The Role of Glutamate-Related Genes in Neurotransmitter Imbalances in Schizophrenia


Authors : Mishti Majithia

Volume/Issue : Volume 10 - 2025, Issue 5 - May


Google Scholar : https://tinyurl.com/33836trn

DOI : https://doi.org/10.38124/ijisrt/25may1683

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Schizophrenia is a severe and chronic mental disorder characterized by profound disruptions in thinking, perception, emotions, and behavior, often leading to impaired reality testing (psychosis), social dysfunction, and cognitive deficits. This paper integrates the neurobiological perspective of schizophrenia with its genetic aspects. While dopamine dysregulation has long been implicated in its pathology, emerging research has emphasized the critical role of glutamatergic neurotransmission. The dopamine hypothesis is one of the primary theories proposed for the development of schizophrenia, as it was found that typical antipsychotics function by blocking dopamine D2 receptors. However, this hypothesis was not able to fully explain the cognitive and negative symptoms of schizophrenia. Thus, a new hypothesis was formed, called the glutamate hypothesis, which postulates that schizophrenia results from the hypofunction of the glutamatergic system, especially by blocking NMDA receptors. Genetic studies have identified several susceptibility genes involved in glutamatergic regulation, including G72 (DAOA), DTNBP1 (dysbindin), GRM3, and NRG1, which modulate synaptic glutamate signaling and receptor function. Understanding these genetic influences provides a more integrative view of the neurobiological mechanisms of schizophrenia, and opens new avenues for targeted treatment strategies beyond the dopaminergic model.

References :

  1. Uno, Y., & Coyle, J. T. (2019). Glutamate hypothesis in schizophrenia. Psychiatry and clinical neurosciences, 73(5), 204-215.
  2. Coyle, J. T., & Balu, D. T. (2018). The role of serine racemase in the pathophysiology of brain disorders. Advances in pharmacology, 82, 35-56.
  3. Zhou, Y., & Danbolt, N. C. (2014). Glutamate as a neurotransmitter in the healthy brain. Journal of neural transmission, 121, 799-817.
  4. Catts, V. S., Lai, Y. L., Weickert, C. S., Weickert, T. W., & Catts, S. V. (2016). A quantitative review of the postmortem evidence for decreased cortical N-methyl-D-aspartate receptor expression levels in schizophrenia: How can we link molecular abnormalities to mismatch negativity deficits?. Biological psychology, 116, 57-67.
  5. Balu, D. T. (2016). The NMDA receptor and schizophrenia: from pathophysiology to treatment. Advances in pharmacology, 76, 351-382.
  6. Stan, A. D., Ghose, S., Zhao, C., Hulsey, K., Mihalakos, P., Yanagi, M., ... & Tamminga, C. A. (2015). Magnetic resonance spectroscopy and tissue protein concentrations together suggest lower glutamate signaling in dentate gyrus in schizophrenia. Molecular psychiatry, 20(4), 433-439.
  7. Jagannath, V., Brotzakis, Z. F., Parrinello, M., Walitza, S., & Grünblatt, E. (2017). Controversial effects of D-amino acid oxidase activator (DAOA)/G72 on D-amino acid oxidase (DAO) activity in human neuronal, astrocyte and kidney cell lines: the N-methyl D-aspartate (NMDA) receptor hypofunction point of view. Frontiers in molecular neuroscience, 10, 342.
  8. Benzel, I., Kew, J. N., Viknaraja, R., Kelly, F., de Belleroche, J., Hirsch, S., ... & Maycox, P. R. (2008). Investigation of G72 (DAOA) expression in the human brain. BMC psychiatry, 8, 1-14.
  9. Boks, M. P. M., Rietkerk, T., Van De Beek, M. H., Sommer, I. E., De Koning, T. J., & Kahn, R. S. (2007). Reviewing the role of the genes G72 and DAAO in glutamate neurotransmission in schizophrenia. European Neuropsychopharmacology, 17(9), 567-572.
  10. Li, D., & He, L. (2007). G72/G30 genes and schizophrenia: a systematic meta-analysis of association studies. Genetics, 175(2), 917-922.
  11. Karlsgodt, K. H., Bachman, P., Winkler, A. M., Bearden, C. E., & Glahn, D. C. (2011). Genetic influence on the working memory circuitry: behavior, structure, function and extensions to illness. Behavioural brain research, 225(2), 610-622.
  12. Flores, G., Morales-Medina, J. C., & Diaz, A. (2016). Neuronal and brain morphological changes in animal models of schizophrenia.
  13. Behavioural brain research, 301, 190-203.
  14. Moghaddam, B., & Javitt, D. (2012). From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology, 37(1), 4-15.
  15. Fallgatter, A. J., Herrmann, M. J., Hohoff, C., Ehlis, A. C., Jarczok, T. A., Freitag, C. M., & Deckert, J. (2006). DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in healthy individuals. Neuropsychopharmacology, 31(9), 2002-2010.
  16. Javitt, D. C. (2007). Glutamate and schizophrenia: phencyclidine, N‐methyl‐d‐aspartate receptors, and dopamine–glutamate interactions. International review of neurobiology, 78, 69-108.
  17. McCutcheon, R. A., Krystal, J. H., & Howes, O. D. (2020). Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry, 19(1), 15-33.
  18. Javitt, D. C. (2007). Glutamate and schizophrenia: phencyclidine, N‐methyl‐d‐aspartate receptors, and dopamine–glutamate
  19. interactions. International review of neurobiology, 78, 69-108.
  20. Meador-Woodruff, J. H., & Healy, D. J. (2000). Glutamate receptor expression in schizophrenic brain. Brain Research Reviews, 31(2-3), 288-294.
  21. Hahn, C. G., Wang, H. Y., Cho, D. S., Talbot, K., Gur, R. E., Berrettini, W. H., ... & Arnold, S. E. (2006). Altered neuregulin 1–erbB4 signaling contributes to NMDA> receptor hypofunction in schizophrenia. Nature medicine, 12(7), 824-828.
  22. Sodhi, M., Wood, K. H., & Meador-Woodruff, J. (2008). Role of glutamate in schizophrenia: integrating excitatory avenues of research. Expert review of neurotherapeutics, 8(9), 1389-1406.
  23. Mössner, R., Schuhmacher, A., Schulze-Rauschenbach, S., Kühn, K. U., Rujescu, D., Rietschel, M., ... & Maier, W. (2008). Further evidence for a functional role of the glutamate receptor gene GRM3 in schizophrenia. European Neuropsychopharmacology, 18(10), 768-772.
  24. Boks, M. P. M., Rietkerk, T., Van De Beek, M. H., Sommer, I. E., De Koning, T. J., & Kahn, R. S. (2007). Reviewing the role of the genes G72 and DAAO in glutamate neurotransmission in schizophrenia. European Neuropsychopharmacology, 17(9), 567-572.
  25. Howes, O. D., & Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophrenia bulletin, 35(3), 549-562.
  26. Fallgatter, A. J., Ehlis, A. C., Herrmann, M. J., Hohoff, C., Reif, A., Freitag, C. M., & Deckert, J. (2010). DTNBP1 (dysbindin) gene variants modulate prefrontal brain function in schizophrenic patients–support for the glutamate hypothesis of schizophrenias. Genes, Brain and Behavior, 9(5), 489-497.
  27. Paz, R. D., Tardito, S., Atzori, M., & Tseng, K. Y. (2008). Glutamatergic dysfunction in schizophrenia: from basic neuroscience to clinical psychopharmacology. European neuropsychopharmacology, 18(11), 773-786.
  28. Niciu, M. J., Kelmendi, B., & Sanacora, G. (2012). Overview of glutamatergic neurotransmission in the nervous system.
  29. Pharmacology Biochemistry and Behavior, 100(4), 656-664.
  30. Reiner, A., & Levitz, J. (2018). Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron, 98(6), 1080-1098.
  31. Meador-Woodruff, J. H., & Healy, D. J. (2000). Glutamate receptor expression in schizophrenic brain. Brain Research Reviews, 31(2-3), 288-294.
  32. Li, C. T., Yang, K. C., & Lin, W. C. (2019). Glutamatergic dysfunction and glutamatergic compounds for major psychiatric disorders: evidence from clinical neuroimaging studies. Frontiers in psychiatry, 9, 767.
  33. O'reilly, R. L., & Davis, B. A. (1994). Phenylethylamine and schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 18(1), 63-75.
  34. Vilhjalmsson, B. J., Yang, J., Finucane, H. K., Gusev, A., Lindstrom, S., Ripke, S., ... & Won, H. H. (2015). Schizophrenia Working Group of the Psychiatric Genomics Consortium DB. Risk of Inherited Variants in Breast Cancer S, Kathiresan S, Pato M, Pato C, Tamimi R, Stahl E, Zaitlen N, Pasaniuc B, Belbin G, Kenny EE, Schierup MH, De Jager P, Patsopoulos NA, Mccarroll S, Daly M, Purcell S, Chasman D, Neale B, Goddard M, Visscher PM, Kraft P, Patterson N, Price AL, 576-92.
  35. Lin, E., Lin, C. H., Lai, Y. L., Huang, C. H., Huang, Y. J., & Lane, H. Y. (2018). Combination of G72 genetic variation and G72 protein level to detect schizophrenia: machine learning approaches. Frontiers in Psychiatry, 9, 566.
  36. Lin, C. H., Chang, H. T., Chen, Y. J., Huang, C. H., Tun, R., Tsai, G. E., & Lane, H. Y. (2014). Distinctively higher plasma G72 protein levels in patients with schizophrenia than in healthy individuals. Molecular psychiatry, 19(6), 636-637.
  37. Chumakov, I., Blumenfeld, M., Guerassimenko, O., Cavarec, L., Palicio, M., Abderrahim, H., ... & Cohen, D. (2002). Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proceedings of the National Academy of Sciences, 99(21), 13675-13680.
  38. Birolo, L., Sacchi, S., Smaldone, G., Molla, G., Leo, G., Caldinelli, L., ... & Pollegioni, L. (2016). Regulating levels of the neuromodulator d‐serine in human brain: structural insight into pLG72 and d‐amino acid oxidase interaction. The FEBS journal, 283(18), 3353-3370.
  39. Papaleo, F., & Weinberger, D. R. (2011). Dysbindin and Schizophrenia: it's dopamine and glutamate all over again. Biological psychiatry, 69(1), 2.
  40. Yu, H. N., Park, W. K., Nam, K. H., Song, D. Y., Kim, H. S., Baik, T. K., & Woo, R. S. (2015). Neuregulin 1 controls glutamate uptake by up-regulating excitatory amino acid carrier 1 (EAAC1). Journal of Biological Chemistry, 290(33), 20233-20244.
  41. Gu, Z., Jiang, Q., Fu, A. K., Ip, N. Y., & Yan, Z. (2005). Regulation of NMDA receptors by neuregulin signaling in prefrontal cortex. Journal of Neuroscience, 25(20), 4974-4984.

Schizophrenia is a severe and chronic mental disorder characterized by profound disruptions in thinking, perception, emotions, and behavior, often leading to impaired reality testing (psychosis), social dysfunction, and cognitive deficits. This paper integrates the neurobiological perspective of schizophrenia with its genetic aspects. While dopamine dysregulation has long been implicated in its pathology, emerging research has emphasized the critical role of glutamatergic neurotransmission. The dopamine hypothesis is one of the primary theories proposed for the development of schizophrenia, as it was found that typical antipsychotics function by blocking dopamine D2 receptors. However, this hypothesis was not able to fully explain the cognitive and negative symptoms of schizophrenia. Thus, a new hypothesis was formed, called the glutamate hypothesis, which postulates that schizophrenia results from the hypofunction of the glutamatergic system, especially by blocking NMDA receptors. Genetic studies have identified several susceptibility genes involved in glutamatergic regulation, including G72 (DAOA), DTNBP1 (dysbindin), GRM3, and NRG1, which modulate synaptic glutamate signaling and receptor function. Understanding these genetic influences provides a more integrative view of the neurobiological mechanisms of schizophrenia, and opens new avenues for targeted treatment strategies beyond the dopaminergic model.

CALL FOR PAPERS


Paper Submission Last Date
31 - July - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe