Authors :
Ramazanov Asror Khamroevich
Volume/Issue :
Volume 9 - 2024, Issue 12 - December
Google Scholar :
https://tinyurl.com/46jr94df
Scribd :
https://tinyurl.com/ythufwes
DOI :
https://doi.org/10.5281/zenodo.14631782
Abstract :
In the article, the rapid development of
computer technology has significantly transformed
various fields of science, including nuclear energy. In the
study of nuclear processes, computer programs offer
powerful tools for simulating, modeling, and analyzing
complex phenomena that are otherwise difficult or
impossible to observe directly. This paper explores the
various applications of computational techniques in
nuclear energy research, highlighting their role in the
design, optimization, and safety analysis of nuclear
reactors, as well as in the understanding of nuclear
reactions and radiation interactions. Key technologies
such as Monte Carlo simulations, finite element analysis,
and molecular dynamics are utilized to investigate
particle behavior, energy transfer, and material
properties under extreme conditions. Additionally,
computer programs aid in predicting reactor
performance, managing waste disposal, and ensuring
compliance with safety standards. The integration of
artificial intelligence and machine learning further
enhances the accuracy and efficiency of nuclear process
studies. As the complexity of nuclear systems continues
to grow, the use of advanced computational tools will be
essential in driving innovation, improving safety, and
ensuring the sustainable development of nuclear energy.
Keywords :
Simulation, Modeling, Monte Carlo Methods, Finite Element Analysis (FEA), Data Analysis, Visualization, Machine Learning, Predictive Maintenance, Control Systems, Real-Time Monitoring, Nuclear Safety, Risk Assessment, Emergency Response, Interactive Learning, Virtual Labs, Reactor Design, Material Science, Computational Physics, Neutron Transport, Fuel Optimization.
References :
- Mitrofanov K.G., Zaitseva O.V. (2009). Application of innovative computer technology in the field of education: basic aspects and trends // Vestnik, issue 10(88), p.64-68.
- Мастропас З.П., Синдеев Ю.Г. Физика: Методика и практика преподавания. Р-нД: Феникс, 2002. С 11-32.
- A.Kh.Ramazanov, S.R.Polvonov, E.Kh.Bozorov. Oliy ta`lim muassasаlarida “yadro energetikasi” mavzusini o`qitishda interfaol usullardan foydalanish uslublari. O‘zMU xabarlari, 2022, [3/2], Pp. 487-489.
- Briesmeister, J. F. (Ed.). (2013). *Monte Carlo methods in nuclear engineering*. American Nuclear Society.
- Qo’chqarov X.O., Yusupov D.A Fundamental fanlarni o’qitish samaradorligini oshirishning dolzarb muammolari va yechimlari : Academic Research in Educational Sciences. Volume 2. Uzbekistan 2021. p. 448-455.
- Chen, L., Zhang, Y., Lee, T. H. (2019). Real-time monitoring and control of nuclear reactors. *IEEE Transactions on Nuclear Science*, 66(4), 1234-1241. https://doi.org/10.1109/TNS.2019.2901234
- O'Connor, M. J., Smith, J. R., Doe, A. B. (2018). Innovations in reactor design using computational tools. In *Proceedings of the American Nuclear Society Annual Meeting* (pp. 123-130). American Nuclear Society.
- U.S. Nuclear Regulatory Commission. (n.d.). Research reports on nuclear safety and technology. Retrieved from https://www.nrc.gov/reading-rm/doc-collections/nuregs
- Zhang, Y., Chen, L., Lee, T. H. (2020). Machine learning applications in nuclear engineering. *Nuclear Technology*, 206(1), 1-12. https://doi.org/10.1080/00295450.2020.1801234
- International Atomic Energy Agency. (2021). *Computer applications in nuclear energy*. Vienna: IAEA Publications. Retrieved from https://www.iaea.org/publications
- Mitrofanov K.G., Zaitseva O.V. (2009). Application of innovative computer technology in the field of education: basic aspects and trends // Vestnik, issue 10(88), p.64-68.
- Кудряков Н.Н. Опыт постановки учебных задач по математическому моделированию динамики ЯЭУ // Безопасность АЭС и подготовка кадров. Х Международная конференция: Тезисы докладов (Обнинск, 1-4 октября 2007 г.). Часть 1. – Обнинск: ИАТЭ, 2007. – С. 61–62.
- Тихоненко А.В. Компьютерные математические и визуальные технологии в организации учебного процесса специалистов ядерно-физического профиля // XIII Международная конференция «Безопасность АЭС и подготовка кадров». – Обнинск: ИАТЭ, 2013 – С. 216–219.
- Белозеров В.И., Сергеев В.В., Казанцев А.А., Поздняков А.Н., Канышев М.Ю. Нейтронно-физическая и теплогидравлическая модель ВВЭР-1000 для обучения персонала // Известия вузов. Ядерная энергетика. – №2. – 2008. – С. 99–106.
- Кирьянов Д.В. Mathcad 13 в подлиннике. – СПб.: БХВ – Петербург, 2005. – 608 с. 78. Кириллов П.Л., Богословская Г.П. Тепломассообмен в ядерных энергетических установках. – М.: Энергоатомиздат, 2000. – 456 с.
- Семенов В.К., Вольман М.А. Обоснование математической модели теплообмена для реактора с сосредоточенными параметрами // Глобальная ядерная безопасность. – №4(17). – 2015. – С. 35–42.
In the article, the rapid development of
computer technology has significantly transformed
various fields of science, including nuclear energy. In the
study of nuclear processes, computer programs offer
powerful tools for simulating, modeling, and analyzing
complex phenomena that are otherwise difficult or
impossible to observe directly. This paper explores the
various applications of computational techniques in
nuclear energy research, highlighting their role in the
design, optimization, and safety analysis of nuclear
reactors, as well as in the understanding of nuclear
reactions and radiation interactions. Key technologies
such as Monte Carlo simulations, finite element analysis,
and molecular dynamics are utilized to investigate
particle behavior, energy transfer, and material
properties under extreme conditions. Additionally,
computer programs aid in predicting reactor
performance, managing waste disposal, and ensuring
compliance with safety standards. The integration of
artificial intelligence and machine learning further
enhances the accuracy and efficiency of nuclear process
studies. As the complexity of nuclear systems continues
to grow, the use of advanced computational tools will be
essential in driving innovation, improving safety, and
ensuring the sustainable development of nuclear energy.
Keywords :
Simulation, Modeling, Monte Carlo Methods, Finite Element Analysis (FEA), Data Analysis, Visualization, Machine Learning, Predictive Maintenance, Control Systems, Real-Time Monitoring, Nuclear Safety, Risk Assessment, Emergency Response, Interactive Learning, Virtual Labs, Reactor Design, Material Science, Computational Physics, Neutron Transport, Fuel Optimization.