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deterministic and stochastic effects. The model explicitly accounts for quarantine, vaccination, social distancing, and
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I INTRODUCTION

Influenza is a rapidly spreading acute respiratory
infection that remains a persistent global public health
concern, contributing significantly to morbidity and mortality
each year. The disease is caused by influenza viruses of types
A, B, and C, among which type A viruses are responsible for
large-scale pandemics, type B viruses typically lead to
regional epidemics, and type C viruses cause relatively mild
infections with limited transmission [Abdoon and Alzahrani,
2024, Abdoon et~al., 2023, Alexander et~al., 2004].
Influenza is mainly transmitted via respiratory droplets
expelled  during coughing, sneezing, or close
person-to-person interactions, with transmission risk
increasing in densely populated settings [Almutairi et~al.,
2023, Alsubaie et~al., 2024, Alzahrani et~al., 2023, Masud
and Ahmed, 2018]. Following an incubation period of
approximately one to four days, infected individuals may
develop symptoms such as fever, headache, sore throat, nasal
congestion, myalgia, and fatigue [Andreu-Vilarroig et~al.,
2024, Arun~Kumar and Venkatesh, 2023, Ahmed et~al.,
2023]. Although most cases are self-limiting, severe
complications and fatalities are common among high-risk
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groups, including the elderly, young children, pregnant
women, and individuals with underlying chronic conditions
[Barik et~al., 2021, Masud et~al., 2021, Masud et~al., 2024].

Historically, influenza outbreaks have recurred across
centuries, causing  substantial  demographic  and
socioeconomic disruption. The 1918 Spanish influenza
pandemic remains the most catastrophic, infecting nearly
one-third of the world’s population and causing an estimated
50 million deaths worldwide [Kharis and Arifudin, 2017,
Khondaker, 2022, Kim et~al., 2016, Lamwong et~al., 2022].
More recently, the 2009 A(HLN1) pandemic rapidly spread
across more than 214 countries, resulting in over 18,000
confirmed deaths by August 2010 [Lamwong et~al., 2023,
Lee et~al., 2010, Nainggolan, 2022]. Influenza outbreaks are
broadly classified as seasonal, pandemic, zoonotic, or
variant-related, with seasonal influenza posing a recurrent
annual challenge that necessitates sustained preparedness and
effective intervention strategies [Nainggolan, 2023, Ojo
et~al., 2022, Parvin et~al., 2025, Masud et~al., 2017]. These
recurring outbreaks highlight the importance of developing
robust analytical tools to understand transmission dynamics
and evaluate control measures.
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Mathematical modeling has emerged as a powerful
framework for studying influenza transmission and assessing
the effectiveness of intervention strategies. Classical
compartmental models such as the SIR and SEIR frameworks
have been widely used to investigate disease dynamics and
control mechanisms [Pongsumpun, 2017, Pongsumpun
et~al., 2023, Prieto and Ibarguen-Mondragon, 2019, Masud
et~al., 2026]. Several extensions of these models have
incorporated additional epidemiological features, including
treatment, vaccination, isolation, and temporary immunity,
leading to formulations such as SIRC, SITR, SEITR, and
SVEIHR models [Prosper et~al., 2011, Qiu and Feng, 2009,
Rahmalia and Herlambang, 2018, Masud and Ahmed, 2025].
While these models provide valuable insights, many focus
primarily on vaccination or treatment as isolated control
strategies and often neglect the explicit role of quarantine as a
core intervention.

Optimal control theory has been extensively applied to
influenza models to identify time-dependent intervention
strategies that minimize disease burden and implementation
costs. Studies have demonstrated the effectiveness of
vaccination, antiviral treatment, and reduced contact rates in
suppressing outbreaks [Ratti et~al., 2023, Sabir et~al., 2022,
Varshney and Dwivedi, 2021, Masud et~al., 2025]. For
instance, Qiu and Feng showed that excessive reliance on
antiviral treatment without adequate vaccination may
paradoxically increase transmission [Waleed et~al., 2015,
Ashraf et~al., 2025], while they emphasized the critical role
of wvaccine efficacy and coverage [World Health
Organization, 2018]. The researcher further illustrated that
combining  pharmaceutical and  non-pharmaceutical
interventions leads to more effective disease mitigation
[Rahman et~al., 2025, Imran et~al., 2019, Kanyiri et~al.,
2020]. However, despite these advances, relatively few
studies have simultaneously incorporated vaccination,
treatment, and quarantine within a unified optimal control
framework that also accounts for economic costs.

Quarantine is a crucial non-pharmaceutical
intervention, particularly during periods of limited vaccine
availability or emerging viral strains. Although isolation and
quarantine measures have proven effective in controlling
infectious diseases, their integration into influenza models
remains limited. Some recent works have considered
quarantine effects indirectly or as secondary measures
[Varshney and Dwivedi, 2021, Lee et~al., 2010], but a
comprehensive analysis that treats quarantine as a primary
control variable alongside vaccination and treatment is still
lacking. This gap motivates the need for a more realistic
modeling framework that captures the combined impact of
multiple interventions on influenza transmission dynamics.

In this study, we address this gap by proposing a novel
Susceptible-Exposed  —Infectious—Quarantined—Recovered
(SEIQR) model for influenza transmission. The model
explicitly incorporates quarantine as a key control
mechanism and integrates multiple time-dependent control
strategies within an optimal control framework. The
qualitative behavior of the model is analyzed through
equilibrium and stability theory, while Pontryagin’s
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Maximum Principle is employed to characterize optimal
intervention strategies. A cost-effectiveness analysis is
further conducted to evaluate the trade-offs between disease
reduction and control implementation costs. The results
provide meaningful insights into the design of integrated,
cost-effective strategies for influenza control and offer
practical guidance for public health decision-makers.

1. MATERIALS AND METHODS

» Mathematical Model

To analyze the spread of influenza, we develop an
SEIQR framework that partitions the population into five
epidemiological classes. The model considers a closed
population and captures the progression of individuals
through different stages of infection and intervention.
Seasonal effects are not introduced as explicit
time-dependent forcing terms; instead, key
parameters—most notably the transmission rate o —are
assumed to represent the level of disease transmissibility
during a given influenza season. This modeling choice
reduces analytical complexity while retaining the core
features of seasonal influenza transmission. Incorporating
explicit seasonal variability in the transmission rate may be
considered in future extensions of the model to account for
time-varying epidemiological conditions. The state variables
are defined as follows (see Fig. 1):

S(t): number of susceptible individuals,
E (t): number of exposed individuals,
1(t): number of infectious individuals,

Q (t): number of quarantined individuals,
R(t): number of recovered individuals.

Influenza transmission occurs mainly through
respiratory droplets expelled when infected individuals
cough, sneeze, or speak near others. Susceptible individuals
may inhale these particles, resulting in subsequent infections.
While transmission through contaminated surfaces (fomites)
is possible, it plays a secondary role and is therefore not
explicitly incorporated in the present framework. The
infection process is governed by the transmission rate «a,
representing the probability of disease spread per contact
under given environmental and behavioral conditions.

Once exposed, individuals experience an incubation
period of average duration 6, during which they are infected
but not infectious. They progress to the infectious class at rate
Kk = 1/6. Infectious individuals may then be quarantined at
rate u, while those in quarantine recover at rate §,. The
natural death rate &; applies uniformly across all
compartments, and mwN represents recruitment ( or
immigration) into the susceptible class. The complete model
is expressed as:

WWW.ijisrt.com 2203


https://doi.org/10.38124/ijisrt/26jan951
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

2 =N — aSI - 8,5,
dE 1
L=asi-(5+4,)E,
dl

1
=5 E—w+d)l @

L=l - (8, +6)Q,
da
d_I: = 6,0 — 61R,

A

Where the total population at time t satisfies

N=S)+E()+1(t)+Q()+R(¢).
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This SEIQR framework captures the essential
mechanisms of influenza transmission and control, including
exposure, quarantine, and recovery processes. The model
parameters are summarized in Table 1. It is assumed that
individuals who recover gain immunity that persists
throughout the course of the epidemic. Over longer
timescales, waning immunity may be represented by an
SIRS-type extension, which could be explored in future
studies. Assuming a constant total population, we have

dN

E—O = 7'[251.

~ as (1) I(D) E(1)

5:5(t) 5.E(t)

5,1(1) 5,00 5.R(t)

Fig 1 Flowchart of the SEIQR Influenza Transmission Model with Quarantine Intervention.

1. MODEL PARAMETERS

Table 1 Description of Model Parameters Used in the SEIQR Influenza Model. A Constant Total Population is
Assumed with T = §;.

Parameter Definition Value Reference

N Total human population 100 Assumed

T Birth rate 1/(365 x 70) [Kanyiri et~al., 2018]

a Infection rate of influenza virus 0.5 Assumed

6, Natural death rate 1/(365 x 70) [Kanyiri et~al., 2018]

6 Incubation period (days) 5 [Kanyiri et~al., 2018, Alexander et~al., 2004]
u Quarantine rate 1/7 [Kanyiri et~al., 2018, Alexander et~al., 2004]
4, Recovery rate from quarantine 1/14 [Kanyiri et~al., 2018]

v Vaccination rate 0.2 Assumed

¢ Treatment efficacy 1/14 Assumed

» Normalized Model
To simplify the system, each compartment is
normalized by the total population N:

S(t) E(t) 1@®)

s =— e(t) ZE i(t) =R(1¥) q(®)
= T' T(t) = T
The normalized SEIQR model becomes:
a5 _ T — asi — s,
dt
de . 1
E: asl — (§+T[)€,
di 1 .
— = p¢— (w+mi )
d .
d_‘: = pi — (6, + Mg,
dar
== 8,q — mr,

Where r(t) =1 —s(t) —e(t) —i(t) — q(t).
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e Proposition 1. Let (S(t),E(t),I1(t),Q(t),R(t)) denote
the solutions of the SEIQR system in Eq. (1). The
biologically feasible region is forward invariant; that is, if
the initial conditions start in T, they remain in T for all
t=>0.
r={S,EILQR)ERS | 0<S,EILQR<N)}

> Equilibrium Points
Setting the right-hand sides of Eq. (1) to zero gives:

o Disease-free equilibrium (DFE):
E, = (5% E*, I*,Q*,R*) = (N, 0,0,0,0).
e Endemic equilibrium (EE), which exists only if R, > 1:

E1 = (ST) ET) IT) QT) RT):

WWW.ijisrt.com 2204


https://doi.org/10.38124/ijisrt/26jan951
http://www.ijisrt.com/

Volume 11, Issue 1, January — 2026
ISSN No:-2456-2165

With components

st = ﬂ'
R,
o TNR =)
T Ry(1+mO)(u+m)
TNO(R, — 1)
Et = | R —
O+l = 7o)
+
ot =
S,+1
T
gt =29
T

e Basic Reproduction Number
Using the next-generation matrix method with infected
compartments (E,I):

S N A
0o ol I
9 Hu
At the DFE (S = N):
_ [0 aN
F=[y o)
Then
aN aN
FV='=|1+n)(u+m) p+mnl
0 0

The spectral radius of FV~! gives the basic
reproduction number:

_ aN
T (+m0)(m+w)

®)

Ro

o Existence Condition: The endemic equilibrium E; exists
and is biologically meaningful if and only if R, > 1. For
R, <1, only the DFE exists.

3D Surface of Basic Reproduction Number Ro

Fig 2 Flowchart of the Influenza SEIQR Model with
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Quarantine (Absolute Population).

Schematic Figure 2 representation of the SEIQR
influenza transmission model in terms of absolute population
sizes. The diagram illustrates the movement of individuals
among the susceptible (S), exposed (E), infectious (1),
quarantined ( Q ), and recovered ( R ) compartments.
Susceptible individuals become exposed through effective
contact with infectious individuals at rate a. Exposed
individuals progress to the infectious class after the
incubation period. Infectious individuals may be isolated
through quarantine at rate u, while quarantined individuals
recover at rate &,. Natural birth and death processes are
incorporated uniformly across all compartments.

e Theorem 1 The disease—free equilibrium is locally
asymptotically stable whenever R, < 1.

e Proof. The local stability of the disease—free equilibrium
E, is determined by the eigenvalues of the Jacobian

matrix evaluated at E,. These eigenvalues are obtained
from the characteristic equation

det(Jg, — AI) = 0.
Solving this equation yields the following eigenvalues:

11’2 = —T, A3 = -1 — 62,

1
Ay = %[—1 —6(2b +p) — /(@ — D? + 4abN,

1
A = ﬁ[—1 —6(2b +p) + /(1 — )? + 4abN .

It is clear that the eigenvalues 1,, 4,, 45, and A, are
strictly negative. Moreover, A is also negative provided that
R, < 1. Hence, all eigenvalues of the Jacobian matrix have
negative real parts under this condition. Consequently, the
disease—free equilibrium E, is locally asymptotically stable
for R, < 1.

e Theorem 2 The endemic equilibrium is locally
asymptotically stable whenever R, > 1.

e Proof. To investigate the local stability of the endemic
equilibrium E*, we employ the Routh—Hurwitz stability
criterion. The Jacobian matrix evaluated at E* admits the
eigenvalues together with three additional eigenvalues
A3, A4, and Ag that satisfy the cubic characteristic
equation

A =-m, Ay =—m— 0§,

2‘3 +a212 +a11+a0 =0.

The coefficients of this polynomial are given by

1
a, = §+ (2 + Ry),
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_ (1 + 216 + Ou)R,
= 5 :

a;

(1 +nm0)(m+uw)(Ry — 1)
ay, = 7 :

Since all model parameters are positive, it follows
immediately that a, >0 and a, > 0 whenever R, > 1.
Moreover, direct computation yields

1
@8, = ag =5 (Ry + 6(Ro + 1+ Ro) (1 + 2Ry))

+u(1+ Ry + 6Ry)
+r(1+60w)(1 4+ Ry(3 +Ry)), 4
Which is strictly positive for R, > 1.

Therefore, all the Routh—Hurwitz conditions are
satisfied. Consequently, the real parts of A5, 4,, and A are
negative. Combined with 1; < 0 and A, < 0, this implies
that the endemic equilibrium E* is locally asymptotically
stable for R, > 1.

» Global Stability Analysis

This section examines the global stability of the system
in order to characterize its long-term dynamics for arbitrary
initial states through rigorous mathematical analysis. A
sufficient set of conditions ensuring global stability is
established in the following theorem. Under these conditions,
all solution trajectories of the system converge to the
corresponding equilibrium point, independent of the initial
configuration.

e Theorem 3 Let E,=(s; e i, q:1) = (100,0,0)
denote the disease—free equilibrium. Then E, is globally
asymptotically stable in the feasible region I" if and only
if Ry < 1.

e Proof. To establish global stability, we construct the
following Lyapunov function inspired by standard
epidemic modeling techniques:

V(s,eiq) =(s—s{lns)+e+i+gq.

This function is nonnegative for all (s,e,i,q) €T and
satisfies V =0 at E,,.

Taking the derivative of V along the trajectories of the
system yields

dV_( s{‘)ds de di dq
dt s)ac tactac T ar

Substituting the model equations gives

av ( s7
dt

1- ?) (r — (T + aiN)s) + (aiNs - %e)
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+(5e = Gt mi) + (i = (w + 8)0). )
After simplification, this expression becomes

dv s1 . .
E=n(1—?)—ns+ns{‘ + aiNs;{ —me — i — (1 + §,)q.
At the disease—free equilibrium, s; = 1, which leads to

dv

E=n[(1—§)+(1—s)]—7te—7ti—(7t+52)q-

This can be rewritten as

av s—1\° .
—=—7t< ) —me—mi—(T+68,)q <0,
dt
With equality holding ifand only if s =1, e =0, i =
0,and g = 0.

Thus, Z—': is negative semidefinite in T, and the largest
invariant set contained in {‘;—':= } consists solely of the
equilibrium point E,. By LaSalle’s invariance principle, the
disease—free equilibrium E, is globally asymptotically

stable on T whenever R, < 1.

e Theorem 4 Assume that R,>1 . Let E*=
(s;,e5,i3,q5,15) denote the endemic equilibrium given
by Eg. (6). Then the equilibrium E* of system Eq. (3) is
globally asymptotically stable in the invariant region I'.

e Proof. To prove global stability, we introduce a
Volterra-type Lyapunov function defined by

s e
V(s eiqr)= (s — 55 — sg‘lns—*) + (e —e;— e§1n;>

2 2

i
+<i - izln:) + <q —q;- qzln%)
ly q:

+(r—r2* —rz*ln:—*). (6)

2

This function is nonnegative for all (s,e,i,q,r) €T
and satisfies V' = 0 at the endemic equilibrium E*.

Differentiating ¥V with respect to time along the
trajectories of the system yields

av (1 s§) ds N (1 eé‘) de
dt s/dt e/dt

+( _172)%+(1—2—2)‘;—‘Z+(1—%)% @

Substituting the right-hand sides of system Eq. (1) into
the above expression gives
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il (1 52)[ + aiN)s]
I - T — (r + aiN)s

*

+(1—%2) [aiNs— (%+n)e]
(1——) [96—(M+T[)l]
+(1- L) i - @+ 0]

+(1-2) [8,q - r]. (8)

Using the equilibrium relations satisfied by E* and
simplifying, it follows that

av
a <0 forall(s,e,i,q,7) €T,

With equality if and only if (s,e,i,q,7) = (53,€5,15,95,15).

Therefore, the derivative of V is negative semidefinite
and the largest invariant set contained in {3—‘: = 0} reduces to

the endemic equilibrium E*. By LaSalle’s invariance
principle, E* is globally asymptotically stable in T
whenever R, > 1.

Replace s with s —s;, e with e —ej, i with i — i3,
q with g — g3, and r with r —r;, then we have:

‘;_‘f =1 -s){ b— (m+ aiN)(s — s3)}

+(1—%;){ aiNs—(%+7T)(€—€§)}
+(1_§){ %e_wn)(i—i;)}

+(1 _%){ wi— ( +68,)(q — g3)}

+ ( - TTZ) { 829 —m(r — 1)} 9)
(Z(f =b- ﬂ(ss*) (m + alN)( _SS;)Z
+aiNs — aiNs (%;) — (%e)(e%f;y
T P I Gl
+pi — i ((Z;) (T+6 )(q _qQE)z
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+6,q - 6,9 (2) - r — 1) (10)
Now, we have

d¢

dt =K, — K,
Where

1
K, =b+aiNs+5e+ui+62q,

S5 s —s3)? e;
K,=m (f) + (T + «aiN) % + aiNs <?2>

H(grm) S ege(d)
o+ m 2 2)2 + pi <22> bt o8B _qq;)z

+6,q (2 )+(r—r2)2 (11)

It is evident that % = 0 when K; < K,, and it equals
zero when s=s3,e=e;i=1i3,q=gq5r =1 Wwhich
aligns with the established principles. Therefore, the endemic
equilibrium is globally asymptotically stable on T' whenever

» Sensitivity Analysis

Sensitivity analysis plays an essential role in assessing
and improving the predictive capability of influenza
transmission models. By evaluating how variations in model
parameters affect system dynamics, this analysis helps to
identify the most influential factors governing disease spread.
A widely adopted technique is the normalized forward
sensitivity index, which measures the proportional variation
in an output variable induced by a relative change in a
specific parameter. This method facilitates a systematic
assessment and comparison of how individual parameters
affect the model’s behavior.

Such analysis is particularly important as it highlights
parameters that exert the greatest control over disease
transmission and progression. Identifying these key
parameters supports the development of more efficient
intervention strategies by directing resources toward the most
impactful control measures. As a result, public health policies
such as vaccination programs, social distancing measures,
and treatment strategies can be better optimized to reduce
disease burden and mitigate outbreaks.

The normalized forward sensitivity index is defined as

ko _ORo ¥
9 T30 Ry
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Table 3 summarizes the sensitivity indices of the
parameters included in the influenza model. Each index
reflects the degree to which a parameter influences the basic
reproduction number R, a fundamental indicator of disease
transmissibility. A positive sensitivity index implies that
increasing the parameter leads to an increase in R,, whereas
a negative value indicates a reduction in R,. Notably, the
results show that the total population size (N) and the birth
rate (b) both have sensitivity indices equal to one, indicating
that a 10% increase in either parameter produces a
proportional 10% increase in R,. This indicates that these
parameters are directly and proportionally related to the
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potential spread of the disease. The sensitivity results indicate
that the basic reproduction number R, is most sensitive to
changes in the total population size N and the recruitment
rate b, both exhibiting unit sensitivity indices. This implies a
proportional relationship between these parameters and R,.
In contrast, the quarantine rate u has a strong negative
sensitivity index, suggesting that increasing quarantine
effectiveness significantly reduces disease transmission. The
remaining parameters show comparatively smaller effects,
indicating lower influence on the epidemic threshold.

Local Sensitivity Analysis

[
/

2000

L1750 4

1500

1250

L0040 4 o+ 10
J & LI
dy #10%
& +10%
M 10%
& +10%

nfected ¢

750
S0 1

750 4

o === EaLeline

Tierae

(a) Local Sensitivity

Global Sensitivity Analysis (Peak Infected)

Q.5

04

0.3 7

a2

Sobal First-oader index

01 7

oo

(b) Global Sensitivity

Fig 3 Scenario of Local and Global Sensitivity.

Table 2 Normalized Forward Sensitivity Indices of the Basic Reproduction Number R, with Respect to Key Model Parameters.

Parameter Description Sensitivity Index
N Total human population +1.00000
b Recruitment (birth) rate +1.00000
a Influenza transmission rate 0.00046
6 Incubation period 0.00019
u Quarantine rate 0.99972
V. MATHEMATICAL MODEL WITH reducing effective contact rates;

CONTROL VARIABLES

The optimal control problem provides a mathematical
framework for determining time—dependent intervention
strategies that steer a dynamical system toward a desired
objective. In the present study, this framework is employed to
analyze and regulate the transmission dynamics of influenza.
The main goal is to mitigate the public health impact of the
disease by appropriately influencing key epidemiological
processes over a finite time horizon.

» To this End, Four Control Functions are Introduced:
e u,(t) denotes the vaccination control, representing the
intensity of wvaccine administration to susceptible

individuals;
o u,(t) represents social intervention measures aimed at

JISRT26JAN951
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e uy(t) corresponds to the treatment of infected
individuals, which reduces both disease severity and
infectiousness;

e u,(t) accounts for treatment and management of
quarantined individuals, ensuring effective isolation and
recovery.

These control variables are integrated into the influenza
transmission model to influence the dynamics of the
susceptible, exposed, infected, quarantined, and recovered
compartments. The goal is to identify optimal control
strategies that minimize the overall cost associated with both
disease burden and the implementation of interventions.
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The controlled influenza model is given by

as@) _ _ (-up®)asmi()
a " N

1S(6) — vy (8),
dE(t) _ (1-up(t)aS)I(t)
dac N

3+ )z
4o - %E(t) = (u+mIE) — pus(OI(L), (12)

dt

d?iit) = ul(t) — (m + (1 + ug (£))8,)Q(8),

(B9 = (1 + 1, (6))8,Q(8) + Pus (D)) + vuy (t) — TR(E).

ac

From a mathematical perspective, the optimal control
problem consists of the above system of state equations
coupled with an objective functional that balances
epidemiological outcomes against the costs associated with
implementing control measures. The optimal control
functions u, (t), u,(t), us(t), and u,(t) are sought subject
to admissible bounds and the governing dynamics.

To derive the necessary conditions for optimality,
Pontryagin’s Maximum Principle is applied. This principle
converts the original control problem into an equivalent
Hamiltonian system composed of state and adjoint equations,
along with characterization conditions for the optimal
controls. Analysis of this system guarantees the existence of
optimal intervention strategies that achieve an effective
balance between minimizing disease transmission and
limiting the cost of control implementation.

T

(1), uz(t), us(®), u_4@®) = f;  [Cal(®)+C2 Q) +
12(Wq Ulz(t) + W, Uzz(t) +W; U32(t) + W, U42(t))] dt,

Where B; are positive weights for i = 1,2,...6 .

We aim to determine the optimal control strategies
ui (), u3(t),us(t) , and wuy(t) by formulating the
corresponding Lagrangian functional of the optimal control
problem, given by

L =GI+6R®) +§(W1uf(t) + Wou (8 + Waud(6) + Wyug (). (13)

The solution of this optimal control problem provides
the most effective combination of vaccination policies,
non-pharmaceutical interventions, and treatment strategies
necessary to reduce and control the spread of influenza within
the population.

e Theorem 5 For the optimal control problem under
consideration, there exist adjoint variables 4;(t), i =
1,2,3,4,5, satisfying the adjoint system

dd; _ 0H

@ — agr (14)

Where ¢ = (S,E,I,Q,R) denotes the state vector. The
transversality conditions are given by

2,(T) =0, i=1,234,5.
Moreover, the optimal control functions u;,u;, u}, and
u;, are characterized by
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1 (Al—zs)vsa)}}

wy

1 (A2 —h)as(f)l(f)}}

{ NW,
] (15)
uy = max10, min{l, %ﬂ}},
3
u; = max {O, min {1, %ﬂ}} )
4

e Proof. According to Pontryagin’s Maximum Principle,
the Hamiltonian function associated with the influenza
control model is defined as

H = L), Q1) us (), u(t), uz(t), us(t)) + A,S(t) + LE(t) + 231 (¢)

i ; (13)
Q) + AsR (),

Where L(-) denotes the running cost functional.
Substituting the state equations into the Hamiltonian yields

H o = CI(t) + CQ(8) +5 Wyud(e) + Waud(t) + Waud(6) + Wk (6))

2, (m = (1 = 4y (6) S — S (1) — vy (£)S(2))

as@®I)

+2,((1 = 1, () S22 = (S 4+ 7) E() (14)
A GE(E) = (1 + B)I(8) — aug (DI (£))

FA, () = (7 + (1 +u,(6))8,)Q(1))
+25 (1 +u, ()8,Q() + aus (DI(E) + vuy (H)S(6) — TR(L)).

The adjoint equations are obtained by differentiating the
Hamiltonian with respect to the state variables:

b= = (- u) D vug) — 4,01 u3) S Agvuj,

b == =(G+n)l-32s

As = —2—7 = -1 —u})%s+ As(u+ b + aul) — udy — auids — C;, (15)
Ao = =50 = 24((+ U8, + m) — As(1+ U6, — G,

1s :—Z—I;:nls.

Applying the optimality conditions % =0, for j =
J

1,2,3,4, together with the control bounds 0 <u; < 1, leads
to the explicit characterizations of the optimal controls given
in equation (15). This completes the proof.
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Fig 4 Comparison of Susceptible, Exposed, Infected, Quarantine and Recovered Individuals Under with and without Control.
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Fig 5 Comparison of Infected Individuals Under Various Control Scenarios, Including Isolation (u,), Social Awareness (u,), and
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Fig 6 Comparison of Infected Individuals Under Various Control Scenarios, Including Isolation (u,), Social Awareness (u,), and
Treatment (us), as well as without Control.
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Fig 8 Comparison of Infected Individuals Under Various Control Scenarios, Including Isolation (u,), Social Awareness (u,), and
Treatment (u5), as well as without Control.

space (Q,F,P). The parameters ag; > 0 represent the
intensity of stochastic perturbations affecting each

V. STOCHASTIC MODEL WITH CONTROL

We assume that random environmental fluctuations,
behavioral uncertainty, and demographic variability affect
the disease transmission and progression rates. These
uncertainties are modeled by independent standard Wiener
processes. Here, W;(t), i=1,..,5, are independent
standard Wiener processes defined on a complete probability

epidemiological compartment. The stochastic terms capture
random fluctuations arising from environmental variability,
heterogeneity in contact patterns, and uncertainties in
intervention effectiveness. When o; = 0, the stochastic
model reduces to the deterministic system.

[ dS(t) = [ — (1 — u, ()@ " X2 — 18 (t) — vy (©)]dt + 6,S(t) AW, (8),

dE() = [(1 —1,(0)a* 20 — (L4 n) E(0)de + 0, E(t) dW,(0),

dI() = B = (e + IO = dus(OIO]de +031(E) AW, (), (10
dQ(®) = [ul(t) — (r + (1 + u, ())5)Q(D)]dt + 0,Q(t) dW, (D),
dR(t) = [(1 + uy(£))6,Q(t) + pus (MOI(E) + vuy (t) — nR()]dt + osR(t) dWs(t).

The Hamiltonian for an optimal control problem is

H=CGIM)+ oM+ % (Wyuz () + Wou3 (8) + Waus (6) + Wyui(0) 17
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+2A5S 4+ AgE + 41+ 25Q + -+ (18)

The co-state (adjoint) equations are obtained as

A = }[AT—O
S = aS' S()_
. OH
AE=—6—E,AE(T)=0

. oH
A = _ﬁ'AI(T) =0

H
Ao(T) =0
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The optimal controls are found by

a:]-[—W +1 65‘+l1 aE+ =0
ou, 1th T4 Ju, Eou, a
. 1 aS’JH1 aE+
U Wl(saul £ Qu, )
0K _ - o Ll as’+
ou, Uz = Wz(sau2 )
0K _ . - o Ll S
ous Us = W3(58u3 )
0K _ - o Lo a.s"+
ou, Ua = W‘,(S(')u4 )-

Using Pontryagin’s Maximum Principle we have the Figures
9 and 10.
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Fig 9 Stochastic Scenario of State Variables with and without Control when a = 0.05,0 = 0.2 and ¢ = 0.1.
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Fig 10 Stochastic Scenario of State Variables with and
without Control.

VI. NUMERICAL ANALYSIS

Figure 4 illustrates the temporal dynamics of the
susceptible, exposed, infected, quarantined, and recovered
populations under scenarios with and without optimal
control. In the absence of control measures, the infected
population increases rapidly, reaching a higher peak and
persisting for a longer duration. When optimal controls are
implemented, a significant reduction in the infected and
exposed classes is observed, while the susceptible population
declines more gradually. The quarantined and recovered
populations increase more rapidly under control, indicating
effective isolation and treatment. Overall, the results
demonstrate that the combined control strategies
substantially mitigate disease transmission and accelerate
epidemic containment. Figure 5 depicts the impact of varying
recruitment rates 7 on the dynamics of the state variables.
As the value of m increases, the susceptible population
grows more rapidly, leading to higher exposure and infection
levels. Consequently, the infected and quarantined
compartments exhibit larger peaks for higher recruitment
rates, indicating enhanced transmission potential. The
recovered population also increases with larger 7 values due
to the rise in infection cases. These results highlight the
sensitivity of influenza transmission dynamics to population
recruitment and emphasize the importance of accounting for
demographic effects in disease control strategies. Figure 6
presents the effects of different values of the infection rate «
on the evolution of the susceptible, exposed, infected,
quarantined, and recovered populations. An increase in «
leads to a rapid decline in the susceptible class due to higher
transmission intensity, while the exposed and infected
populations rise sharply and attain larger peak values. The
quarantined compartment also expands as more infected
individuals are isolated. Conversely, the recovered
population increases more rapidly for higher infection rates,
reflecting enhanced disease progression. These observations
demonstrate that the infection rate a plays a dominantrole in
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shaping epidemic dynamics and significantly influences the
severity and timing of influenza outbreaks. Figure 7
illustrates the influence of different total population sizes N
on the dynamics of the susceptible, exposed, infected,
quarantined, and recovered compartments. As the population
size increases, the number of susceptible individuals grows
proportionally, creating greater opportunities for disease
transmission. This leads to higher peaks in the exposed and
infected populations, indicating an elevated epidemic burden
in larger populations. The quarantined and recovered classes
also increase correspondingly, reflecting intensified isolation
and recovery processes. These results suggest that population
size plays a crucial role in amplifying influenza transmission
and highlight the need for stronger and early intervention
measures in densely populated settings. Figure 8 compares
the evolution of the infected population under different
control scenarios, including no control, single control, dual
controls, and the simultaneous application of three controls.
In the absence of intervention, the infected class exhibits a
rapid increase with a high peak and prolonged persistence.
Implementing a single control reduces the infection level
moderately, while the combination of two controls leads to a
more pronounced decline in both peak magnitude and
outbreak duration. The application of all three control
measures produces the greatest reduction in infection levels,
driving the system rapidly toward disease elimination. This
demonstrates the effectiveness of integrated control strategies
in suppressing influenza transmission. Figure 9 presents the
stochastic evolution of the susceptible, exposed, infected,
quarantined, and recovered populations under controlled and
uncontrolled scenarios for the parameter values a = 0.05,
6 = 0.2, and ¢ = 0.1. These parameter choices correspond
to a reduced transmission intensity, a shorter incubation
period, and an increased treatment efficacy, respectively. As
in Figure 10, the stochastic system is simulated using the
Euler—Maruyama method, with solid curves denoting the
uncontrolled case and dashed curves representing the
controlled dynamics. Compared to the baseline stochastic
scenario, a substantial attenuation of disease transmission is
observed. The susceptible population remains at a higher
level over time, while the exposed and infected
compartments exhibit markedly lower peaks and faster decay
when control measures are applied. In particular, the infected
population is significantly suppressed, indicating the
combined effectiveness of reduced transmission and
enhanced treatment. Additionally, the quarantined and
recovered populations increase more rapidly in the controlled
case, reflecting efficient isolation and recovery processes.
Overall, Figure 9 demonstrates that appropriate parameter
settings, together with optimal control strategies,
substantially enhance epidemic containment and reduce
stochastic variability in disease dynamics. Figure 10
illustrates the stochastic dynamics of the SEIQR model under
the presence and absence of control strategies. Each panel
depicts the temporal evolution of one state variable obtained
by solving the stochastic system using the Euler—Maruyama
scheme. The solid curves correspond to the uncontrolled
case, whereas the dashed curves represent the controlled
scenario. In the absence of control, the susceptible population
decreases rapidly due to sustained disease transmission,
leading to a pronounced increase in the exposed and infected
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populations. When control measures are implemented, a
noticeable mitigation effect is observed: the susceptible class
declines more slowly, while both the exposed and infected
populations are significantly reduced over time. This
reduction is mainly attributed to the combined effects of
vaccination, transmission reduction, treatment, and
quarantine controls. Furthermore, the controlled system
exhibits an increase in the quarantined and recovered
populations, indicating enhanced isolation of infectious
individuals and improved recovery outcomes. Despite the
presence of stochastic perturbations, the controlled
trajectories remain consistently lower for the infected class
compared to the uncontrolled case, highlighting the
robustness and effectiveness of the proposed intervention
strategies in suppressing disease spread under random
environmental fluctuations.

VII. CONCLUSION

In this work, a comprehensive SEIQR epidemic model
incorporating both deterministic and stochastic effects was
developed to investigate the transmission dynamics of
influenza. The model explicitly integrates vaccination,
transmission reduction, treatment, and quarantine as control
strategies. Rigorous analytical results, including the
derivation of the basic reproduction number and stability
analysis of the DFE, were established to characterize the
qualitative behavior of the system. An optimal control
problem was formulated, and the necessary optimality
conditions were obtained using Pontryagin’s Maximum
Principle, providing insights into effective intervention
strategies. To account for environmental and demographic
uncertainties, stochastic perturbations driven by independent
Wiener processes were introduced, and the system was
solved numerically using the Euler-Maruyama scheme.
Numerical simulations demonstrate that the combined
implementation of control measures significantly reduces
infection levels and suppresses stochastic fluctuations.
Overall, the results highlight the importance of integrated and
timely interventions in controlling influenza outbreaks and
provide a robust mathematical framework for epidemic
management under uncertainty.
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