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I. INTRODUCTION 

 

Influenza is a rapidly spreading acute respiratory 

infection that remains a persistent global public health 
concern, contributing significantly to morbidity and mortality 

each year. The disease is caused by influenza viruses of types 

A, B, and C, among which type A viruses are responsible for 

large-scale pandemics, type B viruses typically lead to 

regional epidemics, and type C viruses cause relatively mild 

infections with limited transmission [Abdoon and Alzahrani, 

2024, Abdoon et~al., 2023, Alexander et~al., 2004]. 

Influenza is mainly transmitted via respiratory droplets 

expelled during coughing, sneezing, or close 

person-to-person interactions, with transmission risk 

increasing in densely populated settings [Almutairi et~al., 

2023, Alsubaie et~al., 2024, Alzahrani et~al., 2023, Masud 
and Ahmed, 2018]. Following an incubation period of 

approximately one to four days, infected individuals may 

develop symptoms such as fever, headache, sore throat, nasal 

congestion, myalgia, and fatigue [Andreu-Vilarroig et~al., 

2024, Arun~Kumar and Venkatesh, 2023, Ahmed et~al., 

2023]. Although most cases are self-limiting, severe 

complications and fatalities are common among high-risk 

groups, including the elderly, young children, pregnant 

women, and individuals with underlying chronic conditions 

[Barik et~al., 2021, Masud et~al., 2021, Masud et~al., 2024]. 

 
Historically, influenza outbreaks have recurred across 

centuries, causing substantial demographic and 

socioeconomic disruption. The 1918 Spanish influenza 

pandemic remains the most catastrophic, infecting nearly 

one-third of the world’s population and causing an estimated 

50 million deaths worldwide [Kharis and Arifudin, 2017, 

Khondaker, 2022, Kim et~al., 2016, Lamwong et~al., 2022]. 

More recently, the 2009 A(H1N1) pandemic rapidly spread 

across more than 214 countries, resulting in over 18,000 

confirmed deaths by August 2010 [Lamwong et~al., 2023, 

Lee et~al., 2010, Nainggolan, 2022]. Influenza outbreaks are 

broadly classified as seasonal, pandemic, zoonotic, or 
variant-related, with seasonal influenza posing a recurrent 

annual challenge that necessitates sustained preparedness and 

effective intervention strategies [Nainggolan, 2023, Ojo 

et~al., 2022, Parvin et~al., 2025, Masud et~al., 2017]. These 

recurring outbreaks highlight the importance of developing 

robust analytical tools to understand transmission dynamics 

and evaluate control measures. 
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Mathematical modeling has emerged as a powerful 

framework for studying influenza transmission and assessing 

the effectiveness of intervention strategies. Classical 

compartmental models such as the SIR and SEIR frameworks 

have been widely used to investigate disease dynamics and 

control mechanisms [Pongsumpun, 2017, Pongsumpun 

et~al., 2023, Prieto and Ibarguen-Mondragon, 2019, Masud 

et~al., 2026]. Several extensions of these models have 
incorporated additional epidemiological features, including 

treatment, vaccination, isolation, and temporary immunity, 

leading to formulations such as SIRC, SITR, SEITR, and 

SVEIHR models [Prosper et~al., 2011, Qiu and Feng, 2009, 

Rahmalia and Herlambang, 2018, Masud and Ahmed, 2025]. 

While these models provide valuable insights, many focus 

primarily on vaccination or treatment as isolated control 

strategies and often neglect the explicit role of quarantine as a 

core intervention. 

 

Optimal control theory has been extensively applied to 
influenza models to identify time-dependent intervention 

strategies that minimize disease burden and implementation 

costs. Studies have demonstrated the effectiveness of 

vaccination, antiviral treatment, and reduced contact rates in 

suppressing outbreaks [Ratti et~al., 2023, Sabir et~al., 2022, 

Varshney and Dwivedi, 2021, Masud et~al., 2025]. For 

instance, Qiu and Feng showed that excessive reliance on 

antiviral treatment without adequate vaccination may 

paradoxically increase transmission [Waleed et~al., 2015, 

Ashraf et~al., 2025], while they emphasized the critical role 

of vaccine efficacy and coverage [World Health 

Organization, 2018]. The researcher further illustrated that 
combining pharmaceutical and non-pharmaceutical 

interventions leads to more effective disease mitigation 

[Rahman et~al., 2025, Imran et~al., 2019, Kanyiri et~al., 

2020]. However, despite these advances, relatively few 

studies have simultaneously incorporated vaccination, 

treatment, and quarantine within a unified optimal control 

framework that also accounts for economic costs. 

 

Quarantine is a crucial non-pharmaceutical 

intervention, particularly during periods of limited vaccine 

availability or emerging viral strains. Although isolation and 
quarantine measures have proven effective in controlling 

infectious diseases, their integration into influenza models 

remains limited. Some recent works have considered 

quarantine effects indirectly or as secondary measures 

[Varshney and Dwivedi, 2021, Lee et~al., 2010], but a 

comprehensive analysis that treats quarantine as a primary 

control variable alongside vaccination and treatment is still 

lacking. This gap motivates the need for a more realistic 

modeling framework that captures the combined impact of 

multiple interventions on influenza transmission dynamics. 

 

In this study, we address this gap by proposing a novel 
Susceptible–Exposed –Infectious–Quarantined–Recovered 

(SEIQR) model for influenza transmission. The model 

explicitly incorporates quarantine as a key control 

mechanism and integrates multiple time-dependent control 

strategies within an optimal control framework. The 

qualitative behavior of the model is analyzed through 

equilibrium and stability theory, while Pontryagin’s 

Maximum Principle is employed to characterize optimal 

intervention strategies. A cost-effectiveness analysis is 

further conducted to evaluate the trade-offs between disease 

reduction and control implementation costs. The results 

provide meaningful insights into the design of integrated, 

cost-effective strategies for influenza control and offer 

practical guidance for public health decision-makers. 

 

II. MATERIALS AND METHODS 

 

 Mathematical Model 

To analyze the spread of influenza, we develop an 

SEIQR framework that partitions the population into five 

epidemiological classes. The model considers a closed 

population and captures the progression of individuals 

through different stages of infection and intervention. 

Seasonal effects are not introduced as explicit 

time-dependent forcing terms; instead, key 

parameters—most notably the transmission rate 𝛼 —are 
assumed to represent the level of disease transmissibility 

during a given influenza season. This modeling choice 

reduces analytical complexity while retaining the core 

features of seasonal influenza transmission. Incorporating 

explicit seasonal variability in the transmission rate may be 

considered in future extensions of the model to account for 

time-varying epidemiological conditions. The state variables 

are defined as follows (see Fig. 1): 

 

 𝑆(𝑡): number of susceptible individuals, 

 𝐸(𝑡): number of exposed individuals, 

 𝐼(𝑡): number of infectious individuals, 

 𝑄(𝑡): number of quarantined individuals, 

 𝑅(𝑡): number of recovered individuals. 

 

Influenza transmission occurs mainly through 

respiratory droplets expelled when infected individuals 

cough, sneeze, or speak near others. Susceptible individuals 

may inhale these particles, resulting in subsequent infections. 

While transmission through contaminated surfaces (fomites) 

is possible, it plays a secondary role and is therefore not 

explicitly incorporated in the present framework. The 

infection process is governed by the transmission rate 𝛼 , 

representing the probability of disease spread per contact 
under given environmental and behavioral conditions. 

 

Once exposed, individuals experience an incubation 

period of average duration 𝜃, during which they are infected 

but not infectious. They progress to the infectious class at rate 

𝜅 = 1/𝜃. Infectious individuals may then be quarantined at 

rate 𝜇, while those in quarantine recover at rate 𝛿2 . The 

natural death rate 𝛿1  applies uniformly across all 

compartments, and 𝜋𝑁  represents recruitment ( or 

immigration) into the susceptible class. The complete model 

is expressed as: 
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{
 
 
 

 
 
 
𝑑𝑆

𝑑𝑡
= 𝜋𝑁 − 𝛼𝑆𝐼 − 𝛿1𝑆,

𝑑𝐸

𝑑𝑡
= 𝛼𝑆𝐼 − (

1

𝜃
+ 𝛿1)𝐸,

𝑑𝐼

𝑑𝑡
=

1

𝜃
𝐸 − (𝜇 + 𝛿1)𝐼,

𝑑𝑄

𝑑𝑡
= 𝜇𝐼 − (𝛿2 + 𝛿1)𝑄,

𝑑𝑅

𝑑𝑡
= 𝛿2𝑄 − 𝛿1𝑅,

 (1) 

 

Where the total population at time 𝑡 satisfies 

 

𝑁 = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡). 
 

This SEIQR framework captures the essential 

mechanisms of influenza transmission and control, including 

exposure, quarantine, and recovery processes. The model 

parameters are summarized in Table 1. It is assumed that 

individuals who recover gain immunity that persists 

throughout the course of the epidemic. Over longer 

timescales, waning immunity may be represented by an 

SIRS-type extension, which could be explored in future 
studies. Assuming a constant total population, we have 

 
𝑑𝑁

𝑑𝑡
= 0    ⇒     𝜋 = 𝛿1. 

 

 
Fig 1 Flowchart of the SEIQR Influenza Transmission Model with Quarantine Intervention. 

 

III. MODEL PARAMETERS 
 

Table 1 Description of Model Parameters Used in the SEIQR Influenza Model. A Constant Total Population is  

Assumed with 𝜋 = 𝛿1. 
Parameter Definition Value Reference 

𝑁 Total human population 100 Assumed 

𝜋 Birth rate 1/(365 × 70) [Kanyiri et~al., 2018] 

𝛼 Infection rate of influenza virus 0.5 Assumed 

𝛿1 Natural death rate 1/(365 × 70) [Kanyiri et~al., 2018] 

𝜃 Incubation period (days) 5 [Kanyiri et~al., 2018, Alexander et~al., 2004] 

𝜇 Quarantine rate 1/7 [Kanyiri et~al., 2018, Alexander et~al., 2004] 

𝛿2 Recovery rate from quarantine 1/14 [Kanyiri et~al., 2018] 

𝜈 Vaccination rate 0.2 Assumed 

𝜙 Treatment efficacy 1/14 Assumed 

 

 Normalized Model 
To simplify the system, each compartment is 

normalized by the total population 𝑁: 

 

𝑠(𝑡) =
𝑆(𝑡)

𝑁
,    𝑒(𝑡) =

𝐸(𝑡)

𝑁
,    𝑖(𝑡) =

𝐼(𝑡)

𝑁
,    𝑞(𝑡)

=
𝑄(𝑡)

𝑁
,    𝑟(𝑡) =

𝑅(𝑡)

𝑁
. 

 

The normalized SEIQR model becomes: 

{
 
 
 

 
 
 
𝑑𝑠

𝑑𝑡
= 𝜋 − 𝛼𝑠𝑖 − 𝜋𝑠,

𝑑𝑒

𝑑𝑡
= 𝛼𝑠𝑖 − (

1

𝜃
+ 𝜋)𝑒,

𝑑𝑖

𝑑𝑡
=

1

𝜃
𝑒 − (𝜇 + 𝜋)𝑖,

𝑑𝑞

𝑑𝑡
= 𝜇𝑖 − (𝛿2 + 𝜋)𝑞,

𝑑𝑟

𝑑𝑡
= 𝛿2𝑞 − 𝜋𝑟,

 (2) 

 

Where 𝑟(𝑡) = 1 − 𝑠(𝑡) − 𝑒(𝑡) − 𝑖(𝑡) − 𝑞(𝑡). 

 

 Proposition 1. Let (𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑄(𝑡), 𝑅(𝑡))  denote 

the solutions of the SEIQR system in Eq. (1). The 
biologically feasible region is forward invariant; that is, if 

the initial conditions start in Γ, they remain in Γ for all 

𝑡 ≥ 0. 

 

Γ = {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅) ∈ ℝ+
5   |  0 ≤ 𝑆, 𝐸, 𝐼, 𝑄, 𝑅 ≤ 𝑁} 

 

 Equilibrium Points 

Setting the right-hand sides of Eq. (1) to zero gives: 

 

 Disease-free equilibrium (DFE): 

 

𝐸0 = (𝑆
∗, 𝐸∗, 𝐼∗, 𝑄∗ , 𝑅∗) = (𝑁, 0,0,0,0). 

 

 Endemic equilibrium (EE), which exists only if 𝑅0 > 1: 

 

𝐸1 = (𝑆
†, 𝐸†, 𝐼†, 𝑄†, 𝑅†), 

https://doi.org/10.38124/ijisrt/26jan951
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With components 

 

𝑆† =
𝑁

𝑅0
, 

 

𝐼† =
𝜋𝑁(𝑅0 − 1)

𝑅0(1 + 𝜋𝜃)(𝜇 + 𝜋)
, 

 

𝐸† = 𝜃(𝜇 + 𝜋)𝐼† =
𝜋𝑁𝜃(𝑅0 − 1)

𝑅0(1 + 𝜋𝜃)
, 

 

𝑄† =
𝜇𝐼†

𝛿2 + 𝜋
, 

 

𝑅† =
𝛿2𝑄

†

𝜋
. 

 

 Basic Reproduction Number 

Using the next-generation matrix method with infected 

compartments (𝐸, 𝐼): 
 

𝐹 = [
0 𝛼𝑆
0 0

] ,        𝑉 = [

1

𝜃
+ 𝜋 0

−
1

𝜃
𝜇 + 𝜋

]. 

 

At the DFE (𝑆 = 𝑁): 

 

𝐹 = [
0 𝛼𝑁
0 0

]. 

 

Then 

 

𝐹𝑉−1 = [

𝛼𝑁

(1 + 𝜋𝜃)(𝜇 + 𝜋)

𝛼𝑁

𝜇 + 𝜋
0 0

]. 

 

The spectral radius of 𝐹𝑉−1  gives the basic 

reproduction number: 

 

𝑅0 =
𝛼𝑁

(1+𝜋𝜃)(𝜋+𝜇)
. (3) 

 

 Existence Condition: The endemic equilibrium 𝐸1 exists 

and is biologically meaningful if and only if 𝑅0 > 1. For 

𝑅0 ≤ 1, only the DFE exists. 

 

 
Fig 2 Flowchart of the Influenza SEIQR Model with 

Quarantine (Absolute Population). 

Schematic Figure 2 representation of the SEIQR 

influenza transmission model in terms of absolute population 

sizes. The diagram illustrates the movement of individuals 

among the susceptible (𝑆 ), exposed (𝐸 ), infectious ( 𝐼 ), 

quarantined ( 𝑄 ), and recovered ( 𝑅 ) compartments. 
Susceptible individuals become exposed through effective 

contact with infectious individuals at rate 𝛼 . Exposed 

individuals progress to the infectious class after the 

incubation period. Infectious individuals may be isolated 

through quarantine at rate 𝜇, while quarantined individuals 

recover at rate 𝛿2 . Natural birth and death processes are 

incorporated uniformly across all compartments. 

 

 Theorem 1 The disease–free equilibrium is locally 

asymptotically stable whenever 𝑅0 < 1. 

 

 Proof. The local stability of the disease–free equilibrium 

𝐸0  is determined by the eigenvalues of the Jacobian 

matrix evaluated at 𝐸0. These eigenvalues are obtained 

from the characteristic equation 

 

det(𝐽𝐸0 − 𝜆𝐼) = 0. 

 

Solving this equation yields the following eigenvalues: 
 

𝜆1,2 = −𝜋,        𝜆3 = −𝜋 − 𝛿2, 
 

𝜆4 =
1

2𝜃
[−1 − 𝜃(2𝑏 + 𝜇) − √(𝜃𝜇 − 1)2 + 4𝛼𝜃𝑁], 

 

𝜆5 =
1

2𝜃
[−1 − 𝜃(2𝑏 + 𝜇) + √(𝜃𝜇 − 1)2 + 4𝛼𝜃𝑁]. 

 

It is clear that the eigenvalues 𝜆1, 𝜆2, 𝜆3, and 𝜆4 are 

strictly negative. Moreover, 𝜆5 is also negative provided that 

𝑅0 < 1. Hence, all eigenvalues of the Jacobian matrix have 

negative real parts under this condition. Consequently, the 

disease–free equilibrium 𝐸0 is locally asymptotically stable 

for 𝑅0 < 1. 

 

 Theorem 2 The endemic equilibrium is locally 

asymptotically stable whenever 𝑅0 > 1. 

 

 Proof. To investigate the local stability of the endemic 

equilibrium 𝐸∗, we employ the Routh–Hurwitz stability 

criterion. The Jacobian matrix evaluated at 𝐸∗ admits the 

eigenvalues together with three additional eigenvalues 

𝜆3 , 𝜆4 , and 𝜆5  that satisfy the cubic characteristic 

equation 

 

𝜆1 = −𝜋,        𝜆2 = −𝜋 − 𝛿2, 
 

𝜆3 + 𝑎2𝜆
2 + 𝑎1𝜆 + 𝑎0 = 0. 

 

The coefficients of this polynomial are given by 

 

𝑎2 =
1

𝜃
+ 𝜋(2 + 𝑅0), 
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𝑎1 =
𝜋(1 + 2𝜋𝜃 + 𝜃𝜇)𝑅0

𝜃
, 

 

𝑎0 =
𝜋(1 + 𝜋𝜃)(𝜋 + 𝜇)(𝑅0 − 1)

𝜃
. 

 

Since all model parameters are positive, it follows 

immediately that 𝑎2 > 0  and 𝑎0 > 0  whenever 𝑅0 > 1 . 

Moreover, direct computation yields 

 

𝑎1𝑎2 − 𝑎0 =
1

𝜃
(𝑅0 + 𝜃(𝑅0 + 1+ 𝑅0)(1 + 2𝑅0)) 

 

+𝜇(1 + 𝑅0 + 𝜃𝑅0) 
 

+𝜋(1 + 𝜃𝜇)(1 + 𝑅0(3 + 𝑅0)),                      (4) 

 

Which is strictly positive for 𝑅0 > 1. 

 

Therefore, all the Routh–Hurwitz conditions are 

satisfied. Consequently, the real parts of 𝜆3, 𝜆4, and 𝜆5 are 

negative. Combined with 𝜆1 < 0 and 𝜆2 < 0, this implies 

that the endemic equilibrium 𝐸∗  is locally asymptotically 

stable for 𝑅0 > 1. 

 

 Global Stability Analysis 

This section examines the global stability of the system 

in order to characterize its long-term dynamics for arbitrary 

initial states through rigorous mathematical analysis. A 

sufficient set of conditions ensuring global stability is 

established in the following theorem. Under these conditions, 
all solution trajectories of the system converge to the 

corresponding equilibrium point, independent of the initial 

configuration. 

 

 Theorem 3 Let 𝐸0 = (𝑠1
∗, 𝑒1

∗, 𝑖1
∗, 𝑞1

∗, 𝑟1
∗) = (1,0,0,0,0) 

denote the disease–free equilibrium. Then 𝐸0 is globally 

asymptotically stable in the feasible region 𝛤 if and only 

if 𝑅0 < 1. 

 

 Proof. To establish global stability, we construct the 

following Lyapunov function inspired by standard 

epidemic modeling techniques: 
 

𝑉(𝑠, 𝑒, 𝑖, 𝑞) = (𝑠 − 𝑠1
∗ln𝑠) + 𝑒 + 𝑖 + 𝑞. 

 

This function is nonnegative for all (𝑠, 𝑒, 𝑖, 𝑞) ∈ Γ and 

satisfies 𝑉 = 0 at 𝐸0. 
 

Taking the derivative of 𝑉 along the trajectories of the 

system yields 
 

𝑑𝑉

𝑑𝑡
= (1 −

𝑠1
∗

𝑠
)
𝑑𝑠

𝑑𝑡
+
𝑑𝑒

𝑑𝑡
+
𝑑𝑖

𝑑𝑡
+
𝑑𝑞

𝑑𝑡
. 

 

Substituting the model equations gives 
 

𝑑𝑉

𝑑𝑡
= (1 −

𝑠1
∗

𝑠
) (𝜋 − (𝜋 + 𝛼𝑖𝑁)𝑠) + (𝛼𝑖𝑁𝑠 −

1

𝜃
𝑒) 

 

+(
1

𝜃
𝑒 − (𝜇 + 𝜋)𝑖) + (𝜇𝑖 − (𝜋 + 𝛿2)𝑞).             (5) 

 

After simplification, this expression becomes 

 
𝑑𝑉

𝑑𝑡
= 𝜋 (1 −

𝑠1
∗

𝑠
) − 𝜋𝑠 + 𝜋𝑠1

∗ + 𝛼𝑖𝑁𝑠1
∗ − 𝜋𝑒 − 𝜋𝑖 − (𝜋 + 𝛿2)𝑞. 

 

At the disease–free equilibrium, 𝑠1
∗ = 1, which leads to 

 
𝑑𝑉

𝑑𝑡
= 𝜋 [(1 −

1

𝑠
) + (1 − 𝑠)] − 𝜋𝑒 − 𝜋𝑖 − (𝜋 + 𝛿2)𝑞. 

 

This can be rewritten as 

 

𝑑𝑉

𝑑𝑡
= −𝜋(

𝑠 − 1

𝑠
)
2

− 𝜋𝑒 − 𝜋𝑖 − (𝜋 + 𝛿2)𝑞 ≤ 0, 

 

With equality holding if and only if 𝑠 = 1, 𝑒 = 0, 𝑖 =
0, and 𝑞 = 0. 

 

Thus, 
𝑑𝑉

𝑑𝑡
 is negative semidefinite in Γ, and the largest 

invariant set contained in {
𝑑𝑉

𝑑𝑡
= 0}  consists solely of the 

equilibrium point 𝐸0. By LaSalle’s invariance principle, the 

disease–free equilibrium 𝐸0  is globally asymptotically 

stable on Γ whenever 𝑅0 < 1. 

 

 Theorem 4 Assume that 𝑅0 > 1 . Let 𝐸∗ =
(𝑠2
∗, 𝑒2

∗, 𝑖2
∗, 𝑞2

∗ , 𝑟2
∗) denote the endemic equilibrium given 

by Eq. (6). Then the equilibrium 𝐸∗ of system Eq. (3) is 

globally asymptotically stable in the invariant region 𝛤. 

 

 Proof. To prove global stability, we introduce a 

Volterra–type Lyapunov function defined by 

 

𝑉(𝑠, 𝑒, 𝑖, 𝑞, 𝑟) = (𝑠 − 𝑠2
∗ − 𝑠2

∗ln
𝑠

𝑠2
∗) + (𝑒 − 𝑒2

∗ − 𝑒2
∗ln

𝑒

𝑒2
∗) 

 

+(𝑖 − 𝑖2
∗ − 𝑖2

∗ln
𝑖

𝑖2
∗) + (𝑞 − 𝑞2

∗ − 𝑞2
∗ln

𝑞

𝑞2
∗) 

 

+(𝑟 − 𝑟2
∗ − 𝑟2

∗ln
𝑟

𝑟2
∗).                               (6) 

 

This function is nonnegative for all (𝑠, 𝑒, 𝑖, 𝑞, 𝑟) ∈ Γ 

and satisfies 𝑉 = 0 at the endemic equilibrium 𝐸∗. 
 

Differentiating 𝑉  with respect to time along the 

trajectories of the system yields 

 
𝑑𝑉

𝑑𝑡
= (1 −

𝑠2
∗

𝑠
)
𝑑𝑠

𝑑𝑡
+ (1 −

𝑒2
∗

𝑒
)
𝑑𝑒

𝑑𝑡
 

 

+(1 −
𝑖2
∗

𝑖
)
𝑑𝑖

𝑑𝑡
+ (1 −

𝑞2
∗

𝑞
)
𝑑𝑞

𝑑𝑡
+ (1 −

𝑟2
∗

𝑟
)
𝑑𝑟

𝑑𝑡
.             (7) 

 

Substituting the right-hand sides of system Eq. (1) into 

the above expression gives 
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𝑑𝑉

𝑑𝑡
= (1−

𝑠2
∗

𝑠
) [𝜋 − (𝜋 + 𝛼𝑖𝑁)𝑠] 

 

+(1 −
𝑒2
∗

𝑒
) [𝛼𝑖𝑁𝑠 − (

1

𝜃
+ 𝜋)𝑒] 

 

+(1 −
𝑖2
∗

𝑖
) [
1

𝜃
𝑒 − (𝜇 + 𝜋)𝑖] 

 

+(1 −
𝑞2
∗

𝑞
)[𝜇𝑖 − (𝜋 + 𝛿2)𝑞] 

 

+(1 −
𝑟2
∗

𝑟
) [𝛿2𝑞 − 𝜋𝑟].                               (8) 

 

Using the equilibrium relations satisfied by 𝐸∗  and 

simplifying, it follows that 

 
𝑑𝑉

𝑑𝑡
≤ 0    forall(𝑠, 𝑒, 𝑖, 𝑞, 𝑟) ∈ Γ, 

 

With equality if and only if (𝑠, 𝑒, 𝑖, 𝑞, 𝑟) = (𝑠2
∗ , 𝑒2

∗, 𝑖2
∗ , 𝑞2

∗ , 𝑟2
∗). 

 

Therefore, the derivative of 𝑉 is negative semidefinite 

and the largest invariant set contained in {
𝑑𝑉

𝑑𝑡
= 0} reduces to 

the endemic equilibrium 𝐸∗ . By LaSalle’s invariance 

principle, 𝐸∗  is globally asymptotically stable in Γ 

whenever 𝑅0 > 1. 

 

Replace 𝑠 with 𝑠 − 𝑠2
∗ , 𝑒  with 𝑒 − 𝑒2

∗, 𝑖  with 𝑖 − 𝑖2
∗ , 

𝑞 with 𝑞 − 𝑞2
∗, and 𝑟 with 𝑟 − 𝑟2

∗, then we have: 

 
𝑑𝜙

𝑑𝑡
= (1 − 𝑠2

∗){ 𝑏 − (𝜋 + 𝛼𝑖𝑁)(𝑠 − 𝑠2
∗)} 

 

+(1 −
𝑒2
∗

𝑒
) { 𝛼𝑖𝑁𝑠 − (

1

𝜃
+ 𝜋) (𝑒 − 𝑒2

∗)} 

 

+(1 −
𝑖2
∗

𝑖
) { 

1

𝜃
𝑒 − (𝜇 + 𝜋)(𝑖 − 𝑖2

∗)} 

 

+(1 −
𝑞2
∗

𝑞
) { 𝜇𝑖 − (𝜋 + 𝛿2)(𝑞 − 𝑞2

∗)} 

 

+(1 −
𝑟2
∗

𝑟
) { 𝛿2𝑞 − 𝜋(𝑟 − 𝑟2

∗)}.                    (9) 

 

𝑑𝜙

𝑑𝑡
= 𝑏 − 𝜋 (

𝑠2
∗

𝑠
) − (𝜋 + 𝛼𝑖𝑁)

(𝑠 − 𝑠2
∗)2

𝑠
 

 

+𝛼𝑖𝑁𝑠 − 𝛼𝑖𝑁𝑠 (
𝑒2
∗

𝑒
) − (

1

𝜃
𝑒)
(𝑒 − 𝑒2

∗)2

𝑒
 

 

+
1

𝜃
𝑒 −

1

𝜃
𝑒 (
𝑖2
∗

𝑖
) − (𝜇 + 𝜋)

(𝑖 − 𝑖2
∗)2

𝑖
 

 

+𝜇𝑖 − 𝜇𝑖 (
𝑞2
∗

𝑞
) − (𝜋 + 𝛿2)

(𝑞 − 𝑞2
∗)2

𝑞
 

 

+𝛿2𝑞 − 𝛿2𝑞 (
𝑟2
∗

𝑟
) − (𝑟 − 𝑟2

∗)2𝑟.                     (10) 

 

Now, we have 

 
𝑑𝜙

𝑑𝑡
= 𝐾1 − 𝐾2, 

 

Where 
 

𝐾1 = 𝑏 + 𝛼𝑖𝑁𝑠 +
1

𝜃
𝑒 + 𝜇𝑖 + 𝛿2𝑞, 

 

𝐾2 = 𝜋(
𝑠2
∗

𝑠
) + (𝜋 + 𝛼𝑖𝑁)

(𝑠 − 𝑠2
∗)2

𝑠
+ 𝛼𝑖𝑁𝑠 (

𝑒2
∗

𝑒
) 

 

+(
1

𝜃
+ 𝜋)

(𝑒 − 𝑒2
∗)2

𝑒
+
1

𝜃
𝑒 (
𝑖2
∗

𝑖
) 

 

+(𝜇 + 𝜋)
(𝑖 − 𝑖2

∗)2

𝑖
+ 𝜇𝑖 (

𝑞2
∗

𝑞
) + (𝜋 + 𝛿2)

(𝑞 − 𝑞2
∗)2

𝑞
 

 

+𝛿2𝑞 (
𝑟2
∗

𝑟
) + (𝑟 − 𝑟2

∗)2𝑟.                              (11) 

 

It is evident that 
𝑑𝜙

𝑑𝑡
= 0 when 𝐾1 < 𝐾2, and it equals 

zero when 𝑠 = 𝑠2
∗, 𝑒 = 𝑒2

∗, 𝑖 = 𝑖2
∗ , 𝑞 = 𝑞2

∗ , 𝑟 = 𝑟2
∗  which 

aligns with the established principles. Therefore, the endemic 

equilibrium is globally asymptotically stable on Γ whenever 

𝐾1 < 𝐾2. 
 

 Sensitivity Analysis 

Sensitivity analysis plays an essential role in assessing 

and improving the predictive capability of influenza 

transmission models. By evaluating how variations in model 

parameters affect system dynamics, this analysis helps to 

identify the most influential factors governing disease spread. 

A widely adopted technique is the normalized forward 

sensitivity index, which measures the proportional variation 

in an output variable induced by a relative change in a 

specific parameter. This method facilitates a systematic 
assessment and comparison of how individual parameters 

affect the model’s behavior. 

 

Such analysis is particularly important as it highlights 

parameters that exert the greatest control over disease 

transmission and progression. Identifying these key 

parameters supports the development of more efficient 

intervention strategies by directing resources toward the most 

impactful control measures. As a result, public health policies 

such as vaccination programs, social distancing measures, 

and treatment strategies can be better optimized to reduce 
disease burden and mitigate outbreaks. 

 

The normalized forward sensitivity index is defined as 

 

Υ𝜗
𝑅0 =

𝜕𝑅0
𝜕𝜗

⋅
𝜗

𝑅0
. 
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Table 3 summarizes the sensitivity indices of the 

parameters included in the influenza model. Each index 

reflects the degree to which a parameter influences the basic 

reproduction number 𝑅0, a fundamental indicator of disease 

transmissibility. A positive sensitivity index implies that 

increasing the parameter leads to an increase in 𝑅0, whereas 

a negative value indicates a reduction in 𝑅0. Notably, the 

results show that the total population size (𝑁) and the birth 

rate (𝑏) both have sensitivity indices equal to one, indicating 

that a 10% increase in either parameter produces a 

proportional 10% increase in 𝑅0. This indicates that these 

parameters are directly and proportionally related to the 

potential spread of the disease. The sensitivity results indicate 

that the basic reproduction number 𝑅0 is most sensitive to 

changes in the total population size 𝑁 and the recruitment 

rate 𝑏, both exhibiting unit sensitivity indices. This implies a 

proportional relationship between these parameters and 𝑅0. 
In contrast, the quarantine rate 𝜇  has a strong negative 

sensitivity index, suggesting that increasing quarantine 

effectiveness significantly reduces disease transmission. The 

remaining parameters show comparatively smaller effects, 

indicating lower influence on the epidemic threshold. 

 

 
Fig 3 Scenario of Local and Global Sensitivity. 

 

Table 2 Normalized Forward Sensitivity Indices of the Basic Reproduction Number 𝑅0 with Respect to Key Model Parameters. 

Parameter Description Sensitivity Index 

𝑁 Total human population +1.00000 

𝑏 Recruitment (birth) rate +1.00000 

𝛼 Influenza transmission rate 0.00046 

𝜃 Incubation period 0.00019 

𝜇 Quarantine rate 0.99972 

 

IV. MATHEMATICAL MODEL WITH 

CONTROL VARIABLES 

 
The optimal control problem provides a mathematical 

framework for determining time–dependent intervention 

strategies that steer a dynamical system toward a desired 

objective. In the present study, this framework is employed to 

analyze and regulate the transmission dynamics of influenza. 

The main goal is to mitigate the public health impact of the 

disease by appropriately influencing key epidemiological 

processes over a finite time horizon. 

 

 To this End, Four Control Functions are Introduced: 

 

 𝑢1(𝑡) denotes the vaccination control, representing the 

intensity of vaccine administration to susceptible 

individuals; 

 𝑢2(𝑡) represents social intervention measures aimed at 

reducing effective contact rates; 

 𝑢3(𝑡)  corresponds to the treatment of infected 

individuals, which reduces both disease severity and 

infectiousness; 

 𝑢4(𝑡)  accounts for treatment and management of 

quarantined individuals, ensuring effective isolation and 

recovery. 

 
These control variables are integrated into the influenza 

transmission model to influence the dynamics of the 

susceptible, exposed, infected, quarantined, and recovered 

compartments. The goal is to identify optimal control 

strategies that minimize the overall cost associated with both 

disease burden and the implementation of interventions. 
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The controlled influenza model is given by 

 

{
 
 
 

 
 
 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜋 −

(1−𝑢2(𝑡))𝛼𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜋𝑆(𝑡) − 𝑣𝑢1(𝑡),

𝑑𝐸(𝑡)

𝑑𝑡
=

(1−𝑢2(𝑡))𝛼𝑆(𝑡)𝐼(𝑡)

𝑁
− (

1

𝜃
+ 𝜋)𝐸(𝑡),

𝑑𝐼(𝑡)

𝑑𝑡
=

1

𝜃
𝐸(𝑡) − (𝜇 + 𝜋)𝐼(𝑡) − 𝜙𝑢3(𝑡)𝐼(𝑡),

𝑑𝑄(𝑡)

𝑑𝑡
= 𝜇𝐼(𝑡) − (𝜋 + (1 + 𝑢4(𝑡))𝛿2)𝑄(𝑡),

𝑑𝑅(𝑡)

𝑑𝑡
= (1 + 𝑢4(𝑡))𝛿2𝑄(𝑡) + 𝜙𝑢3(𝑡)𝐼(𝑡) + 𝑣𝑢1(𝑡) − 𝜋𝑅(𝑡).

