Technological Innovations in Osteoporosis Diagnosis and their Implications for Bone Metastases Management in Oncology


Authors : David Oche Idoko; Moyosoore Mopelola Adegbaju; Abdulrahman Abdullateef; Nduka Ijeoma

Volume/Issue : Volume 9 - 2024, Issue 12 - December

Google Scholar : https://tinyurl.com/4v32trfv

Scribd : https://tinyurl.com/t2bxd3ft

DOI : https://doi.org/10.5281/zenodo.14561303

Abstract : Advances in technology are revolutionizing osteoporosis diagnosis, with significant implications for managing bone metastases in oncology. This review examines cutting-edge diagnostic innovations, including high-resolution imaging techniques like peripheral quantitative computed tomography (HR-pQCT), and their role in detecting subtle changes in bone microarchitecture. It highlights the integration of artificial intelligence (AI) and machine learning for improving diagnostic precision, particularly in distinguishing between osteoporotic fractures and cancer- induced bone damage. Furthermore, the paper explores the intersection of osteoporosis and oncology, focusing on how emerging technologies can facilitate early detection of metastatic bone disease, enhance treatment planning, and improve patient outcomes. By bridging the fields of osteoporosis diagnosis and oncology, this study emphasizes the need for interdisciplinary approaches to address shared challenges in bone health. Future directions for research and clinical applications are also discussed, paving the way for innovations that could transform patient care in both domains.

References :

  1. Adeniyi, M.  Ayoola, V. B., Samuel, T. E., & Awosan, W. (2024). Artificial Intelligence-Driven Wearable Electronics and Smart Nanodevices for Continuous Cancer Monitoring and Enhanced Diagnostic Accuracy. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 3, Issue 11, 2024.
  2. Anyebe, A. P., Yeboah, O. K. K., Bakinson, O. I., Adeyinka, T. Y., & Okafor, F. C. (2024). Optimizing Carbon Capture Efficiency through AI-Driven Process Automation for Enhancing Predictive Maintenance and CO2 Sequestration in Oil and Gas Facilities. American Journal of Environment and Climate, 3(3), 44–58.
  3. Asgharzadeh, P., Röhrle, O., Willie, B. M., & Birkhold, A. I. (2020). Decoding rejuvenating effects of mechanical loading on skeletal aging using in vivo μCT imaging and deep learning. Acta Biomaterialia, 106, 193-207.
  4. Ayoola, V. B., Audu, B. A., Boms, J. C., Ifoga, S. M., Mbanugo, O. J., & Ugochukwu, U. N.  (2024). Integrating Industrial Hygiene in Hospice and Home Based Palliative Care to Enhance Quality of Life for Respiratory and Immunocompromised Patients. NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880.
  5. Ayoola, V. B., Ugochukwu, U. N.,  Adeleke, I., Michael, C. I. Adewoye, M. B., & Adeyeye, Y. (2024). Generative AI-Driven Fraud Detection in Health Care Enhancing Data Loss Prevention and Cybersecurity Analytics for Real-Time Protection of Patient Records. International Journal of Scientific Research and Modern Technology (IJSRMT), Volume 3, Issue 11, 2024.
  6. Baldessari, C., Pipitone, S., Molinaro, E., Cerma, K., Fanelli, M., Nasso, C., ... & Sabbatini, R. (2023). Bone metastases and health in prostate cancer: from pathophysiology to clinical implications. Cancers, 15(5), 1518.
  7. Batra, A. M., & Reche, A. (2023). A new era of dental care: harnessing artificial intelligence for better diagnosis and treatment. Cureus, 15(11).
  8. Baur, A., Huber, A., Ertl-Wagner, B., Dürr, R., Zysk, S., Arbogast, S., ... & Reiser, M. (2001). Diagnostic value of increased diffusion weighting of a steady-state free precession sequence for differentiating acute benign osteoporotic fractures from pathologic vertebral compression fractures. American journal of neuroradiology, 22(2), 366-372.
  9. Blake, G. M., & Fogelman, I. (1997, July). Technical principles of dual energy x-ray absorptiometry. In Seminars in nuclear medicine (Vol. 27, No. 3, pp. 210-228). WB Saunders.
  10. Blake, G. M., & Fogelman, I. (2008). How important are BMD accuracy errors for the clinical interpretation of DXA scans?. Journal of Bone and Mineral Research, 23(4), 457-462.
  11. Bowers, B. L., Drew, A. M., & Verry, C. (2018). Impact of pharmacist-physician collaboration on osteoporosis treatment rates. Annals of Pharmacotherapy, 52(9), 876-883.
  12. Brodowicz, T., Hadji, P., Niepel, D., & Diel, I. (2017). Early identification and intervention matters: a comprehensive review of current evidence and recommendations for the monitoring of bone health in patients with cancer. Cancer treatment reviews, 61, 23-34.
  13. Brodowicz, T., Hadji, P., Niepel, D., & Diel, I. (2017). Early identification and intervention matters: a comprehensive review of current evidence and recommendations for the monitoring of bone health in patients with cancer. Cancer treatment reviews, 61, 23-34.
  14. Brown, J. P., Don-Wauchope, A., Douville, P., Albert, C., & Vasikaran, S. D. (2022). Current use of bone turnover markers in the management of osteoporosis. Clinical biochemistry, 109, 1-10.
  15. Bussell, M. E. (2021). Improving bone health: addressing the burden through an integrated approach. Aging Clinical and Experimental Research, 33(10), 2777-2786.
  16. Carducci, M. A., & Carroll, P. R. (2005). Multidisciplinary management of advanced prostate cancer: changing perspectives on referring patients and enhancing collaboration between oncologists and urologists in clinical trials. Urology, 65(5), 18-22.
  17. Cavalier, E., Bergmann, P., Bruyère, O., Delanaye, P., Durnez, A., Devogelaer, J. P., ... & Body, J. J. (2016). The role of biochemical of bone turnover markers in osteoporosis and metabolic bone disease: a consensus paper of the Belgian Bone Club. Osteoporosis International, 27, 2181-2195.
  18. Cleverland Clinic. (2023). Osteoporosis
  19. Cleverland Clinic. (2024). Bone Metastasis
  20. Coleman, R. E., Brown, J., & Holen, I. (2020). Bone metastases. Abeloff's clinical oncology, 809-830.
  21. Coleman, R., Body, J. J., Aapro, M., Hadji, P., Herrstedt, J., & ESMO Guidelines Working Group. (2014). Bone health in cancer patients: ESMO Clinical Practice Guidelines. Annals of oncology, 25, iii124-iii137.
  22. Costa, L., Badia, X., Chow, E., Lipton, A., & Wardley, A. (2008). Impact of skeletal complications on patients’ quality of life, mobility, and functional independence. Supportive Care in Cancer, 16, 879-889.
  23. Damron, T. A., & Mann, K. A. (2020). Fracture risk assessment and clinical decision making for patients with metastatic bone disease. Journal of Orthopaedic Research®, 38(6), 1175-1190.
  24. de Sire, A., Gallelli, L., Marotta, N., Lippi, L., Fusco, N., Calafiore, D., ... & Invernizzi, M. (2022). Vitamin D deficiency in women with breast cancer: A correlation with osteoporosis? A machine learning approach with multiple factor analysis. Nutrients, 14(8), 1586.
  25. Desneves, K. J., & Ward, L. C. (2022). Body composition and spinal cord injury. In Cellular, Molecular, Physiological, and Behavioral Aspects of Spinal Cord Injury.
  26. Di Donna, A., Masala, S., Muto, G., Marcia, S., Giordano, F., & Muto, M. (2024, October). Metabolic Bone Diseases: Recommendations for Interventional Radiology. In Seminars in Musculoskeletal Radiology (Vol. 28, No. 05, pp. 641-650). Thieme Medical Publishers, Inc..
  27. Dimitri, P. (2019). The impact of childhood obesity on skeletal health and development. Journal of Obesity & Metabolic Syndrome, 28, 4-17..
  28. Enyejo,  J. O.,  Obani, O. Q,  Afolabi, O.  Igba, E. &  Ibokette, A. I., (2024). Effect of Augmented Reality (AR) and Virtual Reality (VR) experiences on customer engagement and purchase behavior in retail stores. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 132–150.
  29. Enyejo, L. A., Adewoye, M. B. & Ugochukwu, U. N. (2024). Interpreting Federated Learning (FL) Models on Edge Devices by Enhancing Model Explainability with Computational Geometry and Advanced Database Architectures. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. Vol. 10 No. 6 (2024): November-December
  30. Evenepoel, P., Cavalier, E., & D’Haese, P. C. (2017). Biomarkers predicting bone turnover in the setting of CKD. Current Osteoporosis Reports, 15, 178-186.
  31. Gallagher, J. C. (2018). Advances in osteoporosis from 1970 to 2018. Menopause, 25(12), 1403-1417.
  32. Griffin, L. M., Kalkwarf, H. J., Zemel, B. S., Shults, J., Wetzsteon, R. J., Strife, C. F., & Leonard, M. B. (2012). Assessment of dual-energy X-ray absorptiometry measures of bone health in pediatric chronic kidney disease. Pediatric nephrology, 27, 1139-1148.
  33. Guglielmi, G., Muscarella, S., & Bazzocchi, A. (2011). Integrated imaging approach to osteoporosis: state-of-the-art review and update. Radiographics, 31(5), 1343-1364.
  34. Guglielmi, G., Muscarella, S., & Bazzocchi, A. (2011). Integrated imaging approach to osteoporosis: state-of-the-art review and update. Radiographics, 31(5), 1343-1364.
  35. Idoko, D. O.,  Mbachu, O. E.,  Babalola, I. N. O.,  Erondu, O. F., Okereke, E. K., & P Alemoh, P. O. (2024). Exploring the impact of obesity and community health programs on enhancing endometrial cancer detection among low-income and native American women through a public health lens. International Journal of Frontiers in Medicine and Surgery Research, 2024, 06(02), 001–018.
  36. Idoko, D. O.,  Mbachu, O. E., Ijiga, A. C.,  Okereke, E. K., Erondu, O. F., & Nduka,  I. (2024).  Assessing the influence of dietary patterns on preeclampsia and obesity among pregnant women in the United States. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 08(01), 085–103.
  37. Idoko, D. O., Adenyi, M., Senejani, M. N., Erondu, O. F., & Adeyeye, Y. (2024). Nanoparticle-Assisted Cancer Imaging and Targeted Drug Delivery for Early-Stage Tumor Detection and Combined Diagnosis-Therapy Systems for Improved Cancer Management. International Journal of Innovative Science and Research Technology. Volume 9, Issue 11, November-2024. ISSN No:- 2456-2165.
  38. Idoko, D. O., Agaba, J. A.,  Nduka, I.,  Badu, S. G.,  Ijiga, A. C. & Okereke, E. K, (2024). The role of HSE risk assessments in mitigating occupational hazards and infectious disease spread: A public health review. Open Access Research Journal of Biology and Pharmacy, 2024, 11(02), 011–030.
  39. Idoko, D. O., Mbachu, O. E., Babalola, I. N. O., Erondu, O. F. Dada-Abidakun, O., Adeyeye, Y. (2024). Biostatistics for Predicting Health Disparities in Infectious Disease Outcomes, Using Real-world Evidence and Public Health Intervention Data.  OCT 2024 | IRE Journals | Volume 8 Issue 4 | ISSN: 2456-8880.
  40. Idoko, D. O., Mbachu, O. E., Ololade, I. N., Erondu, O. F., Dada-Abdakun,  O. & Alemoh, P. O. (2024). The Influence of Prenatal Vitamin Use and Community Health Programs on Reducing Teratogenic Medications Exposure and Improving Perinatal Nutrition among African American Adolescents with Limited Access to Healthcare. International Journal of Scientific Research and Modern Technology (IJSRMT)
  41. Ijiga, A. C., Abutu E. P., Idoko, P.  I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 2024, 11(01), 535–551.·
  42. jiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Umama, E. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 07(01), 048–063.
  43. Kazakia, G. J., & Majumdar, S. (2006). New imaging technologies in the diagnosis of osteoporosis. Reviews in Endocrine and Metabolic Disorders, 7, 67-74.
  44. Klose-Jensen, R., Tse, J. J., Keller, K. K., Barnabe, C., Burghardt, A. J., Finzel, S., ... & Manske, S. L. (2020). High-resolution peripheral quantitative computed tomography for bone evaluation in inflammatory rheumatic disease. Frontiers in medicine, 7, 337.
  45. Lee, K. H., Lee, R. W., Lee, K. H., Park, W., Kwon, S. R., & Lim, M. J. (2023). The Development and Validation of an AI Diagnostic Model for Sacroiliitis: A Deep-Learning Approach. Diagnostics, 13(24), 3643.
  46. Lewiecki, E. M., Bouchonville, M. F., Chafey, D. H., Bankhurst, A., & Arora, S. (2016). Bone Health ECHO: telementoring to improve osteoporosis care. Women’s Health, 12(1), 79-81.
  47. Lewiecki, E. M., Jackson, A., Lake, A. F., Carey, J. J., Belaya, Z., Melnichenko, G. A., & Rochelle, R. (2019). Bone Health TeleECHO: a force multiplier to improve the care of skeletal diseases in underserved communities. Current Osteoporosis Reports, 17, 474-482.
  48. Lindgren Belal, S., Sadik, M., Kaboteh, R., Enqvist, O., Ulén, J., Poulsen, M. H., Simonsen, J., Høilund-Carlsen, P. F., Edenbrandt, L., & Trägårdh, E. (2019). Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases. Pages 89-95.
  49. Liu, L., & Webster, T. J. (2016). In situ sensor advancements for osteoporosis prevention, diagnosis, and treatment. Current osteoporosis reports, 14, 386-395.
  50. Macedo, F., Ladeira, K., Pinho, F., Saraiva, N., Bonito, N., Pinto, L., & Gonçalves, F. (2017). Bone metastases: an overview. Oncology reviews, 11(1).
  51. Macedo, F., Ladeira, K., Pinho, F., Saraiva, N., Bonito, N., Pinto, L., & Gonçalves, F. (2017). Bone metastases: an overview. Oncology reviews, 11(1).
  52. MacNeil, J. A., & Boyd, S. K. (2007). Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Medical engineering & physics, 29(10), 1096-1105.
  53. Messina, C., Albano, D., Gitto, S., Tofanelli, L., Bazzocchi, A., Ulivieri, F. M., ... & Sconfienza, L. M. (2020). Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quantitative imaging in medicine and surgery, 10(8), 1687.
  54. Messina, C., Monaco, C. G., Ulivieri, F. M., Sardanelli, F., & Sconfienza, L. M. (2016). Dual-energy X-ray absorptiometry body composition in patients with secondary osteoporosis. European journal of radiology, 85(8), 1493-1498.
  55. Migliorini, F., Maffulli, N., Trivellas, A., Eschweiler, J., Tingart, M., & Driessen, A. (2020). Bone metastases: a comprehensive review of the literature. Molecular Biology Reports, 47, 6337-6345.
  56. Muehlematter, U. J., Mannil, M., Becker, A. S., Vokinger, K. N., Finkenstaedt, T., Osterhoff, G., ... & Guggenberger, R. (2019). Vertebral body insufficiency fractures: detection of vertebrae at risk on standard CT images using texture analysis and machine learning. European radiology, 29, 2207-2217.
  57. Naik, A., Kale, A. A., & Rajwade, J. M. (2024). Sensing the future: A review on emerging technologies for assessing and monitoring bone health. Biomaterials Advances, 214008.
  58. Naik, A., Kale, A. A., & Rajwade, J. M. (2024). Sensing the future: A review on emerging technologies for assessing and monitoring bone health. Biomaterials Advances, 214008.
  59. Naik, A., Kale, A. A., & Rajwade, J. M. (2024). Sensing the future: A review on emerging technologies for assessing and monitoring bone health. Biomaterials Advances, 214008.
  60. Oei, L., Koromani, F., Rivadeneira, F., Zillikens, M. C., & Oei, E. H. (2016). Quantitative imaging methods in osteoporosis. Quantitative imaging in medicine and surgery, 6(6), 680.
  61. Piccoli, A., Cannata, F., Strollo, R., Pedone, C., Leanza, G., Russo, F., ... & Napoli, N. (2020). Sclerostin regulation, microarchitecture, and advanced glycation end‐products in the bone of elderly women with type 2 diabetes. Journal of Bone and Mineral Research, 35(12), 2415-2422.
  62. Rani, S., Bandyopadhyay-Ghosh, S., Ghosh, S. B., & Liu, G. (2020). Advances in sensing technologies for monitoring of bone health. Biosensors, 10(4), 42.
  63. Riffel, R. M., Göbel, A., & Rachner, T. D. (2022, April). Bone Metastases: From mechanisms to treatment. In Seminars in oncology nursing (Vol. 38, No. 2, p. 151277). WB Saunders.
  64. Rodrigues, I. (2021). Bridging the gap between physical activity evidence and practice for older adults with osteoporosis and frailty.
  65. Shapiro, C. L., Van Poznak, C., Lacchetti, C., Kirshner, J., Eastell, R., Gagel, R., ... & Neuner, J. (2019). Management of osteoporosis in survivors of adult cancers with nonmetastatic disease: ASCO clinical practice guideline. Journal of Clinical Oncology, 37(31), 2916-2946.
  66. Shapiro, C. L., Van Poznak, C., Lacchetti, C., Kirshner, J., Eastell, R., Gagel, R., ... & Neuner, J. (2019). Management of osteoporosis in survivors of adult cancers with nonmetastatic disease: ASCO clinical practice guideline. Journal of Clinical Oncology, 37(31), 2916-2946.
  67. Skjødt, M. K., Frost, M., & Abrahamsen, B. (2019). Side effects of drugs for osteoporosis and metastatic bone disease. British journal of clinical pharmacology, 85(6), 1063-1071.
  68. von Moos, R., Costa, L., Ripamonti, C. I., Niepel, D., & Santini, D. (2017). Improving quality of life in patients with advanced cancer: targeting metastatic bone pain. European journal of cancer, 71, 80-94.
  69. Walker, M. S., Miller, P. J., Namjoshi, M., Houts, A. C., Stepanski, E. J., & Schwartzberg, L. S. (2013). Relationship between incidence of fracture and health-related quality-of-life in metastatic breast cancer patients with bone metastases. Journal of medical economics, 16(1), 179-189.
  70. Whittier, D. E., Boyd, S. K., Burghardt, A. J., Paccou, J., Ghasem-Zadeh, A., Chapurlat, R., ... & Bouxsein, M. L. (2020). Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography. Osteoporosis International, 31, 1607-1627.
  71. Yang, H. L., Liu, T., Wang, X. M., Xu, Y., & Deng, S. M. (2011). Diagnosis of bone metastases: a meta-analysis comparing 18 FDG PET, CT, MRI and bone scintigraphy. European radiology, 21, 2604-2617.
  72. Ye, C., & Leslie, W. D. (2023). Fracture risk and assessment in adults with cancer. Osteoporosis International, 34(3), 449-466.
  73. Zapata, D., Higgs, J., Wittholt, H., Chittimalli, K., Brooks, A. E., & Mulinti, P. (2022). Nanotechnology in the Diagnosis and Treatment of Osteomyelitis. Pharmaceutics, 14(8), 1563.

Advances in technology are revolutionizing osteoporosis diagnosis, with significant implications for managing bone metastases in oncology. This review examines cutting-edge diagnostic innovations, including high-resolution imaging techniques like peripheral quantitative computed tomography (HR-pQCT), and their role in detecting subtle changes in bone microarchitecture. It highlights the integration of artificial intelligence (AI) and machine learning for improving diagnostic precision, particularly in distinguishing between osteoporotic fractures and cancer- induced bone damage. Furthermore, the paper explores the intersection of osteoporosis and oncology, focusing on how emerging technologies can facilitate early detection of metastatic bone disease, enhance treatment planning, and improve patient outcomes. By bridging the fields of osteoporosis diagnosis and oncology, this study emphasizes the need for interdisciplinary approaches to address shared challenges in bone health. Future directions for research and clinical applications are also discussed, paving the way for innovations that could transform patient care in both domains.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe