Synthesis and Characterization of Triazine Derivatives as Important Heterocyclic Compounds and Study their Biological Activities


Authors : Thamer Abd Rehan; Akram sadeq; Ahmad Rahman Salih

Volume/Issue : Volume 9 - 2024, Issue 8 - August

Google Scholar : https://shorturl.at/ViZ4y

Scribd : https://shorturl.at/xkvef

DOI : https://doi.org/10.38124/ijisrt/IJISRT24AUG1311

Abstract : Reaction 0f (thioacetamide/ acetemide) with chloroacetyl chloride to produced N-acetyl-2-chloro (thiocetamide/acetamide), then subsequent reaction with thiosemicarbazide to form N-acetyl-2-(2-carbamothioyl hydrazinyl)thioacetamide/acetamide. Ring closure or Cyclization of these compounds in the presence of sodium hydroxide yield N-(3-mercapto-1,4-dihydro-1,2,4 -triazin-5-yl)ethanethioamide/acetamide. The aim of this contribution is synthesis wide range of triazin derivatives by using different methodologies. These new triazine derivatives will be confirmed by FT- IR, 1HNMR, 13CNMR spectra. Since this triazine ring are very important core in chemical structure of some therapeutic compounds, will be evaluated for biological activities against two types of bacteria and fungi.

Keywords : Heterocycle Compounds, Nitrogen-Containing Heterocycles, Triazine Derivatives, Biological Activities, Antibacterial Activity, Antifungi Activity.

References :

    1. Khoshneviszadeh, M., Ghahremani, M. H., Foroumadi, A., Miri, R., Firuzi, O., Madadkar-Sobhani, A., ... & Shafiee, A. (2013). Design, synthesis and biological evaluation of novel anti-cytokine 1, 2, 4-triazine derivatives. Bioorganic & medicinal chemistry, 21(21), 6708-6717.
    2. Kumar, R., Sirohi, T. S., Singh, H., Yadav, R., Roy, R. K., Chaudhary, A., & Pandeya, S. N. (2014). 1, 2, 4-triazine analogs as novel class of therapeutic agents. Mini-Rev. Med. Chem, 14, 168-207.
    3. Khoshneviszadeh, M., Ghahremani, M. H., Foroumadi, A., Miri, R., Firuzi, O., Madadkar-Sobhani, A., ... & Shafiee, A. (2013). Design, synthesis and biological evaluation of novel anti-cytokine 1, 2, 4-triazine derivatives. Bioorganic & medicinal chemistry, 21(21), 6708-6717.
    4. Singla, P., Luxami, V., & Paul, K. (2015). Triazine as a promising scaffold for its versatile biological behavior. European journal of medicinal chemistry, 102, 39-57.
    5. Marín-Ocampo, L., Veloza, L. A., Abonia, R., & Sepúlveda-Arias, J. C. (2019). Anti-inflammatory activity of triazine derivatives: A systematic review. European Journal of Medicinal Chemistry, 162, 435-447.
    6. Liu, H., Long, S., Rakesh, K. P., & Zha, G. F. (2020). Structure-activity relationships (SAR) of triazine derivatives: Promising antimicrobial agents. European journal of medicinal chemistry, 185, 111804.
    7. Ban, K., Duffy, S., Khakham, Y., Avery, V. M., Hughes, A., Montagnat, O., ... & Baell, J. B. (2010). 3-Alkylthio-1, 2, 4-triazine dimers with potent antimalarial activity. Bioorganic & medicinal chemistry letters, 20(20), 6024-6029.
    8. Melato, S., Prosperi, D., Coghi, P., Basilico, N., & Monti, D. (2008). A combinatorial approach to 2, 4, 6‐trisubstituted triazines with potent antimalarial activity: combining conventional synthesis and microwave‐assistance. ChemMedChem: Chemistry Enabling Drug Discovery, 3(6), 873-876.
    9. Menicagli, R., Samaritani, S., Signore, G., Vaglini, F., & Dalla Via, L. (2004). In vitro cytotoxic activities of 2-alkyl-4, 6-diheteroalkyl-1, 3, 5-triazines: new molecules in anticancer research. Journal of medicinal chemistry, 47(19), 4649-4652.
    10. Yaguchi, S. I., Fukui, Y., Koshimizu, I., Yoshimi, H., Matsuno, T., Gouda, H., ... & Yamori, T. (2006). Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. Journal of the National Cancer Institute, 98(8), 545-556.
    11. Xiong, Y. Z., Chen, F. E., Balzarini, J., De Clercq, E., & Pannecouque, C. (2008). Non-nucleoside HIV-1 reverse transcriptase inhibitors. Part 11: structural modulations of diaryltriazines with potent anti-HIV activity. European Journal of Medicinal Chemistry, 43(6), 1230-1236.
    1. Ashour, H. M., Shaaban, O. G., Rizk, O. H., & El-Ashmawy, I. M. (2013). Synthesis and biological evaluation of thieno [2′, 3′: 4, 5] pyrimido [1, 2-b][1, 2, 4] triazines and thieno [2, 3-d][1, 2, 4] triazolo [1, 5-a] pyrimidines as anti-inflammatory and analgesic agents. European journal of medicinal chemistry, 62, 341-351.
    2. Hynes Jr, J., Dyckman, A. J., Lin, S., Wrobleski, S. T., Wu, H., Gillooly, K. M., ... & Leftheris, K. (2008). Design, synthesis, and anti-inflammatory properties of orally active 4-(phenylamino)-pyrrolo [2, 1-f][1, 2, 4] triazine p38α mitogen-activated protein kinase Inhibitors. Journal of medicinal chemistry, 51(1), 4-16.
    3. Diana, P., Barraja, P., Lauria, A., Montalbano, A., Almerico, A. M., Dattolo, G., & Cirrincione, G. (2002). Pyrrolo [2, 1-c][1, 2, 4] triazines from 2-diazopyrroles: synthesis and antiproliferative activity. European journal of medicinal chemistry, 37(3), 267-272.
    4. Krauth, F., Dahse, H. M., Rüttinger, H. H., & Frohberg, P. (2010). Synthesis and characterization of novel 1, 2, 4-triazine derivatives with antiproliferative activity. Bioorganic & Medicinal Chemistry, 18(5), 1816-1821.
    5. Sztanke, K., Markowski, W., Świeboda, R., & Polak, B. (2010). Lipophilicity of novel antitumour and analgesic active 8-aryl-2, 6, 7, 8-tetrahydroimidazo [2, 1-c][1, 2, 4] triazine-3, 4-dione derivatives determined by reversed-phase HPLC and computational methods. European journal of medicinal chemistry, 45(6), 2644-2649.
    6. Sztanke, K., Pasternak, K., Rzymowska, J., Sztanke, M., & Kandefer-Szerszeń, M. (2008). Synthesis, structure elucidation and identification of antitumoural properties of novel fused 1, 2, 4-triazine aryl derivatives. European journal of medicinal chemistry, 43(5), 1085-1094.
    7. Yurttas, L., Ciftci, G. A., Temel, H. E., Saglik, B. N., Demir, B., & Levent, S. (2017). Biological activity evaluation of novel 1, 2, 4-triazine derivatives containing thiazole/benzothiazole rings. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 17(13), 1846-1853.
    8. Kumar, R., Kumar, N., Roy, R. K., & Singh, A. (2017). Triazines—A comprehensive review of their synthesis and diverse biological importance. Curr. Med. Drug Res, 1(1), 173.
    9. Khodair, A. I., Ahmed, A., Imam, D. R., Kheder, N. A., Elmalki, F., & Hadda, T. B. (2021). Synthesis, antiviral, DFT and molecular docking studies of some novel 1, 2, 4-triazine nucleosides as potential bioactive compounds. Carbohydrate Research, 500, 108246.

Reaction 0f (thioacetamide/ acetemide) with chloroacetyl chloride to produced N-acetyl-2-chloro (thiocetamide/acetamide), then subsequent reaction with thiosemicarbazide to form N-acetyl-2-(2-carbamothioyl hydrazinyl)thioacetamide/acetamide. Ring closure or Cyclization of these compounds in the presence of sodium hydroxide yield N-(3-mercapto-1,4-dihydro-1,2,4 -triazin-5-yl)ethanethioamide/acetamide. The aim of this contribution is synthesis wide range of triazin derivatives by using different methodologies. These new triazine derivatives will be confirmed by FT- IR, 1HNMR, 13CNMR spectra. Since this triazine ring are very important core in chemical structure of some therapeutic compounds, will be evaluated for biological activities against two types of bacteria and fungi.

Keywords : Heterocycle Compounds, Nitrogen-Containing Heterocycles, Triazine Derivatives, Biological Activities, Antibacterial Activity, Antifungi Activity.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe