The Impact of Artificial Intelligence on Radiology: Opportunities, Challenges, and Future Directions


Authors : Dr. Cymone E. Hamilton

Volume/Issue : Volume 9 - 2024, Issue 8 - August


Google Scholar : https://tinyurl.com/452y9w2h

Scribd : https://tinyurl.com/3jjpmvp8

DOI : https://doi.org/10.38124/ijisrt/IJISRT24AUG1512

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : This paper explores the transformative impact of Artificial Intelligence (AI) on the field of radiology. It examines the integration of AI in diagnostic imaging, its potential benefits in enhancing diagnostic accuracy, efficiency, and workflow, and the challenges associated with its implementation. The discussion also highlights future directions for AI in radiology and the implications for radiologists.

References :

  1. Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. Nat Med. 2019;25(1):44-56. doi:10.1038/s41591-018-0300-7.
  2. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380(14):1347-1358. doi:10.1056/NEJMra1814259.
  3. Liu Y, Weissman J, Arnon A, et al. Artificial intelligence for radiology: Current applications and future directions. Radiology. 2021;298(1):1-13. doi:10.1148/radiol.2020202754.
  4. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94. doi:10.1038/s41586-019-1799-6.
  5. Tanno R, Nakamura T, Saito Y, et al. The impact of artificial intelligence on the radiology workforce: A review. J Digit Imaging. 2021;34(4):750-758. doi:10.1007/s10278-021-00430-7.
  6. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-444. doi:10.1038/nature14539.
  7. Rajpurkar P, Irvin J, Zhu K, et al. CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv. 2017;1711.05225. Available at: https://arxiv.org/abs/1711.05225. Accessed August 23, 2024.
  8. Yang G, Zhang H, Wang S, et al. Deep learning for medical image analysis: A survey. Med Image Anal. 2020;64:101742. doi:10.1016/j.media.2020.101742.
  9. Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542(7639):115-118. doi:10.1038/nature21056.
  10. Shen D, Wu G, Suk H-I. Deep learning in medical image analysis. Annu Rev Biomed Eng. 2017;19:221-248. doi:10.1146/annurev-bioeng-071516-044442.
  11. Xu J, Zhang Y, Huang H, et al. Automated reporting in radiology: Current applications and future directions. Radiol Clin North Am. 2021;59(4):677-690. doi:10.1016/j.rcl.2021.03.002.
  12. Irvin J, Rajpurkar P, Ko M, et al. CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. arXiv. 2019;1901.07031. Available at: https://arxiv.org/abs/1901.07031. Accessed August 23, 2024.
  13. McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94. doi:10.1038/s41586-019-1799-6.
  14. Ghafoor U, Pustokhina I, Park H, et al. AI for detecting lung cancer in CT scans: Systematic review and meta-analysis. J Med Imaging (Bellingham). 2022;9(2):021206. doi:10.1117/1.JMI.9.2.021206.
  15. Choi J, Lee J, Yoo H, et al. The impact of AI on radiology workflow and patient care: A review. J Digit Imaging. 2021;34(3):559-566. doi:10.1007/s10278-021-00423-6.
  16. Blaschko MB, Costa J, Hwang T, et al. The role of AI in streamlining radiology workflows. Eur J Radiol. 2021;140:109747. doi:10.1016/j.ejrad.2021.109747.
  17. Ribli D, Horváth A, Unger Z, et al. Detecting and classifying lesions in mammograms with deep learning. Sci Rep. 2018;8(1):4165. doi:10.1038/s41598-018-22549-3.
  18. Zhang J, Wu X, Zhang H, et al. Standardization of AI tools in radiology: Current status and future prospects. J Am Coll Radiol. 2023;20(5):748-755. doi:10.1016/j.jacr.2022.12.032.
  19. Culp MD, Siewert B, Ruan X, et al. Barriers to AI adoption in radiology: A systematic review. J Am Coll Radiol. 2021;18(6):872-878. doi:10.1016/j.jacr.2021.01.033.
  20. Williams C, Braun M, Harvey H. Integrating AI tools into clinical workflows: Strategies and challenges. Health Inform J. 2022;28(1):57-69. doi:10.1177/14604582211057000.
  21. Hoebel J, Giacalone S. Data privacy and security in AI-powered radiology systems. J Digit Imaging. 2022;35(2):312-319. doi:10.1007/s10278-021-00465-8.
  22. Liu J, Xu H, Zhang R. Addressing data privacy concerns in AI applications: A review. IEEE Access. 2021;9:98251-98263. doi:10.1109/ACCESS.2021.3096810.
  23. Singh H, Meyer AN, Thomas EJ. The regulatory landscape of AI in radiology: Challenges and opportunities. J Am Med Inform Assoc. 2021;28(6):1315-1322. doi:10.1093/jamia/ocaa163.
  24. Binns R, Veale M, Shadbolt N. 'Third wave' AI ethics: The challenge of black box algorithms in medicine. Med Health Care Philos. 2022;25(3):289-298. doi:10.1007/s11019-021-10062-3.
  25. Yang Y, Zhang W, Li J, et al. The impact of artificial intelligence on radiologist jobs: A review. Eur Radiol. 2022;32(4):2753-2762. doi:10.1007/s00330-021-08122-0.
  26. Choi J, Hwang TJ, Lee H, et al. Future roles of radiologists in the era of AI: A review. J Digit Imaging. 2023;36(1):43-50. doi:10.1007/s10278-022-00615-5.
  27. Attia ZI, Kapa S, Yao X, et al. Advanced AI algorithms in cardiac imaging: Current state and future directions. Circulation. 2022;146(10):798-810. doi:10.1161/CIRCULATIONAHA.122.058226.
  28. Bristow D, MacDonald K, Pereira J, et al. Predictive analytics and AI in personalized medicine: Future trends and challenges. J Pers Med. 2023;13(2):242. doi:10.3390/jpm13020242.
  29. Anderson H, Rubin D, Johnson A. Enhancing radiology diagnostics through AI-human collaboration. Radiol Clin North Am. 2022;60(4):615-627. doi:10.1016/j.rcl.2022.03.007.
  30. Kerr S, Saito M, Rowe P. Radiologists and AI: A collaborative future. Health Aff (Millwood). 2023;42(1):98-105. doi:10.1377/hlthaff.2022.00592.
  31. Patel V, Kumar R, Bui A. Integrating AI education into radiology residency programs: A roadmap. Acad Radiol. 2022;29(7):1087-1094. doi:10.1016/j.acra.2022.01.002.
  32. Cohen M, Evans T, Jaffray D. Training the next generation of radiologists in the AI era: Educational strategies and tools. J Am Coll Radiol. 2023;20(4):623-629. doi:10.1016/j.jacr.2023.01.025.

This paper explores the transformative impact of Artificial Intelligence (AI) on the field of radiology. It examines the integration of AI in diagnostic imaging, its potential benefits in enhancing diagnostic accuracy, efficiency, and workflow, and the challenges associated with its implementation. The discussion also highlights future directions for AI in radiology and the implications for radiologists.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe