Authors :
Santosh Venkatrao Dandge; Kishor Jaysing Girase; Dr. Ratnamala Subhash Bendre
Volume/Issue :
Volume 10 - 2025, Issue 3 - March
Google Scholar :
https://tinyurl.com/4dk9jrbx
Scribd :
https://tinyurl.com/5f7kv473
DOI :
https://doi.org/10.38124/ijisrt/25mar462
Google Scholar
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 15 to 20 days to display the article.
Abstract :
Azobenzene motifs have a broad application across numerous scientific domains. Azo compounds are useful in
the chemical industry because of their significant properties. Aromatic azo compounds have primarily been used as dyes
since their discovery. The azo coupling reaction is the conventional process of creating azo compounds by combining
diazonium salts with activated aromatic compounds such as arylamines and phenol. Reaction between a diazonium salt
and another substance that contains an aromatic ring titled as a coupling agent. Combining benzene diazonium salt,
alkaline phenol, and amines produced Yellow, red, and orange azo compounds. The synthesis and use of azo dyes derived
from natural phenols, such as thymol, carvacrol, and eugenol, as coupling agents are summarized in this review. Thymol,
eugenol, and carvacrol are some examples of naturally occurring ten-carbon phenols that occur in the essential oils of a
variety of plants. These adaptable molecules find use in the agricultural, pharmaceutical, fragrance, cosmetic, and flavor
industries as well as in many food products as helpful ingredients. They have numerous biological and pharmacological
actions, including anti-inflammatory, antimicrobial, analgesic, anticancer, and antioxidant effects.
Keywords :
Thymol, Eugenol, Carvacrol, Synthesis, Azobenzene, Applications.
References :
- Gordon, P.F., Gregory, P. (1987). Azo Dyes. In: Organic Chemistry in Colour. Springer Study Edition. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-82959-8_3
- Robinson T., McMullan G. and Marchant R., Nigam., Remediation of dyes in textile effluent, Bioresource Tech., (7), 247-255 (2001)
- Cooper P., Color in dye house effluent. The dye maker’s view. Oxford, Alden press., (1995)
- Synthesis, Spectral Properties and Applications of Some Mordant and Disperse Mono Azo Dyes Derived from 2-amino-1, 3-benzothiazole Awale A. G.1, Gholse S. B3 . and Utale P.S.2
- Moreira, R. F. P. M., Kuhnen, N., & Peruch, M., Adsorption of reactive dyes onto granular activated carbon. Latin American Applied Research, 28, 37-41 (1998).
- Cumming, W. M., & Howie, G., Some dinaphthyl bases. Part II. Reduction of 1: 1′-azoxy-and 1: 1′-azo-naphthalenes. Isolation of 1: 1′-hydrazonaphthalene. Journal of the Chemical Society (Resumed), 133-135 (1933).
- Mohamed, S. K., & El-Din, A. N., Solid state photolysis of triazene 1-oxides with naphthols. Synthesis of azo dyes. Journal of Chemical Research, Synopses, (8), 508-509. (1999).
- Peters, A. T., & Walker, D., New intermediates and dyes. Part IV. Condensation of thionaphthen-2: 3-dicarboxylic anhydride with hydrocarbons and phenols. Journal of the Chemical Society (Resumed), 1429-1436. (1956).
- European Food Law, handbook.
- Fennema O.R., Food Chemistry, 3rd edition, (1996).
- Eigenmann P.A., Haengelli C.A., Food colourings and preservatives- allergy and hyperactivity, Lancet., (364), 823-4 (2004)
- Sternberg E., Dolphin M., Matsuoka (Ed.), Infrared absorbing dyes, Plenum, New York., 193–212 (1990)
- Gregory P., Modern reprographics, Rev. Prog. Coloration, 24 (1) (1994)
- Mekkawi D.E., Abdel-Mottaleb M.S.A., The interaction and photostability of some xanthenes and selected azo sensitizing dyes with TiO2 nanoparticles, Int. J. Photoenergy., 7 (2), 95-101 (2005)
- Marchevsky E., Olsina R. and Marone C., 2-[2- (5-Chloropyridyl)azo]-5-dimethylaminophenol as indicator for the complexometric determination of zinc, Talanta., 32 (1), 54–56 (1985)
- Hättenschwiler, Stephan; Vitousek, Peter M. (2000). "The role of polyphenols in terrestrial ecosystem nutrient cycling". Trends in Ecology & Evolution. 15 (6): 238–243. doi:10.1016/S0169-5347(00)01861-9. PMID 10802549.
- Ultee A, Slump RA, Steging G and Smid EJ (2000) Antimicrobial activity of carvacrol toward Bacillus cereus on rice. J Food Prot 63:620-624.
- Periago PM, Palop A and Fernandez PS (2001) Combined effect of nisin, carvacrol and thymol on the viability of Bacillus cereus heat treated vegetative cells. Food Sci Technol Intnl 7:487-492.
- Bullerman LB, Lieu FY and Scier SA (1977) Inhibition of growth and aflatoxin production by cinnamon and clove oils, cinnamic aldehyde and eugenol. J Food Sci 42:1107-1109.
- Jona I, Sarkozi S, Almassy J, Dobrosi N, Nagy G and Lukacs B (2007) Effect of natural phenol derivatives on skeletal type sarcoplasmic reticulum Ca2+-ATPase and ryanodine receptor. J Muscle Res Cell Motil 28:167-174.
- Maksimović Z, Milenković M, Vučićević D and Ristić M (2008) Chemical composition and antimicrobial activity of Thymus pannonicus All. (Lamiaceae) essential oil. Cent Eur J Biol 3(2):149-154.
- Dorman HJ and Deans SG (2000) Antimicrobial agents fromplants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308-316.
- Horváth Gy, Kocsis B, Botz L, Németh J and Szabó LGy (2002) Antibacterial activity of Thymus phenols by direct bioautography. Acta Biol Szeged 46:145-146.
- Didry N, Dubreuil L and Pinkas M (1993) Antibacterial activity of thymol, carvacrol and cinnamaldehyde alone or in combination. Pharmazie 48:301–304;
- Koeduka, T., Fridman, E., Gang, D. R., Vassão, D. G., Jackson, B. L., Kish, C. M., ... & Baiga, T. J. (2006). Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proceedings of the National Academy of Sciences, 103(26), 10128-10133.
- Svoboda K, Brooker JD, Zrustova J (2005) Antibacterial and antioxidant properties of essential oils: Their potential applications in the food industries. In I International Symposium on Natural Preservatives in Food Systems 709: 35-44.
- Xie Z, Kapteyn J, Gang DR (2008) A systems biology investigation of the MEP/ terpenoid and shikimate/phenylpropanoid pathways points to multiple levels of metabolic control in sweet basil glandular trichomes. The Plant Journal 54: 349-361.
- Sartoratto, A., Machado, A. L. M., Delarmelina, C., Figueira, G. M., Duarte, M. C. T., & Rehder, V. L. G. (2004). Composition and antimicrobial activity of essential oils from aromatic plants used in Brazil. Brazilian Journal of Microbiology, 35(4), 275-280.
- Rajput, J. D., Bagul, S. D., Pete, U. D., Zade, C. M., Padhye, S. B., & Bendre, R. S. (2018). Perspectives on medicinal properties of natural phenolic monoterpenoids and their hybrids. Molecular diversity, 22(1), 225-245.
- Shen AY, Huang MH, Liao LF, Wang TS (2005) Thymol analogues with antioxidant and L-type calcium current inhibitory activity. Drug Dev Res 64:195–202. doi:10.1002/ddr.10436/pdf.
- Wattanasatcha A, Rengpipat S, Wanichwecharungruang S. Thymol nanospheres as an effective antibacterial agent. Int JPharm 2012; 434:360–365.
- Didry N, Dubreuil L and Pinkas M (1994) Activity of thymol, carvacrol, cinnamaldehyde and eugenol on oral bacteria. Pharm Acta Helv 69:25-28.
- He L, Mo H, Hadisusilo S, Qureshi AA, Elson CE (1997) Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J Nutr 127:668–674
- Darre M, Kollanoor-Johny A, Venkitanarayanan K, UpadhyayaI. Practical implications of plant-derived antimicrobials in poultry diets for the control of Salmonella enteritidis. J Appl Poultry Res 2014; 23:340–344.
- Deb DD, Parimala G, Devi SS, Chakraborty T. Effect of thymol on peripheral blood mononuclear cell PBMC and acute promyelotic cancer cell line HL-60. Chem Biol Interact 2011; 193:97–106.
- Nabavi, S.; Marchese, A.; Izadi, M.; Curti, V.; Daglia, M.; Nabavi, S.F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem. 2015, 173, 339–347.
- Shapiro S, Guggenheim B. The action of thymol on oral bacteria. Oral Microbiol Immunol 1995; 10:241–246.
- Marchese, A.; Orhan, I.E.; Daglia, M.; Barbieri, R.; Di Lorenzo, A.; Nabavi, S.F.; Gortzi, O.; Izadi, M.; Nabavi, S.M. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016, 210, 402–414
- Andersen, A (2006). "Final Report on the Safety Assessment of Sodium p-Chloro-m-Cresol, p-Chloro-m-Cresol, Chlorothymol, Mixed Cresols, m-Cresol, o-Cresol, p-Cresol, Isopropyl Cresols, Thymol, o-Cymen-5-ol, and Carvacrol". International Journal of Toxicology. 25: 29–127
- Rubio´ L, Motilva M-J, Romero M-P. Recent advances in biologically active compounds in herbs and spices: a review of the most effective antioxidant and anti-inflammatory active principles. Crit Rev Food Sci Nutr 2013; 53:943–953.
- Chauhan AK, Jakhar R, Paul S, Kang SC. Potentiation of macrophage activity by thymol through augmenting phagocytosis. IntImmunopharmacol 2014; 18:340–346.
- Hu, D.; Coats, J. (2008). "Evaluation of the environmental fate of thymol and phenethyl propionate in the laboratory". Pest Manag. Sci. 64 (7): 775–779.
- Burt S. Essential oils: their antibacterial properties and potential applications in foods: a review. Int J Food Microbiol 2004; 94:223–253.
- Lombrea, A.; Antal, D.; Ardelean, F.; Avram, S.; Pavel, I.Z.; Vlaia, L.; Mut, A.‐M.; Diaconeasa, Z.; Dehelean, C.A.; Soica, C.; et al. A recent insight regarding the phytochemistry and bioactivity of Origanum vulgare L. essential oil. Int. J. Mol. Sci. 2020, 21, 9653
- Nabavi, S.; Marchese, A.; Izadi, M.; Curti, V.; Daglia, M.; Nabavi, S.F. Plants belonging to the genus Thymus as antibacterial agents: From farm to pharmacy. Food Chem. 2015, 173, 339–347.
- Esteban, M. D., Aznar, A., Fernández, P. S., & Palop, A. (2013). Combined effect of nisin, carvacrol and a previous thermal treatment on the growth of Salmonella enteritidis and Salmonella senftenberg. Food science and technology international, 19(4), 357-364.
- Friedman M (2014) Chemistry and multibeneficial bioactivities of carvacrol (4-isopropyl-2-methylphenol), a component of essential oils produced by aromatic plants and spices. J Agric Food Chem 62:7652–7670. doi:10.1021/jf5023862
- Nostro A, Papalia T (2012) Antimicrobial activity of carvacrol: current progress and future prospectives. Recent Pat Antiinfect Drug Discov 7:28–35. doi:10.2174/157489112799829684Ff
- Yin QH, Yan FX, Zu XY, Wu YH, Wu XP, Liao MC, Zhuang YZ (2012) Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology 64:43–51
- Mezzoug N, Elhadri A, Dallouh A, Amkiss S, Skali NS, Abrini J, Idaomar M (2007) Investigation of the mutagenic and antimutagenic effects of Origanum compactum essential oil and some of its constituents. Mutat Res Genet Toxicol Environ Mutagen 629:100–110. doi:10.1016/j.mrgentox.2007.01.011
- Boskabady MH, Jalali S (2013) Effect of carvacrol on tracheal responsiveness, inflammatory mediators, total and differential WBC count in blood of sensitized guinea pigs. Exp Biol Med 238:200–208
- Guimarães AG, Xavier MA, de Santana MT, Camargo EA, Santos CA, Brito FA, Quintans-Júnior LJ (2012) Carvacrol attenuates mechanical hypernociception and inflammatory response. Naunyn Schmiedebergs Arch Pharmacol 385:253–263
- Thakkar Y, Carvacrol as an anti-cancer agent on human metastatic breast cancer cell line. MDA-MB-231, Doctoral dissertation, Long Island University, The Brooklyn Center
- Peltzer M, Wagner J, Jiménez A (2009) Migration study of carvacrol as a natural antioxidant in high-density polyethylene for active packaging. Food Addit Contam 26:938–946
- Mehdi SJ, Ahmad A, Irshad M, Manzoor N, Rizvi MMA (2011) Cytotoxic effect of Carvacrol on human cervical cancer cells. Bio Med 3:307–312.
- Özkan, Aysun; Erdoğan, Ayşe (2011). "A comparative evaluation of antioxidant and anticancer activity of essential oil from Origanum onites (Lamiaceae) and its two major phenolic components". Tübitak. 35 (6): 735–42.
- Coates JR, Karr LL, Drewes CD (1999) ACS symposium series 449, Washington, pp 305–309
- Alma MH, Mavi A, Yildirim A, Digrak M, Hirata T (2003) Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biol Pharm Bull 26:1725–1729
- Loomis WS (1967) Terpenoids in plants. Academic Press, New York
- Kaufman TS (2015) The multiple faces of eugenol. A versatile starting material and building block for organic and bio-organic synthesis and a convenient precursor toward bio-based fine chemicals. J Braz Chem Soci 26:1055–1085
- Kamatou GP, Vermaak I, Viljoen AM (2012) Eugenol—from the remote Maluku Islands to the international market place: a review of a remarkable and versatile molecule. Molecules 17:6953–6981
- "Typical G.C. for bay leaf oil". Thegoodscentscompany.com. Retrieved 2014-04-27.
- Magyar J, Szentandrássy N, Bányász T, Fülöp L, Varró A, Nánási PP (2004) Effects of terpenoid phenol derivatives on calcium current in canine and human ventricular cardiomyocytes. E J Pharma 487:29–36
- Kong X, Liu X, Li JY, Yang YJ (2014) Advances in pharmacological research of eugenol. Curr Opin Complement Altern Med 1:8–11
- Barnes, J.; Anderson, L. A.; Phillipson, J. D. (2007) [1996]. Herbal Medicines (PDF)(3rd ed.). London: Pharmaceutical Press. ISBN 978-0-85369-623-0.
- "Human Metabolome Database: Showing metabocard for Eugenol (HMDB0005809)". www.hmdb.ca. Retrieved 2018-07-01.
- Ulanowska, M.; Olas, B. Biological properties and prospects for the application of eugenol‐A review. Int. J. Mol. Sci. 2021, 22, 3671.
- Constituents of the essential oil from leaves and buds of clove (Syzigium caryophyllatumL.) Alston" (PDF). Bangladesh Council of Scientific and Industrial Research BCSIR Laboratories. 4: 451–454.
- Mallavarapu, Gopal R.; Ramesh, S.; Chandrasekhara, R. S.; Rajeswara Rao, B. R.; Kaul, P. N.; Bhattacharya, A. K. (1995). "Investigation of the essential oil of cinnamon leaf grown at Bangalore and Hyderabad". Flavour and Fragrance Journal. 10 (4): 239–242. doi:10.1002/ffj.2730100403.
- Yield and Oil Composition of 38 Basil (Ocimum basilicum L.) Accessions Grown in Mississippi Archived 15 October 2010 at the Wayback Machine.
- Lipthay, T., & Foltínová, P., (1981). Azo compounds of 2-mercaptobenzothiazole. VI. Synthesis and biological activity of 6-(4-hydroxy-5-isopropyl-2-methylphenylazo)-2-Rthiobenzothiazoles Comenianae. Comenianae, Chimia, 29, 9-15.
- BÜSING, G., & Grigat, H. (1988). Zum azofarbstoff aus 4-aminobenzoesäure und thymol--nachweis von 4-aminobenzoesäure als spaltprodukt von procain [azo dye from 4-aminobenzoic acid and thymol--proof of 4-aminobenzoic acid as a degradation product of procaine]. Archiv der Pharmazie (Weinheim), 321(7), 433.
- Koshti, S. M., Sonar, J. P., Sonawane, A. E., Pawar, Y. A., Nagle, P. S., Mahulikar, P. P., & More, D. H., (2008). Synthesis of azo compounds containing thymol moiety. Indian Journal of Chemistry, 47B, 329-331.
- Piste, M. R. S. P., Indalkar, D. P., Dnyandev, N. Z., & Pankaj, S. M., (2012). Synthesis and antimicrobial activity of substituted P-amino azobenzene with thymol moiety: a green protocol. International Journal of Chemistry Research, 3(2), 25-29.
- Norikane, Y., (2015). Photosensitive azobenzene derivative, U.S. Patent No. 9,126,899.
- Sahoo, J., & Kumar, P. S., (2016). Study of solvatochromic behavior and antimicrobial activities of some newly synthesized bis-azo-dapsone congeners. Indian Journal of Chemistry, 55B, 724-733.
- Swain, S. S., Paidesetty, S. K., & Padhy, R. N., (2019). Synthesis of novel thymol derivatives against MRSA and ESBL producing pathogenic bacteria. Natural Product Research, 33(22), 3181-3189.
- Kazim, A. C., Kadhim, A. J., (2019). Preparation and diagnosis of new azo-barbiturate dyes. Organic Chem Curr. Res, 8(1), 196-199.
- Sivakumar, D., and Geetha, G., (2019). Synthesis and biological evaluation of 1,3,4-thiadiazole derivatives for their antitubercular activity. International Journal of Pharmacy and Technology, 11(1), 31536-31548.
- Koshti, S. M., Bhamare, H. M., & More, D. H., (2017). Synthesis and characterization of azo compounds as prodrugs of sulfonamides containing thymol moiety and its in-vitro degradation study. European Journal of Biomedical, 4(10), 389-401.
- Atajanov, R., (2020). Synthesis and characterization of metal free and metal phthalocyanines bearing thymol moieties derived from antimicrobial and antifungal terpenoids (Doctoral dissertation, Marmara Universities (Turkey)).
- Sarode, C. H., Yeole, S. D., Gupta, G. R., & Waghulde, G. P., (2022). Diazo-coupling reaction between 2-aminothiazole and thymol; synthesis, dft studies, and specific heat capacity calculations using TGA-DSC. Current Physical Chemistry, 12(1), 57-66.
- Jadhav, M., Mendhe, A., Deshmukh, T., Sarode, C., Yeole, S., Gupta, G., ... & Tayade, K., (2024). Metal-free azo dyes anchored on CdS nanowires: Subtle solar cell exploration through experimental and DFT studies. Journal of Photochemistry and Photobiology A: Chemistry, 448, 115303.
- Koshti, S. M., Patil, P. A., Patil, C. B., & Patil, A. S., (2018). Synthesis and characterization of prodrugs of sulfonamides as an azo derivatives of carvacrol. Der Pharma Chemica, 10(12), 1-15.
- Islik, S., Aygun, M., Isasmaz, S., Nawaz, T. M., Gumrukcuoglu, I. E., Buyukgungor, O., and Erdonmez, A., (1997). Structure of 5-Allyl-2-hydroxy-3-methoxyazobenzene. Spectroscopy Letters: An International Journal for Rapid Communication, 30(8), 1525-1549.
- Laredo, W. R., (2012). UV/visible light absorbers for ophthalmic lens materials. U.S. Patent No. 8,153,703. Washington, DC: U.S. Patent and Trademark Office.
- Kantar, C., Mert, F., & Şaşmaz, S., (2011). Microwave-assisted synthesis and characterization of phthalocyanines substituted with azo compound containing eugenol moiety. Journal of Organometallic Chemistry, 696(18), 3006-3010.
- Drozdov, F. V., Cherkaev, G. V., Buzin, M. I., & Muzafarov, A. M., (2018). Facile methods of siloxanes derivatives modification by azodyes based on eugenol. Journal of Organometallic Chemistry, 871, 135-139.
- Kantar, C., Baltas, N. İ. M. E. T., Karaoglu, S. A., & Sasmaz, S., (2018). Some azo dyes containing eugenol and guaiacol, synthesis, antioxidant capacity, urease inhibitory properties and anti-helicobacter pylori activity. Rev. Roum. Chim, 63(3), 189-197.
- Ryzhkov, A. I., Drozdov, F. V., Cherkaev, G. V., Buzin, M. I., Svidchenko, E. A., & Muzafarov, A. M., (2022). Synthesis and properties of new siloxane with terminalazodyes functions based on eugenol. Journal of Applied Polymer Science, 139(24), 52340.
- Coelho, J. R., Fernandes, M. J. G., & Gonçalves, M. S. T., (2023). New azo carboxylic dyes derived from eugenol: synthesis and preliminary application to polyamide. Chemistry Proceedings, 14(1), 56-61.
- Santosh V. Dandge, Sumit R. Nikume, and Ratnamala S. Bendre. "An efficient synthesis, characterization, antimicrobial and anticancer activities of azo dyes derived from eugenol." Synthetic Communications (Dec.2023): Volume-54 Issue-4 Pages-282-292. doi.org/10.1080/00397911.2023.2297952.
Azobenzene motifs have a broad application across numerous scientific domains. Azo compounds are useful in
the chemical industry because of their significant properties. Aromatic azo compounds have primarily been used as dyes
since their discovery. The azo coupling reaction is the conventional process of creating azo compounds by combining
diazonium salts with activated aromatic compounds such as arylamines and phenol. Reaction between a diazonium salt
and another substance that contains an aromatic ring titled as a coupling agent. Combining benzene diazonium salt,
alkaline phenol, and amines produced Yellow, red, and orange azo compounds. The synthesis and use of azo dyes derived
from natural phenols, such as thymol, carvacrol, and eugenol, as coupling agents are summarized in this review. Thymol,
eugenol, and carvacrol are some examples of naturally occurring ten-carbon phenols that occur in the essential oils of a
variety of plants. These adaptable molecules find use in the agricultural, pharmaceutical, fragrance, cosmetic, and flavor
industries as well as in many food products as helpful ingredients. They have numerous biological and pharmacological
actions, including anti-inflammatory, antimicrobial, analgesic, anticancer, and antioxidant effects.
Keywords :
Thymol, Eugenol, Carvacrol, Synthesis, Azobenzene, Applications.