Authors :
LALIEFE B. ARNAN; KATHERINE JOY S. ESCUETA; NOR RASHIDA P. RASHID; ELYCA M. TACBOBO; QUEENIE ROSE M. TINOY
Volume/Issue :
Volume 9 - 2024, Issue 8 - August
Google Scholar :
https://tinyurl.com/n56fbsxf
Scribd :
https://tinyurl.com/4n795u2m
DOI :
https://doi.org/10.38124/ijisrt/IJISRT24AUG722
Abstract :
The Potential Alternative Antibacterial Activity Of Falcata (Falcataria falcata) Leaf Methanolic Extract Against
Staphylococcus aureus And Escherichia coli
Laliefe B. Arnan; Katherine Joy S. Escueta; Nor Rashida P. Rashid; Elyca M. Tacbobo; Queenie Rose M. Tinoy
Degree: Bachelor of Science in Pharmacy
Thesis Adviser: Junnin Gay L. Garay, RPh, CPh, MS Pharm
Falcata is a plant that can be found in the Philippines and is used for the production of wood veneer and plywood.
While in Indonesia, it is used as traditional remedy for malaria (Budiarti et al. 2020). They belong to the Fabaceae family, a
family known for having great antibacterial effects (Gamo et al. 2015). This study used a percolation extraction method and
the percentage yield is calculated to determine the yield from the falcata extract. Disc diffusion method is used for
susceptibility testing and determining the zone of inhibition for the different groups. The CLSI guidelines for Staphylococcus
aureus and Escherichia coli will be used to determine the antibacterial effect of the extract, in terms of resistance,
intermediate, and susceptible results.
From the results, the percentage yield of the methanolic crude leaf extract of Falcataria falcata is 2.67%. Leaves from
the Falcataria falcata plant were extracted and tested against bacteria. The extracts showed promise in inhibiting the growth
of Staphylococcus aureus and Escherichia coli bacteria, with 75% concentration as being more effective. However, these
bacteria showed some resistance to all extract concentrations: S. aureus (90% - resistant, 75% - intermediate, 50% -
resistant, 25% - resistant); E. coli (90% - resistant, 75% - resistant, 50% - resistant, 25% - resistant). Further study is needed
to determine the exact antibacterial properties of the plant.
Keywords :
Falcataria Falcata, Antibacterial, Leaves, Methanolic Crude Leaf Extract, Disc Diffusion Method, Susceptibility Testing, Fabaceae Family, Staphylococcus Aureus, Escherichia Coli, Percentage Yield.
References :
- Abubakar A, Haque M. 2020. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy and Bioallied Sciences. 12(1):1–10. doi:https://doi.org/10.4103/jpbs.jpbs17519.
- Ado N, Ardenio H, Gindap R, Jorgeo H, Matildo L. 2022. Bermuda grass (Cynodon dactylon) as an alternative antibacterial agent against Staphyloccocus aureus. International multidisciplinary research journal. [2024 Jan 7]; 4(1):136–143. doi: https://doi.org/10.5281/zenodo.6392232.
- Agidew MG. 2022. Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. Bulletin of the National Research Centre. 46(1):87. doi:https://doi.org/ 10.1186/s42269-022-00770-8.
- Alamsyah EM, Sumardi I, Sutrisno, Darwis A, Suhaya Y. 2018. Bond quality of laminated wood made from Surian (Toona sinensis Roem) and Sengon (Paraserianthes falcataria (L.) Nielsen). Journal of biological sciences. [2023 Dec 15]; 18(1):32-38. doi:https://doi.org/10.3923/jbs.2018.32.38.
- Ali H, Balua N, Degamo J, Mohsein H. 2023. The antibacterial activity Ficus minahassae (Moraceae) leaf extract against multidrug-resistant bacteria Klebsiella oxytoca. [Unpublished manuscript]. Adventist Medical Center College.
- Arini W, Pangesti D, Pangesti P. 2019. Reducing environmental effect of bark waste of Sengon (Paraserianthes falcataria L.) by applying as a source of green ingredients to lower glucose-related diseases. IOP Conference Series: Earth and Environmental Science. 23(9):1-8. doi: 10.1088/1755-1315/239/1/012025.
- Avila SR. 2022. Antibacterial efficacy of Senna alata (L.) Roxb. (Fabaceae) against Staphylococcus aureus. International Journal of Biosciences (IJB). [accessed 2024 May 2]; 20(2):383-392. doi:http://dx.doi.org/10.12692/ijb/20.2.383-392.
- Azlan A, Gan Ying Wan, Yuan Yoh Hao, Sultana S. 2023. Evaluation of Antioxidant Properties, Knowledge, Attitude and Practice (KAP) on Selected Dietary Supplements (Barley Grass, Wheatgrass and Chlorella vulgaris powders). Malaysian journal of medicine and health sciences. [2024 May 19]; 19(5):59–69. doi:https://doi.org/10.47836/mjmhs.19.5.10.
- Baihaqi Z, Widiyono I, Nurcahyo W. 2020 Aug 11. In vitro anthelmintic activity of aqueous and ethanol extracts of Paraserianthes falcataria bark waste against Haemonchus contortus obtained from a local slaughterhouse in Indonesia. Veterinary World. 13(8): 1549-1554. doi:https://doi.org/10.14202/vetworld. 2020.1549-1554.
- Bakdach D, Elajez R. 2020. Trimethoprim–Sulfamethoxazole: new lessons on an old antimicrobial; a retrospective analysis. Journal of Pharmaceutical Health Services Research. 11(3):269–274. doi:https://doi.org/10.1111/jphs.12358.
- Batubara I, Komariah K, Sandrawati A, Nurcholis W. 2020. Genotype selection for phytochemical content and pharmacological activities in ethanol extracts of fifteen types of Orthosiphon aristatus (Blume) Miq. leaves using chemometric analysis. Scientific reports. [2024 May 16]; 10(1): 20945. doi:https://doi.org/10.1038/ s41598-020-77991-2.
- Budiarti M, Maruzy A, Mujahid R, Sari AN, Jokopriyambodo W, Widayat T, Wahyono S. 2020. The use of antimalarial plants as traditional treatment in Papua Island, Indonesia. Research article. [2024 May 16]; 6(12):55-62. doi:https://doi.org/ 10.1016/j.heliyon.2020.e05562.
- Cavazos P. 2021. Evaluation of antimicrobial activity & phytochemical analysis of two South Texas species of the Fabaceae family [thesis]. Texas A&M international university. 156. https://rio.tamiu.edu/etds/156
- Cowan MM. 1999. Plant products as antimicrobial agents. American society for microbiology: Journal of clinical microbiology. [2024 May 10]; 12(4):564–582. doi:https://doi.org/10.1128/cmr.12.4.564.
- Daoud N, Hamdoun M, Hannachi H, Gharsallah C, Mallekh W, Bahri O. 2020. Antimicrobial susceptibility patterns of Escherichia coli among Tunisian outpatients with community-acquired urinary tract infection (2012-2018). Current urology. [2024 May 19]; 14(4):200–205. doi:https://doi.org/10.1159/000499238.
- Davis WW, Stout TR. 1971. Disc plate method of microbiological antibiotic assay. applied microbiology. 22(4):659–665. doi:https://doi.org/10.1128/am.22.4.659-665.1971.
- Dey P, Kundu A, Kumar A, Gupta M, Lee BM, Bhakta T, Dash S, Kim HS. 2020. Recent advances in natural products analysis: Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). 1(2):505-567. doi:https://doi.org/10.1016/B978-0-12-816455-6.00015-9.
- Diniz LRL, Calado LL, Duarte ABS, de Sousa DP. 2023. Centella asiatica and its metabolite Asiatic acid: wound healing effects and therapeutic potential. Metabolites. [2024 Apr 28]; 13(2):276. doi:https://doi.org/10.3390/ metabo13020276.
- Giuliano C, Patel CR, Kale-Pradhan PB. 2019. A guide to bacterial culture identification and results interpretation. Pharmacy and therapeutics. 44(4):192–200. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6428495/.
- Gleadow RM, Møller BL. 2014. Cyanogenic glycosides: synthesis, physiology, and phenotypic plasticity. Annual Review of Plant Biology. 65(1):155–185. doi:https://doi.org/10.1146/annurev-arplant-050213-040027.
- Habib N, Choudhry S. 2021. HPLC quantification of thymoquinone extracted from Nigella sativa L. (Ranunculaceae) seeds and antibacterial activity of its extracts against Bacillus species. Evidence-Based Complementary and Alternative Medicine. 2021:1–11 p. doi:https://doi.org/10.1155/2021/6645680.
- Heinrich M, Mah J, Amirkia V. 2021. Alkaloids used as medicines: structural phytochemistry meets biodiversity- An update and forward look. Molecules. 26(7):1836. doi:https://doi.org/10.3390/molecules26071836.
- Hudzicki J. 2009. Kirby-Bauer disc diffusion susceptibility test protocol. American Society for Microbiology: Journal of Clinical Microbiology [2024 Jan 7]; 47(6):1647-1648. doi:https://asm.org/getattachment/2594ce26-bd44-47f6-8287-0657aa9185ad/Kirby-Bauer-Disk-Diffusion-Susceptibility-Test-Protocol-pdf.pdf
- Humphries RM, Ambler J, Mitchell SL, Castanheira M, Dingle T, Hindler JA, Koeth L, Sei K. 2018. CLSI methods development and standardization working group of the subcommittee on antimicrobial susceptibility testing. American Society for Microbiology: Journal of Clinical Microbiology. 56(4):1-10. doi:https://doi.org/10.1128/JCM. 01934-17
- Jeżak K, Kozajda A. 2022. Occurrence and spread of antibiotic-resistant bacteria on animal farms and in their vicinity in Poland and Ukraine-review. Environmental science and pollution research international. [2023 Dec 15]; 29(7):9533–9559. doi:https://doi.org/10.1007/s11356-021-17773-z
- Juang YP, Liang PH. 2020. Biological and pharmacological effects of synthetic saponins. Molecules. 25(21):1-23. doi:https://doi.org/10.3390/molecules25214974.
- Karaman R, Jubeh B, Breijyeh Z. 2020. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules. [2024 Apr 28] 25(12):2888. doi:https://doi.org/10.3390/molecules25122888.
- Kawai K, Kenzo T, Ito S, Kanna K. 2023. Size-related changes in leaf, wood, and bark traits in even-aged Falcataria falcata trees. Tropics. [accessed 2024 Mar 3]; 32(1):15–27. doi:https://doi.org/10.3759/tropics.MS22-06
- Kennedy JA, Jones GP. 2015. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. Journal of Agricultural and Food Chemistry. 49(4): 1740-1746. doi:https://doi.org /10.1021/jf001030o.
- Khan ZA, Siddiqui MF, Park S. 2019. Current and emerging methods of antibiotic susceptibility testing. Diagnosis of bacterial pathogens. 9(2):49. doi:https://doi.org/ 10.3390/diagnostics9020049.
- Kim TK. 2017. Understanding one-way ANOVA using conceptual figures. Korean Journal of Anesthesiology. 70(1):22–26. doi:https://doi.org/10.4097/kjae.2017. 70.1.22.
- Kumar A, Nirmal P, Kumar M, Jose A, Tomer V, Oz E, Proestos C, Zeng M, Elobeid T, Shena K, et al. 2023. Major phytochemicals: recent advances in health benefits and extraction method. Molecules. 28(2):887. doi:https://doi.org/10.3390/ molecules28020887.
- Kumar V, Pansari A. 2016. Competitive advantage through engagement. Journal of Marketing Research. 53(4):497–514. doi:https://doi.org/10.1509/jmr.15.0044.
- Larson EC, Pond CD, Rai PP, Matainaho TK, Piskaut P, Franklin MR, Barrows LR. 2016. Traditional preparations and methanol extracts of medicinal plants from Papua New Guinea exhibit similar Cytochrome P450 inhibition. Evidence-Based Complementary and Alternative Medicine. 2016(1):1–6. doi:https://doi.org/10. 1155/2016/7869710.
- Li D, Zhou B, Lv B. 2020. Antibacterial therapeutic agents composed of functional biological molecules. Journal of Chemistry. 2020(1):1-13. doi:https://doi.org /10.1155/2020/6578579.
- Louis J, Bobelé Florence Niamké, Ni Y, Amusant N. 2023. Wood extractives: main families, functional properties, fields of application and interest of wood waste. Forest Products Journal. 73(3):194–208. doi:https://doi.org/10.13073/fpj-d-23-00015.
- Marasigan O, Razal R, Carandang W, Alipon M. 2022. Physical and mechanical properties of stems and branches of Falcata [Falcataria moluccana (Miq) Barneby & JW Grimes] grown in Caraga, Philippines. Philippine journal of science. 151 (2):575–586.doi:https://philjournalsci.dost.gov.ph/images/pdf/pjs_pdf/vol151no2/physical_and_mechanical_properties_of_stems_and_branches_of_falcata_2.pdf
- Mediani A, Abas F, Tan CP, Khatib A. 2014. Effects of different drying methods and storage time on free radical scavenging activity and total phenolic content of Cosmos caudatus. Antioxidants. 3(2):358-370. doi:https://doi.org/10.3390/ antiox3020358.
- Missiakas DM, Schneewind O. 2018. Growth and laboratory maintenance of Staphylococcus aureus. Current Protocols in Microbiology. 28(1):C9. doi:https://doi.org/10.1002%2F9780471729259.mc09c01s28.
- Mroczek A. 2015. Phytochemistry and bioactivity of triterpene saponins from Amaranthaceae family. Phytochemistry Reviews. 14(4):577–605. doi:https://doi.org/10.1007/s11101-015-9394-4.
- Murat A. 2020. Silviculture and tree breeding for planted forests. Eurasian Journal of Forest Science. 8(1):74–83. doi:https://doi.org/10.31195/ejejfs.661352.
- Mueller M, Tainter CR. 2023. Escherichia coli Infection. National Library of Medicine: Stat Pearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK564298/.
- Panche AN, Diwan AD, Chandra SR. 2016. Flavonoids: An overview. Journal of Nutritional Science. 5(47):1-15. doi:https://doi.org/10.1017/jns.2016.41.
- Paquit J, Rojo M. 2018. Assessing suitable sites for Falcata (Paraserianthes falcataria Nielsen) plantation in Bukidnon, Philippines using GIS. International Journal of Biosciences (IJB). 12(2):317–325. doi:https://doi.org/10.12692/ijb/12.2.317-325.
- Prematuri R, Turjaman M, Sato T, Tawaraya K. 2020. Post bauxite mining land soil characteristics and its effects on the growth of Falcataria moluccana (Miq.) Barneby & J. W. Grimes and Albizia saman (Jacq.) Merr. Applied and Environmental Soil Science. 2020(1):1-8. doi:https://doi.org/10.1155/2020 /6764380.
- Rahman M, Abdullah N, Aminudin N. 2018. Evaluation of the antioxidative and hypo-cholesterolemic effects of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (Agaricomycetes), in ameliorating cardiovascular disease. International journal of medicinal mushrooms. 20(10):961-969. International journal of medicinal mushrooms. doi:https://doi.org/10.1615/intjmedmushrooms. 2018028370.
- Rios JL, Recio MC. 2005. Medicinal Plants and Antimicrobial Activity. Journal of Ethnopharmacology. [accessed 2024 May 18];100(1-2):80–84. doi:https://doi.org /10.1016/j.jep.2005.04.025
- Rojas-Sandoval J. 2022. Falcataria moluccana (batai wood). CABI Compendium. 1:1-15. doi:https://doi.org/10.1079/cabicompendium.38847.
- Rumidatul A, Aryantha INP, Sulistyawati E. 2021. Phytochemicals screening, GC/MS characterization and antioxidant activity of Falcataria moluccana Miq. Barneby and J. W. Grimes methanolic extract. Pharmacognosy Journal. 13(2):450–455. doi:https://doi.org/10.5530/pj.2021.13.57.
- Sahira Banu K, Cathrine L. 2015. General Techniques Involved in Phytochemical Analysis. International Journal of Advanced Research in Chemical Science (IJARCS). 2(4):25–32. https://www.arcjournals.org/pdfs/ijarcs/v2-i4/5.pdf.
- Saïda M, Oomah D, Zaïdi F, Simon-Levert A, Bertrand C, Zaidi-Yahiaoui R. 2015. Antibacterial activity of carob (Ceratonia siliqua L.) extracts against phytopathogenic bacteria Pectobacterium atrosepticum. Microbial Pathogenesis. 78:95–102. doi:https://doi.org/10.1016/j.micpath.2014.12.001.
- Sato T, Ito R, Kawamura M, Fujimura S. 2022. The Risk of Emerging Resistance to Trimethoprim/Sulfamethoxazole in Staphylococcus aureus. Infection and Drug Resistance. 15(1):4779–4784. doi:https://doi.org/10.2147/idr.s375588.
- Shamsudin NF, Ahmed QU, Mahmood S, Ali Shah SA, Khatib A, Mukhtar S, Alsharif MA, Parveen H, Zakaria ZA. 2022. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules. 27(4):1149. doi:https://doi.org/10.3390/molecules27041149.
- Singh S, Kaur I, Kariyat R. 2021. The multifunctional roles of Polyphenols in plant-herbivore interactions. International Journal of Molecular Sciences. 22(3):1442. doi:https://doi.org/10.2147%2FIDR.S375588.
- Smeriglio A, Barreca D, Bellocco E, Trombetta D. 2016. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. British Journal of Pharmacology. 174(11):1244–1262. doi:https://doi.org/10.1111/bph.13630.
- Toh SC, Lihan S, Bunya SR, Leong SS. 2023. In vitro antimicrobial efficacy of Cassia alata (Linn.) leaves, stem, and root extracts against cellulitis causative agent Staphylococcus aureus. BMC Complementary Medicine and Therapies. 23(1):85. doi:https://doi.org/10.1186/s12906-023-03914-z.
- Tuttle AR, Trahan ND, Son MS. 2021. Growth and maintenance of Escherichia coli laboratory strains. Current Protocols. 1(1):20. doi:https://doi.org/10.1002 /cpz1.20.
- Van Boeckel TP, Gandra S, Ashok A, Caudron Q, Grenfell BT, Levin SA, Laxminarayan R. 2014. Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases. 14(8):742–750. doi:https://doi.org/10.1016/s1473-3099(14)70780-7.
- Vaou N, Stavropoulou E, Voidarou C, Tsigalou C, Bezirtzoglou E. 2021. Towards advances in medicinal plant antimicrobial activity: A review study on challenges and future perspectives. Microorganisms. 9(10):1-28. doi:https://doi.org/10.3390%2Fmicroorganisms9102041
- Wink M. 2015. Modes of action of herbal medicines and plant secondary metabolites. Medicines. 2(3):251–286. doi:https://doi.org/10.3390/medicines2030251.
- Wintola O, Afolayan A. 2015. The antibacterial, phytochemicals and antioxidants evaluation of the root extracts of Hydnora africana Thunb. used as antidysenteric in Eastern Cape Province, South Africa. BMC Complementary and Alternative Medicine. 15(1):1-12. doi:https://doi.org/10.1186/s12906-015-0835-9.
- Xie Y, Yang W, Tang F, Chen X, Ren L. 2015. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Current medicinal chemistry. 22(1):132–49. doi:https://doi.org/10.2174/0929867321666140916113443
- Clinical and Laboratory Standards Institutes (CLSI). 2023. M100 Performance Standards for Antimicrobial Susceptibility Testing A CLSI supplement for global application. 33rd edition. Clinical and Laboratory Standards Institute.
- Feng W, Hao Z, Li M. 2017. Flavonoids- from biosynthesis to human health: Isolation and structure identification of flavonoids. 3rd edition. Intech Open.
- Gnanamani A, Hariharan P, Paul- Satyaseela M. 2017. Staphylococcus aureus: Overview of bacteriology, clinical diseases, epidemiology, antibiotic resistance and therapeutic approach. 1st edition. Intech Open.
- Hartline R. 2022. Bacterial Susceptibility to Antibiotics (Kirby-Bauer Test). Libre Text: Biology Libre Texts. https://bio.libretexts.org/Bookshelves/Microbiology/ Microbiology_Laboratory_Manual_(Hartline)/
- Kemnic TR, Coleman M. 2022. Trimethoprim Sulfamethoxazole. National library of medicine: Stat Pearls [Internet].
- Libre Texts. 2018 Jun 25. Kirby-bauer disc susceptibility test. Libre Texts: Biology Libre Texts.
- Shah B. 2019. Textbook of pharmacognosy and phytochemistry. 1st edition; 94, 374. Elsevier: Reed Elsevier India Private Limited.
- Taylor TA, Unakal CG. 2023. Staphylococcus Aureus Infection. National library of medicine: Stat Pearls [Internet]. https://www.ncbi.nlm.nih.gov/books/NBK441868/.
- Tenover FC. 2019. Antimicrobial Susceptibility Testing.166–175. 3rd edition. Elsevier. https://www.sciencedirect.com/science/article/abs/pii/B9780128012383024867?via%3Dihub
- Britannica. Anthraquinone- chemical compound. Britannica. [2024 Apr 28]. https://www.britannica.com/science/anthraquinone.
- Bogart J. 2018 Apr 26. Moisture content vs water activity: use both to optimize food safety and quality. Test Equipment and Measurement Instrument Blog. [2024 Jan 8]. https://blog.kett.com/bid/362219/moisture-content-vs-water-activity-use-both- to-optimize-food-safety-and-quality.
- Brocco S. 9042 Trimethoprim – Sulfamethoxazole TMP-SMX 25 µg. Liofilchem https://www.liofilchem.com/images/prodotti-evidenza/antibiotic-disc/CE-declaration-of-conformity_Discs.pdf.
- Clark C. 2020 Nov 18. Major review of plants’ role in antibacterial activity clears new paths for drug discovery.Emory University: Atlanta GA. [2024 May 1] https://news.emory.edu/stories/2020/11/esc_plants_drug_discovery_quave/ca mpus.html.
- Donayre D. 2020. Plant extracts versus a fungus, why lower concentrations are sometimes more effective than the higher concentrations? Research Gate. https://www.researchgate.net/post/Plant-extracts-versus-a-fungus-why-lower-concentrations-are-sometimes-more-effective-than-the-higher-concentrations
- Drew C. 2023. Positive Control vs Negative Control: Differences and Example. Helpful Professor. [2024 May 1]. https://helpfulprofessor.com/positive-control-vs-negative-control/.
- Gamo F, Njamen D, Wanda G. 2015. Medicinal plants of the family of fabaceae used to treat various ailments in fabaceae: classification, nutrient composition and health benefits. Research Gate. [2024 Jan 8]. https://www.researchgate.net/publication/279424707_Medicinal_Plants_of_the_Family_of_Fabaceae_used_to_Treat_Various_Ailments_in_Fabaceae_Classification_Nutrient_Composition_and_Health_Benefits
- Gandra S, Gelband H, Miller-Petrie M, Pant S. 2015. The State of the World’s Antibiotics. Research Gate. https://www.researchgate.net/publication/310439947_The_
State_of_the_World%27s_Antibiotics_2015.
- Hardy Diagnostics. 2023. How to perform serial dilutions and make microbial suspensions using McFarland Standards. Youtube. [accessed 2024 Mar 23]. https://www.youtube.com/watch?v=JlHZXogdowg.
- Kluger RH. 2019. Steroid | Definition, Structure, & Types | Britannica. In: Encyclopædia Britannica. https://www.britannica.com/science/steroid.
- Lab CE. 2024. Stock Solution Dilutions. Laboratory Continuing Education. [2024 Apr 25]. https://www.labce.com/spg939635_stock_solution_dilutions.aspx.
- Lab Mal Academy- Nutrient agar and nutrient broth: composition, preparation and differences. Lab Mal. [2024 Mar 24]. https://labmal.com/2019/08/13/nutrient-agar-and-nutrient-broth/.
- Nparks. 2022. Falcataria falcata (L.) Greuter & R. Rankin. Flora and Fauna Web. [2024 Apr 24]. https://www.nparks.gov.sg/florafaunaweb/flora/5/6/5620.
- Naturalis Biodiversity Center. 1986. Falcataria moluccana (Miq.) Barneby & J.W.Grimes. Global Biodiversity Information Facility. [2024 Apr 28]. https://www.gbif.org/occurrence/2514155536#occurrencePage_media.
- Oklestkova J. 2020. Plant Steroids. International Journal of Molecular Sciences. Molecular Plant Sciences. https://www.mdpi.com/journal/ijms/special_issues/Plant_Steroids.
- Panezai M. 2018. How to calculate extraction yield? Research Gate. [2024 Apr 24]. https://www.researchgate.net/post/How_to_calculate_extraction_yield.
- Prasad M. 2023. Paraserianthes falcataria – Southeast Asia’s Growth Champion. Winrock International. [accessed 2024 Mar 12]. https://winrock.org/paraserianthes-falcataria-southeast-asias-growth-champion
- Spacey J. 2023. Negative Control vs Positive Control. Simplicable. https://simplicable.com/science/negative-control-vs-positive-control
- Stuart G. 2022. Philippine Medicinal Plants: Falcata (Falcataria falcata L.). Stuart Xchange. [2023 Dec 8] http://www.stuartxchange.org/Falcata.
- Werth B. 2022. Trimethoprim and Sulfamethoxazole Infectious diseases. MSD manual. [2024 May 4]. https://www.msdmanuals.com/professional/infectious-diseases/bacteria-and-a ntibacterial-drugs/trimethoprim-and-sulfamethoxazole.
The Potential Alternative Antibacterial Activity Of Falcata (Falcataria falcata) Leaf Methanolic Extract Against
Staphylococcus aureus And Escherichia coli
Laliefe B. Arnan; Katherine Joy S. Escueta; Nor Rashida P. Rashid; Elyca M. Tacbobo; Queenie Rose M. Tinoy
Degree: Bachelor of Science in Pharmacy
Thesis Adviser: Junnin Gay L. Garay, RPh, CPh, MS Pharm
Falcata is a plant that can be found in the Philippines and is used for the production of wood veneer and plywood.
While in Indonesia, it is used as traditional remedy for malaria (Budiarti et al. 2020). They belong to the Fabaceae family, a
family known for having great antibacterial effects (Gamo et al. 2015). This study used a percolation extraction method and
the percentage yield is calculated to determine the yield from the falcata extract. Disc diffusion method is used for
susceptibility testing and determining the zone of inhibition for the different groups. The CLSI guidelines for Staphylococcus
aureus and Escherichia coli will be used to determine the antibacterial effect of the extract, in terms of resistance,
intermediate, and susceptible results.
From the results, the percentage yield of the methanolic crude leaf extract of Falcataria falcata is 2.67%. Leaves from
the Falcataria falcata plant were extracted and tested against bacteria. The extracts showed promise in inhibiting the growth
of Staphylococcus aureus and Escherichia coli bacteria, with 75% concentration as being more effective. However, these
bacteria showed some resistance to all extract concentrations: S. aureus (90% - resistant, 75% - intermediate, 50% -
resistant, 25% - resistant); E. coli (90% - resistant, 75% - resistant, 50% - resistant, 25% - resistant). Further study is needed
to determine the exact antibacterial properties of the plant.
Keywords :
Falcataria Falcata, Antibacterial, Leaves, Methanolic Crude Leaf Extract, Disc Diffusion Method, Susceptibility Testing, Fabaceae Family, Staphylococcus Aureus, Escherichia Coli, Percentage Yield.