  (12) 

 

From a mathematical perspective, the optimal control 

problem consists of the above system of state equations 

coupled with an objective functional that balances 

epidemiological outcomes against the costs associated with 

implementing control measures. The optimal control 

functions 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), and 𝑢4(𝑡) are sought subject 

to admissible bounds and the governing dynamics. 

 

To derive the necessary conditions for optimality, 

Pontryagin’s Maximum Principle is applied. This principle 
converts the original control problem into an equivalent 

Hamiltonian system composed of state and adjoint equations, 

along with characterization conditions for the optimal 

controls. Analysis of this system guarantees the existence of 

optimal intervention strategies that achieve an effective 

balance between minimizing disease transmission and 

limiting the cost of control implementation. 

 

J(u1(t), u2(t), u3(t), u_4(t)) =  ∫
𝑇

0
 [ C1 I(t) + C2 Q(t) + 

12(W1 u1
2(t) + W2 u2

2(t) + W3 u3
2(t) + W4 u4

2(t))] dt, 

 

Where 𝐵𝑖 are positive weights for 𝑖 = 1,2,…6 . 

 
We aim to determine the optimal control strategies 

𝑢1
∗(𝑡), 𝑢2

∗(𝑡), 𝑢3
∗(𝑡) , and 𝑢4

∗(𝑡)  by formulating the 

corresponding Lagrangian functional of the optimal control 

problem, given by 

 
ℒ = 𝐶1𝐼(𝑡) + 𝐶2𝑄(𝑡) +

1

2
(𝑊1𝑢1

2(𝑡) + 𝑊2𝑢2
2(𝑡) +𝑊3𝑢3

2(𝑡) +𝑊4𝑢4
2(𝑡)). (13) 

 

The solution of this optimal control problem provides 
the most effective combination of vaccination policies, 

non-pharmaceutical interventions, and treatment strategies 

necessary to reduce and control the spread of influenza within 

the population. 

 

 Theorem 5 For the optimal control problem under 

consideration, there exist adjoint variables 𝜆𝑖(𝑡) , 𝑖 =
1,2,3,4,5, satisfying the adjoint system 

 
𝑑𝜆𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝜙𝑖
,                                       (14) 

 

Where 𝜙 = (𝑆, 𝐸, 𝐼, 𝑄, 𝑅) denotes the state vector. The 

transversality conditions are given by 

 

𝜆𝑖(𝑇) = 0,    𝑖 = 1,2,3,4,5. 
 

Moreover, the optimal control functions 𝑢1
∗ , 𝑢2

∗ , 𝑢3
∗ , and 

𝑢4
∗  are characterized by 

{
 
 
 
 

 
 
 
 𝑢1

∗ = max{0,min{1,
(𝜆1−𝜆5)𝑣𝑆(𝑡)

𝑊1
}} ,

𝑢2
∗ = max{0,min{1,

(𝜆2−𝜆1)𝛼𝑆(𝑡)𝐼(𝑡)

𝑁𝑊2
}} ,

𝑢3
∗ = max{0,min{1,

(𝜆3−𝜆5)𝜙𝐼(𝑡)

𝑊3
}} ,

𝑢4
∗ = max{0,min{1,

(𝜆4−𝜆5)𝛿2𝑄(𝑡)

𝑊4
}} .

 (15) 

 

 Proof. According to Pontryagin’s Maximum Principle, 

the Hamiltonian function associated with the influenza 

control model is defined as 
 

𝐻 = 𝐿(𝐼(𝑡), 𝑄(𝑡), 𝑢1(𝑡), 𝑢2(𝑡), 𝑢3(𝑡), 𝑢4(𝑡)) + 𝜆1𝑆̇(𝑡) + 𝜆2𝐸̇(𝑡) + 𝜆3𝐼̇(𝑡)

    +𝜆4𝑄̇(𝑡) + 𝜆5𝑅̇(𝑡),
      (13) 

 

Where 𝐿(⋅) denotes the running cost functional. 

 

Substituting the state equations into the Hamiltonian yields 

 
𝐻 = 𝐶1𝐼(𝑡) + 𝐶2𝑄(𝑡) +

1

2
(𝑊1𝑢1

2(𝑡) +𝑊2𝑢2
2(𝑡) +𝑊3𝑢3

2(𝑡) +𝑊4𝑢4
2(𝑡))

    +𝜆1(𝜋 − (1 − 𝑢2(𝑡))
𝛼𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜋𝑆(𝑡) − 𝑣𝑢1(𝑡)𝑆(𝑡))

    +𝜆2((1 − 𝑢2(𝑡))
𝛼𝑆(𝑡)𝐼(𝑡)

𝑁
− (

1

𝜃
+ 𝜋) 𝐸(𝑡))

    +𝜆3(
1

𝜃
𝐸(𝑡) − (𝜇 + 𝑏)𝐼(𝑡) − 𝑎𝑢3(𝑡)𝐼(𝑡))

    +𝜆4(𝜇𝐼(𝑡) − (𝜋 + (1 + 𝑢4(𝑡))𝛿2)𝑄(𝑡))

    +𝜆5((1 + 𝑢4(𝑡))𝛿2𝑄(𝑡) + 𝑎𝑢3(𝑡)𝐼(𝑡) + 𝑣𝑢1(𝑡)𝑆(𝑡) − 𝜋𝑅(𝑡)).

  (14) 

 

The adjoint equations are obtained by differentiating the 

Hamiltonian with respect to the state variables: 

 
𝜆̇1 = −

𝜕𝐻

𝜕𝑆
= 𝜆1 ((1 − 𝑢2

∗)
𝛼𝐼

𝑁
+ 𝜋 + 𝑣𝑢1

∗) − 𝜆2(1 − 𝑢2
∗)

𝛼𝐼

𝑁
− 𝜆5𝑣𝑢1

∗,

𝜆̇2 = −
𝜕𝐻

𝜕𝐸
= (

1

𝜃
+ 𝜋) 𝜆2 −

1

𝜃
𝜆3,

𝜆̇3 = −
𝜕𝐻

𝜕𝐼
= (𝜆1 − 𝜆2)(1 − 𝑢2

∗)
𝛼𝑆

𝑁
+ 𝜆3(𝜇 + 𝑏 + 𝑎𝑢3

∗) − 𝜇𝜆4 − 𝑎𝑢3
∗𝜆5 − 𝐶1 ,

𝜆̇4 = −
𝜕𝐻

𝜕𝑄
= 𝜆4((1 + 𝑢4

∗)𝛿2 + 𝜋) − 𝜆5(1 + 𝑢4
∗)𝛿2 − 𝐶2 ,

𝜆̇5 = −
𝜕𝐻

𝜕𝑅
= 𝜋𝜆5.

   (15) 

 

Applying the optimality conditions 
𝜕𝐻

𝜕𝑢𝑗
= 0 , for 𝑗 =

1,2,3,4, together with the control bounds 0 ≤ 𝑢𝑗 ≤ 1, leads 

to the explicit characterizations of the optimal controls given 

in equation (15). This completes the proof. 
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Fig 4 Comparison of Susceptible, Exposed, Infected, Quarantine and Recovered Individuals Under with and without Control. 
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Fig 5 Comparison of Infected Individuals Under Various Control Scenarios, Including Isolation (𝑢1), Social Awareness (𝑢2), and 

Treatment (𝑢3), as well as without Control. 
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Fig 6 Comparison of Infected Individuals Under Various Control Scenarios, Including Isolation (𝑢1), Social Awareness (𝑢2), and 

Treatment (𝑢3), as well as without Control. 
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Fig 7 Comparison of Infected Individuals Under Various Control Scenarios, Including Isolation (𝑢1), Social Awareness (𝑢2), and 

Treatment (𝑢3), as well as without Control. 
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Fig 8 Comparison of Infected Individuals Under Various Control Scenarios, Including Isolation (𝑢1), Social Awareness (𝑢2), and 

Treatment (𝑢3), as well as without Control. 

 

V. STOCHASTIC MODEL WITH CONTROL 

 

We assume that random environmental fluctuations, 

behavioral uncertainty, and demographic variability affect 

the disease transmission and progression rates. These 
uncertainties are modeled by independent standard Wiener 

processes. Here, 𝑊𝑖(𝑡) , 𝑖 = 1,… ,5 , are independent 

standard Wiener processes defined on a complete probability 

space (Ω,ℱ, ℙ) . The parameters 𝜎𝑖 > 0  represent the 

intensity of stochastic perturbations affecting each 

epidemiological compartment. The stochastic terms capture 

random fluctuations arising from environmental variability, 

heterogeneity in contact patterns, and uncertainties in 

intervention effectiveness. When 𝜎𝑖 = 0 , the stochastic 

model reduces to the deterministic system. 

 

{
  
 

  
 𝑑𝑆(𝑡) = [𝜋 − (1 − 𝑢2(𝑡))𝛼

𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜋𝑆(𝑡) − 𝑣𝑢1(𝑡)]𝑑𝑡 + 𝜎1𝑆(𝑡) 𝑑𝑊1(𝑡),

𝑑𝐸(𝑡) = [(1 − 𝑢2(𝑡))𝛼
𝑆(𝑡)𝐼(𝑡)

𝑁
− (

1

𝜃
+ 𝜋)𝐸(𝑡)]𝑑𝑡 + 𝜎2𝐸(𝑡) 𝑑𝑊2(𝑡),

𝑑𝐼(𝑡) = [
1

𝜃
𝐸(𝑡) − (𝜇 + 𝜋)𝐼(𝑡) − 𝜙𝑢3(𝑡)𝐼(𝑡)]𝑑𝑡 + 𝜎3𝐼(𝑡) 𝑑𝑊3(𝑡),

𝑑𝑄(𝑡) = [𝜇𝐼(𝑡) − (𝜋 + (1 + 𝑢4(𝑡))𝛿2)𝑄(𝑡)]𝑑𝑡 + 𝜎4𝑄(𝑡) 𝑑𝑊4(𝑡),
𝑑𝑅(𝑡) = [(1 + 𝑢4(𝑡))𝛿2𝑄(𝑡) + 𝜙𝑢3(𝑡)𝐼(𝑡) + 𝑣𝑢1(𝑡) − 𝜋𝑅(𝑡)]𝑑𝑡 + 𝜎5𝑅(𝑡) 𝑑𝑊5(𝑡).

                           (16) 

 
The Hamiltonian for an optimal control problem is 

 

ℋ = 𝐶1𝐼(𝑡) + 𝐶2𝑄(𝑡) +
1

2
(𝑊1𝑢1

2(𝑡) +𝑊2𝑢2
2(𝑡) +𝑊3𝑢3

2(𝑡) + 𝑊4𝑢4
2(𝑡)) (17) 

https://doi.org/10.38124/ijisrt/26jan951
http://www.ijisrt.com/


Volume 11, Issue 1, January – 2026             International Journal of Innovative Science and Research Technology 

ISSN No:-2456-2165                                                                     https://doi.org/10.38124/ijisrt/26jan951 

 

 

IJISRT26JAN951                                       www.ijisrt.com                                     2215 

+𝜆𝑆𝑆̇ + 𝜆𝐸𝐸̇ + 𝜆𝐼𝐼̇ + 𝜆𝑄𝑄̇ + ⋯                        (18) 

 
The co-state (adjoint) equations are obtained as 

 

𝜆̇𝑆 = −
𝜕ℋ

𝜕𝑆
, 𝜆𝑆(𝑇) = 0 

 

𝜆̇𝐸 = −
𝜕ℋ

𝜕𝐸
, 𝜆𝐸(𝑇) = 0 

 

𝜆̇𝐼 = −
𝜕ℋ

𝜕𝐼
, 𝜆𝐼(𝑇) = 0 

 

𝜆̇𝑄 = −
𝜕ℋ

𝜕𝑄
, 𝜆𝑄(𝑇) = 0 

 

 

 
 

 

 

The optimal controls are found by 

 

𝜕ℋ

𝜕𝑢1
=𝑊1𝑢1 + 𝜆𝑆

𝜕𝑆̇

𝜕𝑢1
+ 𝜆𝐸

𝜕𝐸̇

𝜕𝑢1
+⋯ = 0 

 

⇒    𝑢1
∗ = −

1

𝑊1
(𝜆𝑆

𝜕𝑆̇

𝜕𝑢1
+ 𝜆𝐸

𝜕𝐸̇

𝜕𝑢1
+⋯) 

 

𝜕ℋ

𝜕𝑢2
= 0    ⇒     𝑢2

∗ = −
1

𝑊2

(𝜆𝑆
𝜕𝑆̇

𝜕𝑢2
+⋯) 

 

𝜕ℋ

𝜕𝑢3
= 0    ⇒     𝑢3

∗ = −
1

𝑊3

(𝜆𝑆
𝜕𝑆̇

𝜕𝑢3
+⋯) 

 

𝜕ℋ

𝜕𝑢4
= 0    ⇒     𝑢4

∗ = −
1

𝑊4

(𝜆𝑆
𝜕𝑆̇

𝜕𝑢4
+⋯). 

 

Using Pontryagin’s Maximum Principle we have the Figures 
9 and 10. 
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Fig 9 Stochastic Scenario of State Variables with and without Control when 𝛼 = 0.05, 𝜃 = 0.2 and 𝜙 = 0.1. 
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Fig 10 Stochastic Scenario of State Variables with and 

without Control. 
 

VI. NUMERICAL ANALYSIS 

 

Figure 4 illustrates the temporal dynamics of the 

susceptible, exposed, infected, quarantined, and recovered 

populations under scenarios with and without optimal 

control. In the absence of control measures, the infected 

population increases rapidly, reaching a higher peak and 

persisting for a longer duration. When optimal controls are 

implemented, a significant reduction in the infected and 

exposed classes is observed, while the susceptible population 

declines more gradually. The quarantined and recovered 
populations increase more rapidly under control, indicating 

effective isolation and treatment. Overall, the results 

demonstrate that the combined control strategies 

substantially mitigate disease transmission and accelerate 

epidemic containment. Figure 5 depicts the impact of varying 

recruitment rates 𝜋 on the dynamics of the state variables. 

As the value of 𝜋  increases, the susceptible population 

grows more rapidly, leading to higher exposure and infection 

levels. Consequently, the infected and quarantined 

compartments exhibit larger peaks for higher recruitment 
rates, indicating enhanced transmission potential. The 

recovered population also increases with larger 𝜋 values due 

to the rise in infection cases. These results highlight the 

sensitivity of influenza transmission dynamics to population 

recruitment and emphasize the importance of accounting for 

demographic effects in disease control strategies. Figure 6 

presents the effects of different values of the infection rate 𝛼 

on the evolution of the susceptible, exposed, infected, 

quarantined, and recovered populations. An increase in 𝛼 
leads to a rapid decline in the susceptible class due to higher 

transmission intensity, while the exposed and infected 

populations rise sharply and attain larger peak values. The 

quarantined compartment also expands as more infected 

individuals are isolated. Conversely, the recovered 

population increases more rapidly for higher infection rates, 

reflecting enhanced disease progression. These observations 

demonstrate that the infection rate 𝛼 plays a dominant role in 

shaping epidemic dynamics and significantly influences the 

severity and timing of influenza outbreaks. Figure 7 

illustrates the influence of different total population sizes 𝑁 

on the dynamics of the susceptible, exposed, infected, 

quarantined, and recovered compartments. As the population 

size increases, the number of susceptible individuals grows 

proportionally, creating greater opportunities for disease 
transmission. This leads to higher peaks in the exposed and 

infected populations, indicating an elevated epidemic burden 

in larger populations. The quarantined and recovered classes 

also increase correspondingly, reflecting intensified isolation 

and recovery processes. These results suggest that population 

size plays a crucial role in amplifying influenza transmission 

and highlight the need for stronger and early intervention 

measures in densely populated settings. Figure 8 compares 

the evolution of the infected population under different 

control scenarios, including no control, single control, dual 

controls, and the simultaneous application of three controls. 

In the absence of intervention, the infected class exhibits a 
rapid increase with a high peak and prolonged persistence. 

Implementing a single control reduces the infection level 

moderately, while the combination of two controls leads to a 

more pronounced decline in both peak magnitude and 

outbreak duration. The application of all three control 

measures produces the greatest reduction in infection levels, 

driving the system rapidly toward disease elimination. This 

demonstrates the effectiveness of integrated control strategies 

in suppressing influenza transmission. Figure 9 presents the 

stochastic evolution of the susceptible, exposed, infected, 

quarantined, and recovered populations under controlled and 

uncontrolled scenarios for the parameter values 𝛼 = 0.05, 

𝜃 = 0.2, and 𝜙 = 0.1. These parameter choices correspond 

to a reduced transmission intensity, a shorter incubation 

period, and an increased treatment efficacy, respectively. As 

in Figure 10, the stochastic system is simulated using the 

Euler–Maruyama method, with solid curves denoting the 

uncontrolled case and dashed curves representing the 

controlled dynamics. Compared to the baseline stochastic 

scenario, a substantial attenuation of disease transmission is 

observed. The susceptible population remains at a higher 
level over time, while the exposed and infected 

compartments exhibit markedly lower peaks and faster decay 

when control measures are applied. In particular, the infected 

population is significantly suppressed, indicating the 

combined effectiveness of reduced transmission and 

enhanced treatment. Additionally, the quarantined and 

recovered populations increase more rapidly in the controlled 

case, reflecting efficient isolation and recovery processes. 

Overall, Figure 9 demonstrates that appropriate parameter 

settings, together with optimal control strategies, 

substantially enhance epidemic containment and reduce 
stochastic variability in disease dynamics. Figure 10 

illustrates the stochastic dynamics of the SEIQR model under 

the presence and absence of control strategies. Each panel 

depicts the temporal evolution of one state variable obtained 

by solving the stochastic system using the Euler–Maruyama 

scheme. The solid curves correspond to the uncontrolled 

case, whereas the dashed curves represent the controlled 

scenario. In the absence of control, the susceptible population 

decreases rapidly due to sustained disease transmission, 

leading to a pronounced increase in the exposed and infected 
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populations. When control measures are implemented, a 

noticeable mitigation effect is observed: the susceptible class 

declines more slowly, while both the exposed and infected 

populations are significantly reduced over time. This 

reduction is mainly attributed to the combined effects of 

vaccination, transmission reduction, treatment, and 

quarantine controls. Furthermore, the controlled system 

exhibits an increase in the quarantined and recovered 
populations, indicating enhanced isolation of infectious 

individuals and improved recovery outcomes. Despite the 

presence of stochastic perturbations, the controlled 

trajectories remain consistently lower for the infected class 

compared to the uncontrolled case, highlighting the 

robustness and effectiveness of the proposed intervention 

strategies in suppressing disease spread under random 

environmental fluctuations. 

 

VII. CONCLUSION 

 
In this work, a comprehensive SEIQR epidemic model 

incorporating both deterministic and stochastic effects was 

developed to investigate the transmission dynamics of 

influenza. The model explicitly integrates vaccination, 

transmission reduction, treatment, and quarantine as control 

strategies. Rigorous analytical results, including the 

derivation of the basic reproduction number and stability 

analysis of the DFE, were established to characterize the 

qualitative behavior of the system. An optimal control 

problem was formulated, and the necessary optimality 

conditions were obtained using Pontryagin’s Maximum 

Principle, providing insights into effective intervention 
strategies. To account for environmental and demographic 

uncertainties, stochastic perturbations driven by independent 

Wiener processes were introduced, and the system was 

solved numerically using the Euler–Maruyama scheme. 

Numerical simulations demonstrate that the combined 

implementation of control measures significantly reduces 

infection levels and suppresses stochastic fluctuations. 

Overall, the results highlight the importance of integrated and 

timely interventions in controlling influenza outbreaks and 

provide a robust mathematical framework for epidemic 

management under uncertainty. 
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