Treatment of Organic Pollutant by Advanced Oxidation Processes


Authors : Falah Kareem Hadi Al-Kaabi

Volume/Issue : Volume 9 - 2024, Issue 9 - September


Google Scholar : https://tinyurl.com/2h5ddp39

Scribd : https://tinyurl.com/bdha3ue2

DOI : https://doi.org/10.38124/ijisrt/IJISRT24SEP243

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : The investigation involved the oxidation of urea (UR) in a batch reactor, employing Fenton's reagent. Various parameters, namely reaction time, pH level, ferrous ion dose, and hydrogen peroxide dose, were scrutinized. The reaction time spanned from 30 minutes to 3 hours, revealing a notably positive impact. An optimal pH of 3 was identified for the medium. The concentrations of ferrous ions ranged from 0.2 g/l to 0.53 g/l, with hydrogen peroxide levels ranging from 1 g/l to 2.65 g/l. The impact of hydrogen peroxide was notably significant at a ferrous ion concentration of 0.3 g/l and a pH of 3. Evaluating urea removal efficiency through chemical oxygen demand (COD) calculations showed a maximum efficiency of 86.8%, with a minimum ammonia yield of 6%. Overall, the outcomes underscored the efficacy of the Fenton process in urea treatment.

Keywords : Urea, Fenton oxidation, Ammonia, treatment, Chemical oxygen demand.

References :

  1. F. Ilhan, K. Ulucan-Altuntas, C. Dogan, U. Kurt, Treatability of raw textile wastewater using Fenton process and its comparison with chemical coagulation, Desalin. Water Treat. 162 (2019) 142–148. doi:10.5004/dwt.2019.24332.
  2. E. Güneş, D.İ. Çifçi, S.Ö. Çelik, Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater, Environ. Technol. (United Kingdom). 39 (2018) 824–830. doi:10.1080/09593330.2017.1311948.
  3. E.E. Ebrahiem, M.N. Al-Maghrabi, A.R. Mobarki, Removal of organic pollutants from industrial wastewater by applying photo-Fenton oxidation technology, Arab. J. Chem. 10 (2017) S1674–S1679. doi:10.1016/j.arabjc.2013.06.012.
  4. B. Bianco, I. De Michelis, F. Vegliò, Fenton treatment of complex industrial wastewater: Optimization of process conditions by surface response method, J. Hazard. Mater. 186 (2011) 1733–1738. doi:10.1016/j.jhazmat.2010.12.054.
  5. S. Papić, D. Vujević, N. Koprivanac, D. Šinko, Decolourization and mineralization of commercial reactive dyes by using homogeneous and heterogeneous Fenton and UV/Fenton processes, J. Hazard. Mater. 164 (2009) 1137–1145. doi:10.1016/j.jhazmat.2008.09.008.
  6. B. Ahmed, E. Limem, A. Abdel-Wahab, B. Nasr, Photo-Fenton treatment of actual agro-industrial wastewaters, Ind. Eng. Chem. Res. 50 (2011) 6673–6680. doi:10.1021/ie200266d.
  7. P. V. Nidheesh, Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review, RSC Adv. 5 (2015) 40552–40577. doi:10.1039/c5ra02023a.
  8. Y.Y. Chu, Y. Qian, W.J. Wang, X.L. Deng, A dual-cathode electro-Fenton oxidation coupled with anodic oxidation system used for 4-nitrophenol degradation, J. Hazard. Mater. 199–200 (2012) 179–185. doi:10.1016/j.jhazmat.2011.10.079.
  9. M.A. Zazouli, Z. Yousefi, A. Eslami, M. Bagheri Ardebilian, Municipal solid waste landfill leachate treatment by Fenton, photo-Fenton and Fenton-like processes: Effect of some variables, Iran. J. Environ. Heal. Sci. Eng. 9 (2012). doi:10.1186/1735-2746-9-3.
  10. S.S. da Silva, O. Chiavone-Filho, E.L. de Barros Neto, E.L. Foletto, Oil removal from produced water by conjugation of flotation and photo-Fenton processes, J. Environ. Manage. 147 (2015) 257–263. doi:10.1016/j.jenvman.2014.08.021.
  11. C.S.D. Rodrigues, L.M. Madeira, R.A.R. Boaventura, Optimization of the azo dye Procion Red H-EXL degradation by Fenton’s reagent using experimental design, J. Hazard. Mater. 164 (2009) 987–994. doi:10.1016/j.jhazmat.2008.08.109.
  12. M.S. Lucas, J.A. Peres, Removal of COD from olive mill wastewater by Fenton’s reagent: Kinetic study, J. Hazard. Mater. 168 (2009) 1253–1259. doi:10.1016/j.jhazmat.2009.03.002.
  13. P. WEXLER, ed., Urea, Encycl. Toxicol. (2014). www.sciencedirect.com/referencework/9780123864550/encyclopedia-of-toxicology#book-info.
  14. S. Shen, B. Li, M. Li, J. Fan, Z. Zhao, Removal of urea from wastewater by heterogeneous catalysis, Desalin. Water Treat. 55 (2015) 70–76. doi:10.1080/19443994.2014.911116.
  15. S.M. Safwat, M.E. Matta, Adsorption of urea onto granular activated alumina: A comparative study with granular activated carbon, J. Dispers. Sci. Technol. 39 (2018) 1699–1709. doi:10.1080/01932691.2018.1461644.
  16. S.M. Safwat, M.E. Matta, Performance evaluation of electrocoagulation process using zinc electrodes for removal of urea, Sep. Sci. Technol. 55 (2020) 2500–2509. doi:10.1080/01496395.2019.1636067.
  17. M. Mamdouh, S.M. Safwat, H. Abd-Elhalim, E. Rozaik, Urea removal using electrocoagulation process with copper and iron electrodes, Desalin. Water Treat. 213 (2021) 259–268. doi:10.5004/dwt.2021.26690.
  18. M. Ahmadian, S. Reshadat, N. Yousefi, S.H. Mirhossieni, M.R. Zare, S.R. Ghasemi, N. Rajabi Gilan, R. Khamutian, A. Fatehizadeh, Municipal Leachate Treatment by Fenton Process: Effect of Some Variable and Kinetics, J. Environ. Public Health. 2013 (2013) 1–6. doi:10.1155/2013/169682.
  19. A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Removal of pharmaceuticals from water by homo/heterogonous Fenton-type processes – A review, Chemosphere. 174 (2017) 665–688. doi:10.1016/j.chemosphere.2017.02.019.
  20. S. Mohajeri, H.A. Aziz, M.H. Isa, M.J.K. Bashir, L. Mohajeri, M.N. Adlan, Influence of Fenton reagent oxidation on mineralization and decolorization of municipal landfill leachate, J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 45 (2010) 692–698. doi:10.1080/10934521003648883.
  21. S.M. Aramyan, Advances in Fenton and Fenton Based Oxidation Processes for Industrial Effluent Contaminants Control-A Review, Int. J. Environ. Sci. Nat. Resour. 2 (2017). doi:10.19080/ijesnr.2017.02.555594.
  22. D.B. Miklos, C. Remy, M. Jekel, K.G. Linden, J.E. Drewes, U. Hübner, Evaluation of advanced oxidation processes for water and wastewater treatment – A critical review, Water Res. 139 (2018) 118–131. doi:10.1016/j.watres.2018.03.042.
  23. E. Domingues, J. Gomes, M.J. Quina, R.M. Quinta-Ferreira, R.C. Martins, Detoxification of olive mill wastewaters by fenton’s process, Catalysts. 8 (2018). doi:10.3390/catal8120662.
  24. A. Das, M.K. Adak, Photo-catalyst for wastewater treatment: A review of modified Fenton, and their reaction kinetics, Appl. Surf. Sci. Adv. 11 (2022) 100282. doi:10.1016/j.apsadv.2022.100282.
  25. N. Pani, V. Tejani, T.S. Anantha-Singh, A. Kandya, Simultaneous removal of COD and Ammoniacal Nitrogen from dye intermediate manufacturing Industrial Wastewater using Fenton oxidation method, Appl. Water Sci. 10 (2020). doi:10.1007/s13201-020-1151-1.
  26. Z. Naseem, H.N. Bhatti, M. Iqbal, S. Noreen, M. Zahid, Fenton and photo-fenton oxidation for the remediation of textile effluents: An experimental study, in: Text. Cloth. Environ. Concerns Solut., 2019: pp. 235–251. doi:10.1002/9781119526599.ch9.

The investigation involved the oxidation of urea (UR) in a batch reactor, employing Fenton's reagent. Various parameters, namely reaction time, pH level, ferrous ion dose, and hydrogen peroxide dose, were scrutinized. The reaction time spanned from 30 minutes to 3 hours, revealing a notably positive impact. An optimal pH of 3 was identified for the medium. The concentrations of ferrous ions ranged from 0.2 g/l to 0.53 g/l, with hydrogen peroxide levels ranging from 1 g/l to 2.65 g/l. The impact of hydrogen peroxide was notably significant at a ferrous ion concentration of 0.3 g/l and a pH of 3. Evaluating urea removal efficiency through chemical oxygen demand (COD) calculations showed a maximum efficiency of 86.8%, with a minimum ammonia yield of 6%. Overall, the outcomes underscored the efficacy of the Fenton process in urea treatment.

Keywords : Urea, Fenton oxidation, Ammonia, treatment, Chemical oxygen demand.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe