The Possibilities of Using Computer Programmes in the Study of Nuclear Processes in the Science of Nuclear Power Engineering


Authors : Ramazanov Asror Khamroevich

Volume/Issue : Volume 9 - 2024, Issue 12 - December

Google Scholar : https://tinyurl.com/46jr94df

Scribd : https://tinyurl.com/ythufwes

DOI : https://doi.org/10.5281/zenodo.14631782

Abstract : In the article, the rapid development of computer technology has significantly transformed various fields of science, including nuclear energy. In the study of nuclear processes, computer programs offer powerful tools for simulating, modeling, and analyzing complex phenomena that are otherwise difficult or impossible to observe directly. This paper explores the various applications of computational techniques in nuclear energy research, highlighting their role in the design, optimization, and safety analysis of nuclear reactors, as well as in the understanding of nuclear reactions and radiation interactions. Key technologies such as Monte Carlo simulations, finite element analysis, and molecular dynamics are utilized to investigate particle behavior, energy transfer, and material properties under extreme conditions. Additionally, computer programs aid in predicting reactor performance, managing waste disposal, and ensuring compliance with safety standards. The integration of artificial intelligence and machine learning further enhances the accuracy and efficiency of nuclear process studies. As the complexity of nuclear systems continues to grow, the use of advanced computational tools will be essential in driving innovation, improving safety, and ensuring the sustainable development of nuclear energy.

Keywords : Simulation, Modeling, Monte Carlo Methods, Finite Element Analysis (FEA), Data Analysis, Visualization, Machine Learning, Predictive Maintenance, Control Systems, Real-Time Monitoring, Nuclear Safety, Risk Assessment, Emergency Response, Interactive Learning, Virtual Labs, Reactor Design, Material Science, Computational Physics, Neutron Transport, Fuel Optimization.

References :

  1. Mitrofanov K.G., Zaitseva O.V. (2009). Application of innovative computer technology in the field of education: basic aspects and trends // Vestnik, issue 10(88), p.64-68.
  2. Мастропас З.П., Синдеев Ю.Г. Физика: Методика и практика преподавания. Р-нД: Феникс, 2002. С 11-32.
  3. A.Kh.Ramazanov, S.R.Polvonov, E.Kh.Bozorov. Oliy ta`lim muassasаlarida “yadro energetikasi” mavzusini  o`qitishda interfaol usullardan foydalanish uslublari. O‘zMU xabarlari, 2022, [3/2], Pp. 487-489.
  4. Briesmeister, J. F. (Ed.). (2013). *Monte Carlo methods in nuclear engineering*. American Nuclear Society.
  5. Qo’chqarov X.O., Yusupov D.A Fundamental fanlarni o’qitish samaradorligini oshirishning dolzarb muammolari va yechimlari : Academic Research in Educational Sciences. Volume 2. Uzbekistan 2021. p. 448-455.
  6. Chen, L., Zhang, Y.,  Lee, T. H. (2019). Real-time monitoring and control of nuclear reactors. *IEEE Transactions on Nuclear Science*, 66(4), 1234-1241. https://doi.org/10.1109/TNS.2019.2901234
  7. O'Connor, M. J., Smith, J. R.,  Doe, A. B. (2018). Innovations in reactor design using computational tools. In *Proceedings of the American Nuclear Society Annual Meeting* (pp. 123-130). American Nuclear Society.
  8. U.S. Nuclear Regulatory Commission. (n.d.). Research reports on nuclear safety and technology. Retrieved from https://www.nrc.gov/reading-rm/doc-collections/nuregs
  9. Zhang, Y., Chen, L.,  Lee, T. H. (2020). Machine learning applications in nuclear engineering. *Nuclear Technology*, 206(1), 1-12. https://doi.org/10.1080/00295450.2020.1801234
  10. International Atomic Energy Agency. (2021). *Computer applications in nuclear energy*. Vienna: IAEA Publications. Retrieved from https://www.iaea.org/publications
  11. Mitrofanov K.G., Zaitseva O.V. (2009). Application of innovative computer technology in the field of education: basic aspects and trends // Vestnik, issue 10(88), p.64-68.
  12. Кудряков Н.Н. Опыт постановки учебных задач по математическому моделированию динамики ЯЭУ // Безопасность АЭС и подготовка кадров. Х Международная конференция: Тезисы докладов (Обнинск, 1-4 октября 2007 г.). Часть 1. – Обнинск: ИАТЭ, 2007. – С. 61–62.
  13. Тихоненко А.В. Компьютерные математические и визуальные технологии в организации учебного процесса специалистов ядерно-физического профиля // XIII Международная конференция «Безопасность АЭС и подготовка кадров». – Обнинск: ИАТЭ, 2013 – С. 216–219.
  14. Белозеров В.И., Сергеев В.В., Казанцев А.А., Поздняков А.Н., Канышев М.Ю. Нейтронно-физическая и теплогидравлическая модель ВВЭР-1000 для обучения персонала // Известия вузов. Ядерная энергетика. – №2. – 2008. – С. 99–106.
  15. Кирьянов Д.В. Mathcad 13 в подлиннике. – СПб.: БХВ – Петербург, 2005. – 608 с. 78. Кириллов П.Л., Богословская Г.П. Тепломассообмен в ядерных энергетических установках. – М.: Энергоатомиздат, 2000. – 456 с.
  16. Семенов В.К., Вольман М.А. Обоснование математической модели теплообмена для реактора с сосредоточенными параметрами // Глобальная ядерная безопасность. – №4(17). – 2015. – С. 35–42.

In the article, the rapid development of computer technology has significantly transformed various fields of science, including nuclear energy. In the study of nuclear processes, computer programs offer powerful tools for simulating, modeling, and analyzing complex phenomena that are otherwise difficult or impossible to observe directly. This paper explores the various applications of computational techniques in nuclear energy research, highlighting their role in the design, optimization, and safety analysis of nuclear reactors, as well as in the understanding of nuclear reactions and radiation interactions. Key technologies such as Monte Carlo simulations, finite element analysis, and molecular dynamics are utilized to investigate particle behavior, energy transfer, and material properties under extreme conditions. Additionally, computer programs aid in predicting reactor performance, managing waste disposal, and ensuring compliance with safety standards. The integration of artificial intelligence and machine learning further enhances the accuracy and efficiency of nuclear process studies. As the complexity of nuclear systems continues to grow, the use of advanced computational tools will be essential in driving innovation, improving safety, and ensuring the sustainable development of nuclear energy.

Keywords : Simulation, Modeling, Monte Carlo Methods, Finite Element Analysis (FEA), Data Analysis, Visualization, Machine Learning, Predictive Maintenance, Control Systems, Real-Time Monitoring, Nuclear Safety, Risk Assessment, Emergency Response, Interactive Learning, Virtual Labs, Reactor Design, Material Science, Computational Physics, Neutron Transport, Fuel Optimization.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe