [Arun~Kumar and Venkatesh, 2023]  Arun Kumar, K. and Venkatesh, A. (2023).  Mathematical analysis of SEITR model for influenza dynamics.   Journal of Computational Analysis and Applications, 31(2):281–293.
  10. [Ashraf et~al., 2025]  Ashraf, M., Muhammad, N., Masud, M. A. B., Alam, M. N., and Hossen, M. J. (2025).  Modeling and analysis of dynamic waveforms in nonlinear fractional models of fifth order.   Computational Methods for Differential Equations.
  11. [Barik et~al., 2021]  Barik, M., Swarup, C., Singh, T., Habbi, S., and Chauhan, S. (2021).  Dynamical analysis, optimal control and spatial pattern in an influenza model with adaptive immunity in two stratified populations.   AIMS Mathematics, 7(4):4898–4935.
  12. [Imran et~al., 2019]  Imran, M., Ben-Romdhane, M., Ansari, A. R., and Temimi, H. (2019).  Numerical study of an influenza epidemic dynamical model with diffusion.   Discrete and Continuous Dynamical Systems – Series S, 13(10):2761–2787.
  13. [Kanyiri et~al., 2020]  Kanyiri, C. W., Luboobi, L., and Kimathi, M. (2020).  Application of optimal control to influenza pneumonia coinfection with antiviral resistance.   Computational and Mathematical Methods in Medicine, 2020:1–15.
  14. [Kanyiri et~al., 2018]  Kanyiri, C. W., Mark, K., and Luboobi, L. (2018).  Mathematical analysis of influenza A dynamics in the emergence of drug resistance.   Computational and Mathematical Methods in Medicine, 2018:1–14.
  15. [Kharis and Arifudin, 2017]  Kharis, M. and Arifudin, R. (2017).  Mathematical model of seasonal influenza with treatment in constant population. Journal of Physics: Conference Series, 824:012034.
  16. [Khondaker, 2022]  Khondaker, F. (2022).  Optimal control analysis of influenza epidemic model. Applied Mathematics, 13(10):845–857.
  17. [Kim et~al., 2016]  Kim, S., Lee, J., and Jung, E. (2016).  Mathematical model of transmission dynamics and optimal control strategies for 2009 A/H1N1 influenza in the republic of korea.   Journal of Theoretical Biology, 412:74–85.
  18. [Lamwong et~al., 2022]  Lamwong, J., Pongsumpun, P., Tang, I., and Wongvanich, N. (2022).  Vaccination’s role in combating the omicron variant outbreak in thailand: an optimal control approach.   Mathematics, 10(20):3899.
  19. [Lamwong et~al., 2023]  Lamwong, J., Wongvanich, N., Tang, I., and Pongsumpun, P. (2023).  Optimal control strategy of a mathematical model for the fifth wave of COVID-19 outbreak (omicron) in thailand.   Mathematics, 12(1):14.
  20. [Lee et~al., 2010]  Lee, S., Chowell, G., and Castillo-Chávez, C. (2010).  Optimal control for pandemic influenza: the role of limited antiviral treatment and isolation. Journal of Theoretical Biology, 265(2):136–150.
  21. [Masud and Ahmed, 2018]  Masud, A. B. and Ahmed, F. (2018). Comparing theoretical and practical solution of the first order first degree ordinary differential equation of population model. Open Acc J Math Theor Phy, 1(1):11–17.
  22. [Masud et~al., 2021]  Masud, M. A. B., Ahmed, M., and Rahman, M. H. (2021).  Optimal control for covid-19 pandemic with quarantine and antiviral therapy. Sensors International, 2:100131.
  23. [Masud and Ahmed, 2025]  Masud, M. A. B. and Ahmed, M. (2025).  Optimal control for system of stochastic differential equations with lévy jumps. Results in Control and Optimization, page 100600.
  24. [Masud et~al., 2017]  Masud, M. A. B., Doly, S. A., et al. (2017).  A study of stellar model with kramer’s opacity by using runge kutta method with programming c.   International Journal of Astronomy and Astrophysics, 7(03):185.
  25. [Masud et~al., 2026]  Masud, M. A. B., Rahman, S., Shimi, F. N., Ahmed, M., and Gope, R. C. (2026).  Optimizing epidemic control: Nash game approach to stochastic modeling with brownian motion.   Results in Control and Optimization, page 100657.
  26. [Masud et~al., 2025]  Masud, M. A. B., Tasnim, T., Ahmed, M., and Rahman, M. K. (2025).  Dynamic nash game for linear stochastic control with markov jump in mpox.   Results in Control and Optimization, page 100640.
  27. [Masud et~al., 2024]  Masud, M., Shimi, F. N., and Gope, R. C. (2024).  Numerical integration techniques: a comprehensive review.   International Journal of Innovative Science and Research Technology, pages 2744–2755.
  28. [Nainggolan, 2022]  Nainggolan, J. (2022).  Optimal control of influenza A dynamics in the emergence of a two strain.   Journal of Mathematics and Applications, 16(3):835–844.
  29. [Nainggolan, 2023]  Nainggolan, J. (2023).  Optimal countermeasure control on influenza spread model in the emergence of drug resistance.   International Journal of Science and Research, 12(2):300–306.
  30. [Ojo et~al., 2022]  Ojo, M. M., Benson, T. O., Peter, O. J., and Goufo, E. F. D. (2022).  Nonlinear optimal control strategies for a mathematical model of COVID-19 and influenza co-infection.   Physica A: Statistical Mechanics and its Applications, 607:128173.
  31. [Parvin et~al., 2025]  Parvin, H., Alam, M. N., Masud, M. A. B., and Hossen, M. J. (2025).  Investigating traveling wave structures in the van der waals normal form for fluidized granular matter through the modified s-expansion method.   Partial Differential Equations in Applied Mathematics, page 101285.
  32. [Pongsumpun et~al., 2023]  Pongsumpun, P., Lamwong, J., Tang, I., and Pongsumpun, P. (2023).  A modified optimal control for the mathematical model of dengue virus with vaccination.   AIMS Mathematics, 8(11):27460–27487.
  33. [Pongsumpun, 2017]  Pongsumpun, P. (2017).  Mathematical model of influenza with seasons in thailand.  In  Proceedings of the Burapha University International Conference, volume 2017, pages 494–502.
  34. [Prieto and Ibarguen-Mondragon, 2019]  Prieto, K. and Ibarguen-Mondragon, E. (2019).  Parameter estimation, sensitivity and control strategies analysis in the spread of influenza in mexico.   Journal of Physics: Conference Series, 1408(1):012020.
  35. [Prosper et~al., 2011]  Prosper, O., Saucedo, O., Thompson, D., Torres-Garcia, G., Wang, X., and Castillo-Chávez, C. (2011).  Modeling control strategies for concurrent epidemics of seasonal and pandemic H1N1 influenza.   Mathematical Biosciences and Engineering, 8(1):141–170.
  36. [Qiu and Feng, 2009]  Qiu, Z. and Feng, Z. (2009).  Transmission dynamics of an influenza model with vaccination and antiviral treatment.   Bulletin of Mathematical Biology, 72(1):1–33.
  37. [Rahmalia and Herlambang, 2018]  Rahmalia, D. and Herlambang, T. (2018).  Weight optimization of optimal control influenza model using artificial bee colony.   International Journal of Computer Science and Applied Mathematics, 4(1):27.
  38. [Rahman et~al., 2025]  Rahman, S., Prity, F. S., and Masud, M. A. B. (2025).  Optimizing indoor visible light communication systems: A comparative analysis of multi-led configurations.
  39. [Ratti et~al., 2023]  Ratti, M., Concina, D., Rinaldi, M., Salinelli, E., Di Brisco, A. M., Ferrante, D., Volpe, A., and Panella, M. (2023).  Vaccination strategies against seasonal influenza in long term care settings: lessons from a mathematical modelling study.   Vaccines, 11(1):32.
  40. [Sabir et~al., 2022]  Sabir, Z., Said, S. B., and Al-Mdallal, Q. (2022).  A fractional order numerical study for the influenza disease mathematical model.   Alexandria Engineering Journal, 65:615–626.
  41. [Varshney and Dwivedi, 2021]  Varshney, K. G. and Dwivedi, Y. K. (2021).  Mathematical modelling of influenza–meningitis under the quarantine effect of influenza.   Turkish Journal of Computer and Mathematics Education, 12(11):7214–7225.
  42. [Waleed et~al., 2015]  Waleed, M., Imran, M., and Khan, A. (2015).  Stochastic analysis of an influenza epidemic model.   International Journal of Applied and Computational Mathematics, 3(2):425–443.
  43. [World Health Organization, 2018]  World Health Organization (2018).  Influenza: Data and statistics.  Accessed: 2018.

This study investigates the transmission dynamics of influenza through an SEIQR framework incorporating both deterministic and stochastic effects. The model explicitly accounts for quarantine, vaccination, social distancing, and treatment as time-dependent control strategies. The analytical investigation involves computing the basic reproduction number and establishing both local and global stability properties of the disease-free and endemic equilibrium states through Lyapunov-based techniques. An optimal control problem is formulated to minimize the combined cost of infection prevalence, quarantine burden, and intervention efforts, and the necessary optimality conditions are obtained via Pontryagin’s Maximum Principle. To capture environmental and behavioral uncertainties, stochastic perturbations driven by independent Wiener processes are introduced, and numerical solutions are obtained using the Euler–Maruyama scheme. Simulation results demonstrate that the implementation of optimal combined control strategies significantly suppresses infection levels and reduces stochastic fluctuations compared to uncontrolled scenarios. The findings highlight the effectiveness and robustness of integrated intervention policies for mitigating influenza outbreaks under uncertainty.

Keywords : Influenza, Optimal Control, Pontryagin’s Maximum Principle, Stochastic Model, Brownian Motion,

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe