Authors :
Sudhir Diwase; Arvind Dhabe; Balasaheb Ughade; Ashwini Biradar; Tejswini Sontakke; Dinesh Nalage
Volume/Issue :
Volume 9 - 2024, Issue 12 - December
Google Scholar :
https://tinyurl.com/2nbmpet9
Scribd :
https://tinyurl.com/ys9c4kyw
DOI :
https://doi.org/10.5281/zenodo.14608940
Abstract :
Smut fungi (Ustilaginales), obligate plant
pathogens within the Basidiomycota phylum, play critical
roles in ecology and agriculture. Known for their host
specificity and production of black powdery teliospores,
these fungi predominantly infect monocots, including
economically vital crops like wheat, rice, maize, and
sugarcane. Their global distribution and adaptability to
diverse climates make them significant contributors to
agricultural losses, impacting food security and trade.
Traditional methods for identifying smut fungi, such as
morphological and cultural analyses, are now
complemented by molecular techniques like DNA
barcoding, PCR, and next-generation sequencing (NGS).
These advancements have refined fungal taxonomy,
uncovered cryptic species, and elucidated evolutionary
relationships, enhancing the accuracy of identification
and ecological understanding. India, a biodiversity
hotspot, reports 159 species of smut fungi, primarily
targeting the Poaceae family. Despite advancements, gaps
remain in understanding their biodiversity, pathogenic
mechanisms, and responses to climate change. Addressing
these challenges necessitates interdisciplinary research,
integrating modern molecular tools with traditional
approaches. This review underscores the importance of
smut fungi research for developing sustainable disease
management strategies. By fostering global collaboration
and leveraging advanced techniques, researchers can
mitigate the agricultural impact of smut fungi while
exploring their ecological and biotechnological potential.
Comprehensive studies are crucial for ensuring
agricultural sustainability, biodiversity conservation, and
enhanced food security in the face of emerging global
challenges.
Keywords :
Smut Fungi, Fungal Taxonomy, Plant Pathogens, Molecular Identification, Agricultural Sustainability.
References :
- Afifah, L., & Saputro, N. W. (2020). Growth and viability of entomopathogenic fungus Beauveria bassiana (Balsamo) Vuillemin in different alternative media. IOP Conference Series: Earth and Environmental Science, 468(1), 012037. https://doi.org/10.1088/1755-1315/468/1/012037
- Ahrendt, S. R., Quandt, C. A., Ciobanu, D., Clum, A., Salamov, A., Andreopoulos, B., Cheng, J.-F., Woyke, T., Pelin, A., Henrissat, B., Reynolds, N. K., Benny, G. L., Smith, M. E., James, T. Y., & Grigoriev, I. V. (2018). Leveraging single-cell genomics to expand the fungal tree of life. Nature Microbiology, 3(12), 1417–1428. https://doi.org/10.1038/s41564-018-0261-0
- Araujo, R., & Sampaio-Maia, B. (2018). Fungal Genomes and Genotyping. In Advances in Applied Microbiology (Vol. 102, pp. 37–81). Elsevier. https://doi.org/10.1016/bs.aambs.2017.10.003
- Balajee, S. A., Borman, A. M., Brandt, M. E., Cano, J., Cuenca-Estrella, M., Dannaoui, E., Guarro, J., Haase, G., Kibbler, C. C., Meyer, W., O’Donnell, K., Petti, C. A., Rodriguez-Tudela, J. L., Sutton, D., Velegraki, A., & Wickes, B. L. (2009). Sequence-Based Identification of Aspergillus, Fusarium , and Mucorales Species in the Clinical Mycology Laboratory: Where Are We and Where Should We Go from Here? Journal of Clinical Microbiology, 47(4), 877–884. https://doi.org/10.1128/JCM.01685-08
- Bishnoi, S. K., He, X., Phuke, R. M., Kashyap, P. L., Alakonya, A., Chhokar, V., Singh, R. P., & Singh, P. K. (2020). Karnal Bunt: A Re-Emerging Old Foe of Wheat. Frontiers in Plant Science, 11(September), 1–18. https://doi.org/10.3389/fpls.2020.569057
- Castelle, C. J., & Banfield, J. F. (2018). Major New Microbial Groups Expand Diversity and Alter our Understanding of the Tree of Life. Cell, 172(6), 1181–1197. https://doi.org/10.1016/j.cell.2018.02.016
- Eberhardt, U. (2012). Methods for DNA Barcoding of Fungi. In W. J. Kress & D. L. Erickson (Eds.), DNA Barcodes (Vol. 858, pp. 183–205). Humana Press. https://doi.org/10.1007/978-1-61779-591-6_9
- Erlich, H. A., Gelfand, D., & Sninsky, J. J. (1991). Recent Advances in the Polymerase Chain Reaction. Science, 252(5013), 1643–1651. https://doi.org/10.1126/science.2047872
- Fischer, G., & Dott, W. (2002). Quality assurance and good laboratory practice in the mycological laboratory – compilation of basic techniques for the identification of fungi. International Journal of Hygiene and Environmental Health, 205(6), 433–442. https://doi.org/10.1078/1438-4639-00190
- Fischer, G. W., & Hirschhorn, E. (2018). A Critical Study of Some Species of Ustilago Causing Stem Smut on Various Grasses. Mycologia, 37(2), 236–266. https://doi.org/10.1080/00275514.1945.12023984
- Fitzpatrick, D. A., Logue, M. E., Stajich, J. E., & Butler, G. (2006). A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evolutionary Biology, 6(1), 99. https://doi.org/10.1186/1471-2148-6-99
- García‐Guzmán, G., & Burdon, J. J. (1997). Impact of the flower smut Ustilago cynodontis (Ustilaginaceae) on the performance of the clonal grass Cynodon dactylon (Gramineae). American Journal of Botany, 84(11), 1565–1571. https://doi.org/10.2307/2446618
- Gautam, A. K., Verma, R. K., Avasthi, S., Sushma, S., Devadatha, B., Thakur, S., Kashyap, P. L., Prasher, I. B., Bhadauria, R., Niranjan, M., & Ranadive, K. R. (2021). Smut fungi: A compendium of their diversity and distribution in India. MycoAsia. https://doi.org/10.59265/mycoasia.2021-01
- Haddrill, P. R. (2021). Developments in forensic DNA analysis. Emerging Topics in Life Sciences, 5(3), 381–393. https://doi.org/10.1042/ETLS20200304
- Hasnain, H., & Mehvish, N. (2020). Assessment of plant genetic variations using molecular markers: A review. Journal of Applied Biology & Biotechnology. https://doi.org/10.7324/JABB.2020.80514
- Hosoya, K., Nakayama, M., Matsuzawa, T., Imanishi, Y., Hitomi, J., & Yaguchi, T. (2012). Risk analysis and development of a rapid method for identifying four species of Byssochlamys. Food Control, 26(1), 169–173. https://doi.org/10.1016/j.foodcont.2012.01.024
- Hu, Y., Irinyi, L., Hoang, M. T. V., Eenjes, T., Graetz, A., Stone, E. A., Meyer, W., Schwessinger, B., & Rathjen, J. P. (2022). Inferring Species Compositions of Complex Fungal Communities from Long- and Short-Read Sequence Data. mBio, 13(2), e02444-21. https://doi.org/10.1128/mbio.02444-21
- Humber, R. A. (2012). Preservation of entomopathogenic fungal cultures. In Manual of Techniques in Invertebrate Pathology (pp. 317–328). Elsevier. https://doi.org/10.1016/B978-0-12-386899-2.00010-5
- James, T. Y., Stajich, J. E., Hittinger, C. T., & Rokas, A. (2020). Toward a Fully Resolved Fungal Tree of Life. Annual Review of Microbiology, 74(1), 291–313. https://doi.org/10.1146/annurev-micro-022020-051835
- Jaswal, R., Rajarammohan, S., Dubey, H., & Sharma, T. R. (2020). Smut fungi as a stratagem to characterize rust effectors: Opportunities and challenges. World Journal of Microbiology and Biotechnology, 36(10), 150. https://doi.org/10.1007/s11274-020-02927-x
- Kartavtsev, Y. P. (2021). Some Examples of the Use of Molecular Markers for Needs of Basic Biology and Modern Society. Animals, 11(5), 1473. https://doi.org/10.3390/ani11051473
- Kasper, C., Ribeiro, D., Almeida, A. M. D., Larzul, C., Liaubet, L., & Murani, E. (2020). Omics Application in Animal Science—A Special Emphasis on Stress Response and Damaging Behaviour in Pigs. Genes, 11(8), 920. https://doi.org/10.3390/genes11080920
- Kumawat, G., Kanta Kumawat, C., Chandra, K., Pandey, S., Chand, S., Nandan Mishra, U., Lenka, D., & Sharma, R. (2021). Insights into Marker Assisted Selection and Its Applications in Plant Breeding. In I. Y. Abdurakhmonov (Ed.), Plant Breeding—Current and Future Views. IntechOpen. https://doi.org/10.5772/intechopen.95004
- Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Ariyawansa, H. A., Aoki, T., Cardinali, G., Crous, P. W., Druzhinina, I. S., Geiser, D. M., Hawksworth, D. L., Hyde, K. D., Irinyi, L., Jeewon, R., Johnston, P. R., Kirk, P. M., Malosso, E., May, T. W., Meyer, W., … Schoch, C. L. (2020). Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus, 11(1), 14. https://doi.org/10.1186/s43008-020-00033-z
- Mapuranga, J., Zhang, N., Zhang, L., Chang, J., & Yang, W. (2022). Infection Strategies and Pathogenicity of Biotrophic Plant Fungal Pathogens. Frontiers in Microbiology, 13, 799396. https://doi.org/10.3389/fmicb.2022.799396
- McCarthy, C. G. P., & Fitzpatrick, D. A. (2017). Multiple Approaches to Phylogenomic Reconstruction of the Fungal Kingdom. In Advances in Genetics (Vol. 100, pp. 211–266). Elsevier. https://doi.org/10.1016/bs.adgen.2017.09.006
- Mendoza-martínez, A. E., Cano-domínguez, N., & Aguirre, J. (2020). Yap1 homologs mediate more than the redox regulation of the antioxidant response in fi lamentous fungi. Fungal Biology, 124(5), 253–262. https://doi.org/10.1016/j.funbio.2019.04.001
- Mikryukov, V., Dulya, O., Zizka, A., Bahram, M., Hagh-Doust, N., Anslan, S., Prylutskyi, O., Delgado-Baquerizo, M., Maestre, F. T., Nilsson, H., Pärn, J., Öpik, M., Moora, M., Zobel, M., Espenberg, M., Mander, Ü., Khalid, A. N., Corrales, A., Agan, A., … Tedersoo, L. (2023). Connecting the multiple dimensions of global soil fungal diversity. Science Advances, 9(48), eadj8016. https://doi.org/10.1126/sciadv.adj8016
- Nalage, D., Kale, R., Sontakke, T., Pradhan, V., Biradar, A., Senevirathna, J. D. M., Jaweria, R., Dighe, T., Dixit, P., Patil, R., & Kudnar, P. S. (2024). Bacterial phyla: Microbiota of kingdom animalia. Academia Biology, 2(4). https://doi.org/10.20935/AcadBiol7423
- Nalage, D., Kudnar, P. S., Sontakke, T., Chittapure, I., Gowda, Y., Kharbal, S., & Alamwar, Y. (2024). Assessment of the status of Spodoptera species (Lepidoptera: Noctuidae: Armyworm) in India through DNA barcoding technique. Journal of Threatened Taxa, 16(7), 25528–25535. https://doi.org/10.11609/jott.8983.16.7.25528-25535
- Nalage, D., Sontakke, T., Biradar, A., Jogdand, V., Kale, R., Harke, S., Kale, R., & Dixit, P. (2023). The impact of environmental toxins on the animal gut microbiome and their potential to contribute to disease. Elsevier, 3(C).
- Nirmalkar, V. K., Lakplae, N., & Tiwari, R. K. S. (2020). Natural Occurrence and Distribution of Entomopathogenic Fungi from Chhattisgarh. International Journal of Current Microbiology and Applied Sciences, 9(1), 1990–1998. https://doi.org/10.20546/ijcmas.2020.901.225
- Patil, R., Satpute, R., & Nalage, D. (2023a). Plant microbiomes and their role in plant health. Microenvironment and Microecology Research, 5(1), 2. https://doi.org/10.53388/MMR2023002
- Patil, R., Satpute, R., & Nalage, D. (2023b). The application of omics technologies to toxicology. Toxicology Advances, 5(2), 6. https://doi.org/10.53388/TA202305006
- Punjabi, G., Jayadevan, A., Jamalabad, A., Velho, N., Niphadkar-Bandekar, M., Baidya, P., Jambhekar, R., Rangnekar, P., Dharwadkar, O., Lopez, R., Rodrigues, M., Patel, F. D., Chandra Sagar, H. S. S., Banerjee, S., Chandi, M., Mehrotra, N., Srinivasan, S., Shahi, S., Atkore, V., … Borkar, M. R. (2020). On the inadequacy of environment impact assessments for projects in Bhagwan Mahavir Wildlife Sanctuary and National Park of Goa, India: A peer review. Journal of Threatened Taxa, 12(18), 17387–17454. https://doi.org/10.11609/jott.6650.12.18.17387-17454
- Rahayu, D. A., Ambarwati, R., & Faizah, U. (2021). An effort to train the biological computation skill and teach animal phenetic taxonomy to pre-service biology teacher. Journal of Physics: Conference Series, 1747(1), 012001. https://doi.org/10.1088/1742-6596/1747/1/012001
- Sangal, V., Nieminen, L., Tucker, N. P., & Hoskisson, P. A. (2014). Revolutionizing Prokaryotic Systematics Through Next-Generation Sequencing. In Methods in Microbiology (Vol. 41, pp. 75–101). Elsevier. https://doi.org/10.1016/bs.mim.2014.07.001
- Santamaria, M. (2011). DNA barcoding of toxigenic fungi: A perspective. In Determining Mycotoxins and Mycotoxigenic Fungi in Food and Feed (pp. 349–356). Elsevier. https://doi.org/10.1533/9780857090973.4.349
- Schirawski, J., Perlin, M. H., & Saville, B. J. (2021). Smuts to the power of three: Biotechnology, biotrophy, and basic biology. Journal of Fungi, 7(8), 0–3. https://doi.org/10.3390/jof7080660
- Seifert, K. A. (2009). Progress towards DNA barcoding of fungi. Molecular Ecology Resources, 9(SUPPL. 1), 83–89. https://doi.org/10.1111/j.1755-0998.2009.02635.x
- Sharma, I. (2021). Phytopathogenic fungi and their biocontrol applications. In Fungi Bio-Prospects in Sustainable Agriculture, Environment and Nano-Technology (pp. 155–188). Elsevier. https://doi.org/10.1016/B978-0-12-821394-0.00007-X
- Singh, P. (2020). Floristic Diversity of India: An Overview. In G. H. Dar & A. A. Khuroo (Eds.), Biodiversity of the Himalaya: Jammu and Kashmir State (Vol. 18, pp. 41–69). Springer Singapore. https://doi.org/10.1007/978-981-32-9174-4_3
- Singh, P., & Sharma, M. (2020). Cultural and Morphological Characterization of Antagonistic Trichoderma Isolates. International Journal of Current Microbiology and Applied Sciences, 9(3), 1041–1048. https://doi.org/10.20546/ijcmas.2020.903.122
- Sontakke, T., Biradar, A., Dixit, P., & Nalage, D. (2022). Metagenomics and microbiome of infant: Old and recent instincts. Microenvironment and Microecology Research, 4(2), Article 2. https://doi.org/10.53388/MMR2022007
- Sontakke, T., Biradar, A., & Nalage, D. (2023). The role of genetics in determining resistance to coccidiosis in goats a review of current research and future directions. Molecular Biology Reports, 50(7), 6171–6175. https://doi.org/10.1007/s11033-023-08520-3
- Steinrucken, T. V., & Vitelli, J. S. (2023). Biocontrol of weedy Sporobolus grasses in Australia using fungal pathogens. BioControl, 68(4), 341–361. https://doi.org/10.1007/s10526-023-10195-5
- Steins, L., Duhamel, M., Klenner-Koch, S., Begerow, D., & Kemler, M. (2023). Resources and tools for studying convergent evolution in different lineages of smut fungi. Mycological Progress, 22(11), 76. https://doi.org/10.1007/s11557-023-01918-0
- Tedersoo, L., Bahram, M., Põlme, S., Kõljalg, U., Yorou, N. S., Wijesundera, R., Ruiz, L. V., Vasco-Palacios, A. M., Thu, P. Q., Suija, A., Smith, M. E., Sharp, C., Saluveer, E., Saitta, A., Rosas, M., Riit, T., Ratkowsky, D., Pritsch, K., Põldmaa, K., … Abarenkov, K. (2014). Global diversity and geography of soil fungi. Science, 346(6213), 1256688. https://doi.org/10.1126/science.1256688
- Tiknaik, A., Kalyankar, A., Shingare, M., Suryawanshi, R., Prakash, B., Sontakke, T. A., Nalage, D., Sanil, R., & Khedkar, G. (2019). Refutation of media reports on introduction of the red bellied piranha and potential impacts on aquatic biodiversity in India. Mitochondrial DNA Part A, 30(4), 643–650. https://doi.org/10.1080/24701394.2019.1611798
- Turgay, E. B., Oğuz, A. Ç., & Ölmez, F. (2020). Karnal bunt (Tilletia indica) in wheat. Climate Change and Food Security with Emphasis on Wheat, 1847, 229–241. https://doi.org/10.1016/B978-0-12-819527-7.00015-7
- Uikey, K. W., Raghuwanshi, K. S., & Uikey, D. W. (2020). Influence of Culture Media on Growth, Colony Character and Sporulation of Chaetomium globosum Fungus. International Journal of Current Microbiology and Applied Sciences, 9(5), 2567–2572. https://doi.org/10.20546/ijcmas.2020.905.293
- Vabeikhokhei, J. M. C., Mangaiha, Z., Zothanzama, J., & Lalrinawmi, H. (2019). Diversity Study of Wood Rotting Fungi from Two different Forests in Mizoram, India. International Journal of Current Microbiology and Applied Sciences, 8(04), 2775–2785. https://doi.org/10.20546/ijcmas.2019.804.323
- Vorob’eva, I., & Toropova, E. (2020). Fungi ecological niches of the genus Fusarium Link. BIO Web of Conferences, 24, 00095. https://doi.org/10.1051/bioconf/20202400095
- Xia, W., Yu, X., & Ye, Z. (2020). Smut fungal strategies for the successful infection. Microbial Pathogenesis, 142, 104039. https://doi.org/10.1016/j.micpath.2020.104039
- Yali, W. (2022). Molecular Markers: Their Importance, Types, and Applications in Modern Agriculture. Agriculture, Forestry and Fisheries, 11(1), 8. https://doi.org/10.11648/j.aff.20221101.12
56. Zhou, L., Mubeen, M., Iftikhar, Y., Zheng, H., Zhang, Z., Wen, J., Khan, R. A. A., Sajid, A., Solanki, M. K., Sohail, M. A., Kumar, A., Massoud, E. E. S., & Chen, L. (2024). Rice false smut pathogen: Implications for mycotoxin contamination, current status, and future perspectives. Frontiers in Microbiology, 15, 1344831. https://doi.org/10.3389/fmicb.2024.1344831
Smut fungi (Ustilaginales), obligate plant
pathogens within the Basidiomycota phylum, play critical
roles in ecology and agriculture. Known for their host
specificity and production of black powdery teliospores,
these fungi predominantly infect monocots, including
economically vital crops like wheat, rice, maize, and
sugarcane. Their global distribution and adaptability to
diverse climates make them significant contributors to
agricultural losses, impacting food security and trade.
Traditional methods for identifying smut fungi, such as
morphological and cultural analyses, are now
complemented by molecular techniques like DNA
barcoding, PCR, and next-generation sequencing (NGS).
These advancements have refined fungal taxonomy,
uncovered cryptic species, and elucidated evolutionary
relationships, enhancing the accuracy of identification
and ecological understanding. India, a biodiversity
hotspot, reports 159 species of smut fungi, primarily
targeting the Poaceae family. Despite advancements, gaps
remain in understanding their biodiversity, pathogenic
mechanisms, and responses to climate change. Addressing
these challenges necessitates interdisciplinary research,
integrating modern molecular tools with traditional
approaches. This review underscores the importance of
smut fungi research for developing sustainable disease
management strategies. By fostering global collaboration
and leveraging advanced techniques, researchers can
mitigate the agricultural impact of smut fungi while
exploring their ecological and biotechnological potential.
Comprehensive studies are crucial for ensuring
agricultural sustainability, biodiversity conservation, and
enhanced food security in the face of emerging global
challenges.
Keywords :
Smut Fungi, Fungal Taxonomy, Plant Pathogens, Molecular Identification, Agricultural Sustainability.