Using Large Language Models to Automate Enterprise ITSM Platform Migrations: Adaptive Learning Framework for Intelligent Data Validation and Anomaly Detection in ITSM Migrations


Authors : Mahesh Kumar Damarched

Volume/Issue : Volume 11 - 2026, Issue 1 - January


Google Scholar : https://tinyurl.com/35byxku9

Scribd : https://tinyurl.com/3js9afw2

DOI : https://doi.org/10.38124/ijisrt/26jan689

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Enterprise IT Service Management (ITSM) platform migrations present formidable challenges characterized by data quality inconsistencies, prolonged manual reconciliation cycles, and substantial post-migration testing overhead. Current migration approaches depend heavily on manual validation processes and reactive post-migration error identification, resulting in extended downtime, operational disruptions, and significant revenue losses. To automate the data validation process and enable the real-time anomaly detection process, this study introduces an adaptive framework that makes use of Large Language Models (LLMs). By examining the past successful migration patterns and domain-specific transformation rules, the proposed system learns to predict error-prone field transformations, spot data inconsistencies during execution, and provide LLM-powered contextual explanations for detected anomalies. By leveraging comprehensible natural language explanations for anomalies, this framework addresses the crucial “black-box” issue, which is prevalent in the automated validation process, enabling quicker root cause analysis and resolution. While adhering strictly to data privacy regulations like the California Consumer Privacy Act (CCPA) and General Data Protection Regulation (GDPR), the framework ensures data privacy through encrypted processing and differential privacy mechanisms. The suggested framework in this research showed a 78% reduction in manual reconciliation effort, an 82% improvement in anomaly detection accuracy, and an appreciable 65% acceleration in migration completion timelines through thorough evaluation across multiple ITSM platforms, including ServiceNow, BMC Helix ITSM, and Jira Service Management.

Keywords : Large Language Models, ITSM Migration, Anomaly Detection, Data Validation, Adaptive Learning, Machine Learning, Data Migration, Enterprise Systems, LLM-Powered Explanation, Black Box Problem, Real-Time Validation, Contextual Analysis, ETL Optimization, Interpretable AI, Risk Prediction, Data Quality Management, Service Management Integration, Enterprise Data Quality, ServiceNow, Jira Service Management.

References :

  1. Maes, Stephane & team, IFS. (2023). Guide to migrating to a new ITSM platform: 7 steps for delivering success. IFS.
  2. PMarketResearch.com. (2024, October 8). ITSM Tool Implementation, Consulting, and Managed Services Market. https://pmarketresearch.com/it/itsm-tool-implementation-consulting-and-managed-services-market/
  3. Menon, P. A. (2024). Migrating legacy systems to the cloud: Challenges and best practices. International Journal of Computer Technology and Electronics Engineering (IJCTEC). https://philarchive.org/archive/PARMLS-3
  4. Inavolu, M. (2025). Challenges in ITSM digital transformation: A case study (Master’s thesis). Lappeenranta–Lahti University of Technology LUT. https://doi.org/10.13140/rg.2.2.18643.69928
  5. Vupputuri, J. (2024). DATA MIGRATION TO CLOUD - STRATEGIES, CHALLENGES, AND BEST PRACTICES. Zenodo (CERN European Organization for Nuclear Research). https://doi.org/10.5281/zenodo.14027912
  6. Gartner, Inc. (2020). 10 Ways to Succeed in Your Complex Data Migration Efforts. Gartner Research. https://www.gartner.com/en/documents/3982444
  7. Hommel, W., & Knittl, S. (2008). An access control solution for the Inter-Organizational use of ITIL federated configuration management databases. https://www.semanticscholar.org/paper/An-Access-Control-Solution-For-The-Use-Of-ITIL-Hommel-Knittl/29b4da49ffe5c70a036533bc944f98f7897797ba
  8. Vadlamani, S., Agarwal, N., & Chintha, V. (2023). Cross platform data migration Strategies for enterprise data warehouses. International Research Journal of Modernization in Engineering Technology and Science, 05(11). https://doi.org/10.56726/irjmets46858
  9. Sajja, N. J. W., Komarina, N. G. B., & Choppa, N. N. K. R. (2025). Enterprise Data Transformation in the Era of S/4HANA: Real-World Cloud Migration Architecture, Governance Strategies, and Lessons from the Field. World Journal of Advanced Research and Reviews, 26(2), 3596–3619. https://doi.org/10.30574/wjarr.2025.26.2.2038
  10. Gleeson, N. (2025, September 16). Data Incident Management: best practices, benefits, and more. Monte Carlo Data. https://www.montecarlodata.com/blog-an-incident-management-framework-for-enterprise-data-organizations/
  11. Solige, N. S. (2025). Successful migration of healthcare data to cloud platforms: Challenges, tips, and best practices. World Journal of Advanced Engineering Technology and Sciences, 15(1), 592–599. https://doi.org/10.30574/wjaets.2025.15.1.0252
  12. Surabhi, N. P. K. (2025). Regulatory compliance and security in healthcare cloud migration. World Journal of Advanced Research and Reviews, 26(2), 724–733. https://doi.org/10.30574/wjarr.2025.26.2.1698
  13. Azeroual, O., & Jha, M. (2021). Without data quality, there is no data migration. Big Data and Cognitive Computing, 5(2), 24. https://doi.org/10.3390/bdcc5020024
  14. Thalheim, B., & Wang, Q. (2012). Data migration: A theoretical perspective. Data & Knowledge Engineering, 87, 260–278. https://doi.org/10.1016/j.datak.2012.12.003
  15. Zahari, N. M., Hussin, W. Y. W., Yussof, M. Y. M., & Saman, F. M. (2015). Data quality issues in data migration. In Communications in computer and information science (pp. 33–42). https://doi.org/10.1007/978-981-287-936-3_4
  16. Flyvbjerg, B., Budzier, A., Lee, J. S., Keil, M., Lunn, D., & Bester, D. W. (2022). The empirical reality of IT project cost overruns: Discovering a Power-Law distribution. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2210.01573
  17. Gupta, I., & Singh, A. K. (2022). A Holistic View on Data Protection for sharing, communicating, and computing Environments: Taxonomy and Future Directions. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2202.11965
  18. IBM report: Half of breached organizations unwilling to increase security spend despite soaring breach costs. (2023, July 24). IBM Newsroom. https://newsroom.ibm.com/2023-07-24-IBM-Report-Half-of-Breached-Organizations-Unwilling-to-Increase-Security-Spend-Despite-Soaring-Breach-Costs
  19. IBM Report: Escalating data breach disruption pushes costs to new highs. (2024, July 30). IBM Newsroom. https://newsroom.ibm.com/2024-07-30-ibm-report-escalating-data-breach-disruption-pushes-costs-to-new-highs
  20. Batini, C., & Scannapieco, M. (2016). Data quality dimensions. In Data-centric systems and applications (pp. 21–51). https://doi.org/10.1007/978-3-319-24106-7_2
  21. Rahm, E., & Hai, H., DO. (2000). Data cleaning: Problems and current approaches. ResearchGate. https://www.researchgate.net/publication/220282831_Data_Cleaning_Problems_and_Current_Approaches
  22. Souibgui, M., Atigui, F., Zammali, S., Cherfi, S., & Yahia, S. B. (2019). Data quality in ETL process: A preliminary study. Procedia Computer Science, 159, 676–687. https://doi.org/10.1016/j.procs.2019.09.223
  23. Vupputuri, J. (2024a). DATA MIGRATION TO CLOUD - STRATEGIES, CHALLENGES, AND BEST PRACTICES. Zenodo (CERN European Organization for Nuclear Research), 15(5), IJCET_15_05_102. https://doi.org/10.5281/zenodo.14027912
  24. Zhang, L., Howard, S., Montpool, T., et al., (2022). Automated data validation: An industrial experience report. Journal of Systems and Software, 197, 111573. https://doi.org/10.1016/j.jss.2022.111573
  25. Foidl, H., Golendukhina, V., Ramler, R., & Felderer, M. (2023). Data pipeline quality: Influencing factors, root causes of data-related issues, and processing problem areas for developers. arXiv. https://doi.org/10.48550/arXiv.2309.07067
  26. Ahmad, N., Markkula, J., & Oivo, M. (2023). Implementation and impacts of IT Service Management in the IT function. International Journal of Information Management, 70, 102628. https://doi.org/10.1016/j.ijinfomgt.2023.102628
  27. Savolainen, J., & Ahonen, J. (2014). Improvement of IT service processes: a study of critical success factors. Journal of Software Engineering Research and Development, 2, 4. https://doi.org/10.1186/2195-1721-2-4
  28. Inavolu, Meghana. (2025). Challenges in ITSM Digital Transformation: A case study. https://doi.org/10.13140/rg.2.2.18643.69928
  29. Kansara, M. (2023). Overcoming Technical Challenges in Large-Scale IT Migrations: A Literature-Based Analysis and Practical. . . ResearchGate. https://www.researchgate.net/publication/388606123_Overcoming_Technical_Challenges_in_Large-Scale_IT_Migrations_A_Literature-Based_Analysis_and_Practical_Solutions
  30. Hasan, M. H., Osman, M. H., Admodisastro, N. I., & Muhammad, M. S. (2023). Legacy systems to cloud migration: A review from the architectural perspective. Journal of Systems and Software, 202, 111702. https://doi.org/10.1016/j.jss.2023.111702
  31. Fritzsch, J., Bogner, J., Wagner, S., Zimmermann, A., Fritzsch, J., Bogner, J., Wagner, S., & Zimmermann, A. (2019). Microservices Migration in Industry: Intentions, strategies, and challenges. In 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME) (pp. 481–490). IEEE. https://doi.org/10.1109/icsme.2019.00081
  32. Budzier, A., & Flyvbjerg, B. (2013). Overspend? late? failure? What the data say about IT project risk in the public sector. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1304.4525
  33. Zadeh, M. T., & Kashef, R. (2022). The impact of IT projects complexity on cost overruns and schedule delays. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2203.00430
  34. Ahmed, S., Rahman, A., & Ashrafuzzaman, M. (2023). A systematic review of AI and machine learning-driven IT support systems: Enhancing efficiency and automation in technical service management. American Journal of Scholarly Research and Innovation, 2(02), 75–101. https://doi.org/10.63125/fd34sr03
  35. Pal, D. K. D., Alluri, V. R., Thota, S., Bonam, V. S. M., & Chitta, S. (2024). AIOps: Integrating AI and machine learning into IT operations. Australian Journal of Machine Learning Research & Applications, 4(1), 1–23. https://ajmlra.org/index.php/publication/article/view/68
  36. Goyal, M. K., Sundaramoorthy, P., & Gadam, H. (2024). Leveraging generative AI for database migration: A comprehensive approach for heterogeneous migrations. Journal of Computational Analysis and Applications (JoCAAA), 33(08), 3041–3052. https://eudoxuspress.com/index.php/pub/article/view/2399
  37. Khan, J., Oluwaferanmi, A., & Mary, B. J. (2025). Automating ETL Pipelines Using Artificial Intelligence: Transforming Legacy Data Integration Systems into. . . ResearchGate. https://www.researchgate.net/publication/394105841_Automating_ETL_Pipelines_Using_Artificial_Intelligence_Transforming_Legacy_Data_Integration_Systems_into_Intelligent_Data_Workflows
  38. Patil, R., & Gudivada, V. (2024). A review of current trends, techniques, and challenges in large language models (LLMs). Applied Sciences, 14(5), 2074. https://doi.org/10.3390/app14052074
  39. Zhu, Y., Moniz, J. R. A., Bhargava, S., Lu, J., Piraviperumal, D., Li, S., Zhang, Y., Yu, H., & Tseng, B. (2024). Can large language models understand context? arXiv (Cornell University). https://doi.org/10.48550/arxiv.2402.00858
  40. Tang, X., Zheng, Z., Li, J., Meng, F., Zhu, S.-C., Liang, Y., & Zhang, M. (2023). Large language models are in-context semantic reasoners rather than symbolic reasoners. arXiv. https://doi.org/10.48550/arXiv.2305.14825
  41. Russell-Gilbert, A., Sommers, A., Thompson, A., Cummins, L., Mittal, S., Rahimi, S., Seale, M., Jaboure, J., & Arnold, T. (2024). AAD-LLM: Adaptive anomaly detection using large language models. arXiv. https://doi.org/10.48550/arXiv.2411.00914
  42. Zhang, Z., Li, S., Zhang, L., Ye, J., Hu, C., & Yan, L. (2025). LLM-LADE: Large language model-based log anomaly detection with explanation. Knowledge-Based Systems, 326, 114064. https://doi.org/10.1016/j.knosys.2025.114064
  43. Li, J., Yang, Y., Bai, Y., Zhou, X., Li, Y., Sun, H., Liu, Y., Si, X., Ye, Y., Wu, Y., 林一冠林., Xu, B., Bowen, R., Feng, C., Gao, Y., & Huang, H. (2024). Fundamental Capabilities of Large Language Models and their Applications in Domain Scenarios: A Survey. 62nd Annual Meeting of the Association for Computational Linguistics, ACL 2024 - Bangkok, Thailand, 11116–11141. https://doi.org/10.18653/v1/2024.acl-long.599
  44. Dang Minh, H., Wang, H. X., Li, Y. F., & Nguyen, T. N. (2022). Explainable artificial intelligence: a comprehensive review. Artificial Intelligence Review, 55, 3503–3568. https://doi.org/10.1007/s10462-021-10088-y
  45. Mersha, M., Lam, K., Wood, J., AlShami, A., & Kalita, J. (2024). Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction. arXiv. https://arxiv.org/abs/2409.00265
  46. Li, Z., & van Leeuwen, M. (2023). Explainable contextual anomaly detection using quantile regression forests. Data Mining and Knowledge Discovery, 37, 2517–2563. https://doi.org/10.1007/s10618-023-00967-z
  47. Tritscher, J., Krause, A., & Hotho, A. (2023). Feature relevance XAI in anomaly detection: Reviewing approaches and challenges. Frontiers in Artificial Intelligence, 6, 1099521. https://doi.org/10.3389/frai.2023.1099521
  48. Oliveira, D. F. N., Vismari, L. F., & Nascimento, A. M. (2021). A new interpretable unsupervised anomaly detection method based on residual explanation. arXiv. https://arxiv.org/abs/2103.07953
  49. Lundberg, S., & Lee, S. (2017). A unified approach to interpreting model predictions. arXiv (Cornell University). https://doi.org/10.48550/arxiv.1705.07874
  50. Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). “Why should I trust you?”: Explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1135–1144. https://doi.org/10.1145/2939672.2939778
  51. Bahdanau, D., Cho, K., & Bengio, Y. (2014, September 1). Neural machine translation by jointly learning to align and translate. arXiv.org. https://arxiv.org/abs/1409.0473
  52. Lin, X., Zhao, J., Di, P., Xiao, C., Mao, R., Ji, Y., Onizuka, M., Ding, Z., Shang, W., & Qin, J. (2024). Automatic string data validation with pattern discovery. arXiv. https://doi.org/10.48550/arXiv.2408.03005
  53. Li, J., Malialis, K., & Polycarpou, M. M. (2023). Autoencoder-based anomaly detection in streaming data with incremental learning and concept drift adaptation. arXiv. https://doi.org/10.48550/arXiv.2305.08977
  54. Lan, T., Le, H. D., Li, J., He, W., Wang, M., Liu, C., Zhang, C., & … (2025). AXIS: Explainable time series anomaly detection with large language models. arXiv. https://arxiv.org/abs/2509.24378
  55. Sharma, V., Joshi, V., Tripathi, A., Jauhari, M., & Raza, A. (n.d.). CLEAR: Contextual Logic-based Explanations for Anomaly Reasoning. OpenReview. https://openreview.net/forum?id=zd6my13pVm
  56. Chen, Z., Chen, J., Gaidhani, M., Singh, A., & Sra, M. (2023). XplainLLM: a Knowledge-Augmented Dataset for reliable Grounded Explanations in LLMs. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2311.08614
  57. Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3–4), 211–407. https://doi.org/10.1561/0400000042
  58. Voigt, P., & Von Dem Bussche, A. (2017). The EU General Data Protection Regulation (GDPR). https://doi.org/10.1007/978-3-319-57959-7
  59. AlHamami, A., & AlSabbagh, B. (2021). Information security management systems based on ISO/IEC 27001 standard: Practices and challenges. Journal of Information Security and Applications, 58, 102790. https://doi.org/10.1016/j.jisa.2021.102790
  60. International Organization for Standardization. (2018). Information technology — Service management — Part 1: Service management system requirements (ISO/IEC Standard No. 20000-1:2018). https://www.iso.org/standard/70636.html
  61. Lan, T., Le, H. D., Li, J., He, W., Wang, M., Liu, C., Zhang, C., … (2025). AXIS: explainable time series anomaly detection with large language models. arXiv. https://arxiv.org/abs/2509.24378
  62. Russell-Gilbert, A., Sommers, A., Thompson, A., Cummins, L., Mittal, S., Rahimi, S., Seale, (2024). AAD-LLM: adaptive anomaly detection using large language models. arXiv. https://arxiv.org/abs/2411.00914
  63. Park, S., & Choi, D. (2025). Exploring the potential of anomaly detection through reasoning with large language models. Applied Sciences, 15(19), 10384. https://doi.org/10.3390/app151910384
  64. Paygude, P., & Devale, P. (2013). Automated Data Validation Testing Tool for Data Migration Quality Assurance.
  65. Tamm, H. C., & Nikiforova, A. (2024). Towards augmented data quality management: Automation of data quality rule definition in data warehouses. arXiv. https://arxiv.org/abs/2406.10940
  66. Qiu, J., Shi, H., Hu, Y., & Yu, Z. (2023). Unraveling false positives in unsupervised defect detection models: A study on anomaly-free training datasets. Sensors, 23(23), 9360. https://doi.org/10.3390/s23239360
  67. Unsupervised Machine Learning for Anomaly Detection: A Systematic Review. (2024). Systematic Literature Review of Unsupervised Anomaly Detection Techniques. Retrieved from ResearchGate.
  68. Kauffmann, J., Ruff, L., Montavon, G., & Müller, K.-R. (2020). The Clever Hans effect in anomaly detection. arXiv. https://arxiv.org/abs/2006.10609
  69. Tritscher, J., Krause, A., & Hotho, A. (2023). Feature relevance XAI in anomaly detection: Reviewing approaches and challenges. Frontiers in Artificial Intelligence, 6, 1099521. https://doi.org/10.3389/frai.2023.1099521
  70. Cheng, Q., Sahoo, D., Saha, A., Yang, W., Liu, C., Woo, G., Singh, M., Saverese, S., & Hoi, S. C. H. (2023). AI for IT operations (AIOps) on cloud platforms: Reviews, opportunities and challenges. arXiv. https://arxiv.org/abs/2304.04661
  71. Yuan, S., & Wu, X. (2022). Trustworthy anomaly detection: A survey. arXiv. https://arxiv.org/abs/2202.07787
  72. Ezzeddine, F., Saad, M., Ayoub, O., Andreoletti, D., Gjoreski, M., Sbeity, I., Langheinrich, M., & Giordano, S. (2024). Differential privacy for anomaly detection: Analyzing the trade-off between privacy and explainability. arXiv. https://arxiv.org/abs/2404.06144
  73. Khatri, V., & Brown, C. V. (2009). Designing data governance. Communications of the ACM, 53(1), 148–152. https://doi.org/10.1145/1629175.1629210
  74. Ramasamy, A., & Chowdhury, S. (2020). Big Data Quality Dimensions: A Systematic Literature Review. Journal of Information Systems and Technology Management, 17. https://doi.org/10.4301/s1807-1775202017003
  75. Thalheim, B., & Wang, Q. (2012). Data migration: A theoretical perspective. Data & Knowledge Engineering, 87, 260–278. https://doi.org/10.1016/j.datak.2012.12.003
  76. Naumann, F., & Rolker, C. (2000). Assessment methods for Information Quality Criteria. Edoc Publication Server (Humboldt University of Berlin). https://doi.org/10.18452/9207
  77. Azeroual, O., & Jha, M. (2021d). Without data quality, there is no data migration. Big Data and Cognitive Computing, 5(2), 24. https://doi.org/10.3390/bdcc5020024
  78. Iqbal, A., & Colomo-Palacios, R. (2019). Key Opportunities and Challenges of Data Migration in Cloud: Results from a Multivocal Literature Review. Procedia Computer Science, 164, 48–55. https://doi.org/10.1016/j.procs.2019.12.153
  79. Abedjan, Z., Chu, X., Deng, D., Fernandez, R. C., Ilyas, I. F., Ouzzani, M., Papotti, P., Stonebraker, M., & Tang, N. (2016). Detecting data errors. Proceedings of the VLDB Endowment, 9(12), 993–1004. https://doi.org/10.14778/2994509.2994518
  80. Darban, Z. Z., Webb, G. I., Pan, S., Aggarwal, C., & Salehi, M. (2024). Deep learning for time Series Anomaly Detection: A survey. ACM Computing Surveys, 57(1), 1–42. https://doi.org/10.1145/3691338
  81. Han, D., Wang, Z., Chen, W., Zhong, Y., Wang, S., Zhang, H., Yang, J., Shi, X., & Yin, X. (2021). DEEPAID: Interpreting and improving deep learning-based anomaly detection in security applications. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2109.11495
  82. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., . . . Amodei, D. (2020). Language Models are Few-Shot Learners. arXiv (Cornell University), 33, 1877–1901. https://doi.org/10.48550/arxiv.2005.14165
  83. Chen, Z. Z., Ma, J., Zhang, X., Hao, N., Yan, A., Nourbakhsh, A., Yang, X., McAuley, J., Petzold, L., & Wang, W. Y. (2024, May 2). A survey on large language models for critical societal domains: finance, healthcare, and law. arXiv.org. https://arxiv.org/abs/2405.01769v2
  84. Liu, L., Yang, X., Lei, J., Shen, Y., Wang, J., Wei, P., Chu, Z., Qin, Z., & Ren, K. (2024, June 6). A survey on medical large language models: technology, application, trustworthiness, and future directions. arXiv.org. https://arxiv.org/abs/2406.03712v2
  85. Nascimento, N., Guimaraes, E., Chintakunta, S. S., & Boominathan, S. A. (2024, November 16). LLM4DS: Evaluating Large Language Models for Data Science Code Generation. arXiv.org. https://arxiv.org/abs/2411.11908
  86. Wu, Z., Wang, J., Cheng, Z., Zhou, Y., Wang, W., Pu, J., Li, C., & Ma, C. (2025, December 1). ICAD-LLM: One-for-All Anomaly Detection via In-Context Learning with Large Language Models. arXiv.org. https://arxiv.org/abs/2512.01672
  87. Yang, T., Nian, Y., Li, L., Xu, R., Li, Y., Li, J., Xiao, Z., Hu, X., Rossi, R. A., Ding, K., Hu, X., & Zhao, Y. (2025). AD-LLM: Benchmarking Large Language Models for Anomaly Detection. In Findings of the Association for Computational Linguistics: ACL 2025 (2025.findings-acl.79, Issue 2025.findings-acl.79, pp. 1524–1547). Association for Computational Linguistics. https://doi.org/10.18653/v1/2025.findings-acl.79
  88. Cherkaoui, S. (2020). Large language models for time series anomaly detection and explanation [M.S. Thesis, MIT]. https://dai.lids.mit.edu/large-language-models-for-time-series-anomaly-detection-and-explanation/
  89. Fleiss, J. L. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378–382. https://doi.org/10.1037/h0031619
  90. Levenshtein, V.I. (1965). Binary codes capable of correcting deletions, insertions, and reversals. Soviet physics. Doklady, 10, 707-710.
  91. Liu, F. T., Ting, K. M., & Zhou, Z. (2008). Isolation Forest. In 2008 Eighth IEEE International Conference on Data Mining (pp. 413–422). IEEE. https://doi.org/10.1109/icdm.2008.17
  92. Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W., . . . Scialom, T. (2023). Llama 2: Open foundation and Fine-Tuned chat models. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2307.09288
  93. Mone, V., & Sivakumar, C. (2022). An analysis of the GDPR compliance issues posed by new emerging technologies. Legal Information Management, 22(3), 166–174. https://doi.org/10.1017/s1472669622000317
  94. Article 44 – General principle for transfers, GDPR (EU 2016/679). General Data Protection Regulation. Article 44 ensures that personal data transfers to third countries or international organisations may only occur if conditions in Chapter V are met to maintain the level of data protection. https://gdpr-info.eu/art-44-gdpr/
  95. Abdullah, A. A., Zubiaga, A., Mirjalili, S., Gandomi, A. H., Daneshfar, F., Amini, M., Mohammed, A. S., & Veisi, H. (2025, October 14). Evolution of meta’s llama models and parameter-efficient fine-tuning of large language models: a survey. arXiv.org. https://arxiv.org/abs/2510.12178
  96. Yasmin, J., Tian, Y., & Yang, J. (2020, August 28). A first look at the deprecation of RESTful APIs: an Empirical study. arXiv.org. https://arxiv.org/abs/2008.12808
  97. ServiceNow. (2025). ITOM Visibility architecture white paper. ServiceNow, Inc. https://www.servicenow.com/content/dam/servicenow-assets/public/en-us/doc-type/resource-center/white-paper/wp-itom-visibility-security-overview.pdf
  98. Snoek, J., Larochelle, H., & Adams, R. P. (2012, June 13). Practical Bayesian optimization of machine learning algorithms. arXiv.org. https://arxiv.org/abs/1206.2944
  99. Atlassian. (2023, April 18). Unleashing the power of AI across Atlassian’s products. https://www.atlassian.com/blog/announcements/unleashing-power-of-ai
  100. Pasuksmit, J., Takerngsaksiri, W., Thongtanunam, P., Tantithamthavorn, C., Zhang, R., Wang, S., Jiang, F., Li, J., Cook, E., Chen, K., & Wu, M. (2025, April 25). Human-In-The-Loop Software Development Agents: Challenges and future Directions. arXiv.org. https://arxiv.org/abs/2506.11009
  101. Batini, C., Cappiello, C., Francalanci, C., & Maurino, A. (2015). Methodologies for data quality assessment and improvement. ACM Computing Surveys, 41(3), 1–52. https://doi.org/10.1145/1541880.1541883
  102. Kappelman, L. A., McKeeman, R., & Zhang, L. (2006). Early warning signs of IT project failure: The dominant dozen. Information Systems Management, 23(4), 31–36. https://doi.org/10.1201/1078.10580530/46352.23.4.20060901/95110.4
  103. Soomro, Z. A., Shah, M. H., & Ahmed, J. (2016). Information security management needs more holistic approach: A literature review. International Journal of Information Management, 36(2), 215–225. https://doi.org/10.1016/j.ijinfomgt.2015.11.009
  104. Joshi, A., Kale, S., Chandel, S., & Pal, D. K. (2015). Likert scale: Explored and explained. British Journal of Applied Science & Technology, 7(4), 396–403. https://doi.org/10.9734/BJAST/2015/14975

Enterprise IT Service Management (ITSM) platform migrations present formidable challenges characterized by data quality inconsistencies, prolonged manual reconciliation cycles, and substantial post-migration testing overhead. Current migration approaches depend heavily on manual validation processes and reactive post-migration error identification, resulting in extended downtime, operational disruptions, and significant revenue losses. To automate the data validation process and enable the real-time anomaly detection process, this study introduces an adaptive framework that makes use of Large Language Models (LLMs). By examining the past successful migration patterns and domain-specific transformation rules, the proposed system learns to predict error-prone field transformations, spot data inconsistencies during execution, and provide LLM-powered contextual explanations for detected anomalies. By leveraging comprehensible natural language explanations for anomalies, this framework addresses the crucial “black-box” issue, which is prevalent in the automated validation process, enabling quicker root cause analysis and resolution. While adhering strictly to data privacy regulations like the California Consumer Privacy Act (CCPA) and General Data Protection Regulation (GDPR), the framework ensures data privacy through encrypted processing and differential privacy mechanisms. The suggested framework in this research showed a 78% reduction in manual reconciliation effort, an 82% improvement in anomaly detection accuracy, and an appreciable 65% acceleration in migration completion timelines through thorough evaluation across multiple ITSM platforms, including ServiceNow, BMC Helix ITSM, and Jira Service Management.

Keywords : Large Language Models, ITSM Migration, Anomaly Detection, Data Validation, Adaptive Learning, Machine Learning, Data Migration, Enterprise Systems, LLM-Powered Explanation, Black Box Problem, Real-Time Validation, Contextual Analysis, ETL Optimization, Interpretable AI, Risk Prediction, Data Quality Management, Service Management Integration, Enterprise Data Quality, ServiceNow, Jira Service Management.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe