Preliminary Assessment of Selected Local Plants for Their Phytochemicals and Antimalarial Properties


Authors : Ishmael Abdulrahman Kamara; Abdulai Turay; Eugene BS Conteh

Volume/Issue : Volume 10 - 2025, Issue 5 - May


Google Scholar : https://tinyurl.com/4m652h7d

DOI : https://doi.org/10.38124/ijisrt/25may380

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Malaria remains a major health concern despite significant progress in both preventive and therapeutic measures during the 20th century. Globally malaria cause 229 million cases and 409,000 fatalities in 2019, while in 2021 it was responsible for 247 million cases and 619,000 fatalities. This study verified the antiplasmodial properties of Cassia sieberiana, Moringa oleifera, Senna siamea and Nuclea latifolia plants. The leaves, stem bark and roots of Cassia sieberiana, Moringa oleifera, Senna siamea and Nuclea latifolia in methanol extract showed alkaloids, glycosides, terpenoids, tannins, and saponins, carbohydrate and flavonoids. Antiplasmodial activity was also observed for the methanol extracts of Cassia sieberiana, Moringa oleifera, Senna siamea and Nuclea latifolia. From the results, these plants can search for free radicals and contains bioactive chemicals that can kill the malaria parasite. The methanol extract was shown to be the most effective of the two extracts tested, implying that the plants should be exploited in the development of novel antimalarial medicines.

Keywords : Cassia Sieberiana, Moringa Oleifera, Senna Siamea and Nuclea Latifolia.

References :

  1.  Abdulrazak, N., Asiya, U.I., Usman, N.S., Unata, I.M. and Farida, A., 2015. Anti-plasmodial activity of ethanolic extract of root and stem back of Cassia sieberiana DC on mice. Journal of intercultural ethnopharmacology4(2), p.96.
  2. Adamu, M., Naidoo, V. and Eloff, J.N., 2012. Some southern African plant species used to treat helminth infections in ethnoveterinary medicine have excellent antifungal activities. BMC Complementary and Alternative Medicine12(1), pp.1-8.
  3. ANNAN, K., SARPONG, K., ASARE, C., DICKSON, R., AMPONSAH, K., GYAN, B., OFORI, M. & GBEDEMA, S. 2012. In vitro anti-plasmodial activity of three herbal remedies for malaria in Ghana: Adenia cissampeloides (Planch.) Harms., Termina liaivorensis A. Chev, and Elaeis guineensis Jacq. Pharmacognosy Research, 4.
  4. Barber, B.E., Rajahram, G.S., Grigg, M.J., William, T. and Anstey, N.M., 2017. World Malaria Report: time to acknowledge Plasmodium knowlesi malaria. Malaria journal16, pp.1-3.
  5. Fong, H.H., 2002. Integration of herbal medicine into modern medical practices: issues and prospects. Integrative cancer therapies1(3), pp.287-293.
  6. GEARY, T.G., DIVO, A.A., BONANNI, L.C. and JENSEN, J.B., 1985. Nutritional Requirements of Plasmodium falciparum in Culture. III. Further Observations on Essential Nutrients and Antimetabolites 1: METABOLISM AND ANTIMETABOLITES IN P. FALCIPARUM. The Journal of protozoology32(4), pp.608-613.
  7. Gurib-Fakim, A., 2006. Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular aspects of Medicine27(1), pp.1-93.
  8. Ibrahim, H.A., Imam, I.A., Bello, A.M., Umar, U., Muhammad, S. and Abdullahi, S.A., 2012. The potential of Nigerian medicinal plants as antimalarial agent: A review. International Journal of Science and Technology2(8), pp.600-605.
  9. Jiofack, T., Fokunang, C., Guedje, N., Kemeuze, V., Fongnzossie, E., Nkongmeneck, B.A., Mapongmetsem, P.M. and Tsabang, N., 2010. Ethnobotanical uses of medicinal plants of two ethnoecological regions of Cameroon. International Journal of Medicine and Medical Sciences2(3), pp.60-79.
  10. Kamagaté, M., Koffi, C., Kouamé, N.M., Akoubet, A., Alain, N., Yao, R. and Die, H., 2014. Ethnobotany, phytochemistry, pharmacology and toxicology profiles of Cassia siamea Lam. The Journal of Phytopharmacology3(1), pp.57-76.
  11. Kamran, M., Hussain, S., Abid, M.A., Syed, S.K., Suleman, M., Riaz, M., Iqbal, M., Mahmood, S., Saba, I. and Qadir, R., 2020. Phytochemical composition of moringa oleifera its nutritional and pharmacological importance. Postepy Biologii Komorki47(3), pp.321-334.
  12. Kaur, R. and Kaur, H., 2017. Plant derived antimalarial agents. J. Med. Plants Stud5(1), pp.346-363.
  13. Kaushik, N.K., Bagavan, A., Rahuman, A.A., Mohanakrishnan, D., Kamaraj, C., Elango, G., Zahir, A.A. and Sahal, D., 2013. Antiplasmodial potential of selected medicinal plants from eastern Ghats of South India. Experimental Parasitology134(1), pp.26-32.
  14. Kaushik, N.K., Bagavan, A., Rahuman, A.A., Zahir, A.A., Kamaraj, C., Elango, G., Jayaseelan, C., Kirthi, A.V., Santhoshkumar, T., Marimuthu, S. and Rajakumar, G., 2015. Evaluation of antiplasmodial activity of medicinal plants from North Indian Buchpora and South Indian Eastern Ghats. Malaria journal14(1), pp.1-8.
  15. Koroma, L. and Ita, B.N., 2009. Phytochemical compounds and antimicrobial activity of three medicinal plants (Alchornea hirtella, Morinda geminata and Craterispermum laurinum) from Sierra. African Journal of Biotechnology8(22).
  16. Lawal, B., Shittu, O.K., Kabiru, A.Y., Jigam, A.A., Umar, M.B., Berinyuy, E.B. and Alozieuwa, B.U., 2015. Potential antimalarials from African natural products: A reviw. Journal of intercultural ethnopharmacology4(4), p.318.
  17. Lemma, M.T., Ahmed, A.M., Elhady, M.T., Ngo, H.T., Vu, T.L.H., Sang, T.K., Campos-Alberto, E., Sayed, A., Mizukami, S., Na-Bangchang, K. and Huy, N.T., 2017. Medicinal plants for in vitro antiplasmodial activities: A systematic review of literature. Parasitology International66(6), pp.713-720.
  18. Liu, M.L., Fan, W.B., Wang, N., Dong, P.B., Zhang, T.T., Yue, M. and Li, Z.H., 2018. Evolutionary analysis of plastid genomes of seven Lonicera L. species: implications for sequence divergence and phylogenetic relationships. International Journal of Molecular Sciences19(12), p.4039.
  19. Lombardino, J.G. and Lowe III, J.A., 2004. The role of the medicinal chemist in drug discovery—then and now. Nature Reviews Drug Discovery3(10), pp.853-862.
  20. Marichamy, K., Kumar, N.Y. and Ganesan, A., 2014. Sustainable development in exports of herbals and Ayurveda, Siddha, Unani and Homeopathy (Ayush) in India. Sci. Park Res. J1(10.9780), p.23218045.
  21. ME, B., Besong, E.E., Obu, D.C., Obu, M.S.U. and Djobissie, S.F.A., 2016. Nauclea latifolia: A Medicinal, Economic and Pharmacological Review.
  22. Moreira, D.D.L., Teixeira, S.S., Monteiro, M.H.D., De-Oliveira, A.C.A. and Paumgartten, F.J., 2014. Traditional use and safety of herbal medicines. Revista Brasileira de Farmacognosia24(2), pp.248-257.
  23. Murray, C.J., Rosenfeld, L.C., Lim, S.S., Andrews, K.G., Foreman, K.J., Haring, D., Fullman, N., Naghavi, M., Lozano, R. and Lopez, A.D., 2012. Global malaria mortality between 1980 and 2010: a systematic analysis. The Lancet379(9814), pp.413-431.
  24. Muyumba, N.W., Mutombo, S.C., Sheridan, H., Nachtergael, A. and Duez, P., 2021. Quality control of herbal drugs and preparations: The methods of analysis, their relevance and applications. Talanta Open4, p.100070.
  25. Nithaniyal, S., Vassou, S.L., Poovitha, S., Raju, B. and Parani, M., 2017. Identification of species adulteration in traded medicinal plant raw drugs using DNA barcoding. Genome60(2), pp.139-146.
  26. Noila, S., 2020. The procedure for collecting medicinal plants, basic tools and technology for preparing medicinal forms from their raw materials. Biomedical Journal of Scientific & Technical Research29(3), pp.22495-22498.
  27. World Health Organization, 2015. Guidelines for the treatment of malaria. World Health Organization.
  28. Moyeh, M.N., Ali, I.M., Njimoh, D.L., Nji, A.M., Netongo, P.M., Evehe, M.S., Atogho-Tiedeu, B., Ghogomu, S.M. and Mbacham, W.F., 2019. Comparison of the accuracy of four malaria diagnostic methods in a high transmission setting in coastal Cameroon. Journal of parasitology research2019.
  29. World Health Organization, 2022. World malaria report 2022. World Health Organization.
  30. Paikra, B.K. and Gidwani, B., 2017. Phytochemistry and pharmacology of Moringa oleifera Lam. Journal of pharmacopuncture20(3), p.194.
  31. Patel, P., Patel, N., Patel, D., Desai, S. and Meshram, D., 2014. Phytochemical analysis and antifungal activity of Moringa oleifera. International Journal of Pharmacy and Pharmaceutical Sciences6(5), pp.144-147.
  32. Price, R.N. and Nosten, F., 2001. Drug resistant falciparum malaria: clinical consequences and strategies for prevention. Drug resistance updates4(3), pp.187-196.
  33. Price, R.N., Uhlemann, A.C., van Vugt, M., Brockman, A., Hutagalung, R., Nair, S., Nash, D., Singhasivanon, P., Anderson, T.J., Krishna, S. and White, N.J., 2006. Molecular and pharmacological determinants of the therapeutic response to artemether-lumefantrine in multidrug-resistant Plasmodium falciparum malaria. Clinical Infectious Diseases42(11), pp.1570-1577.
  34. Sackett, D.L., Rosenberg, W.M., Gray, J.A., Haynes, R.B. and Richardson, W.S., 1996. Bobath Concept: Theory and Clinical Practice in Neurological Rehabilitation. BMJ312, pp.71-72.
  35. Sambo, S.H., Olatunde, A. and Shaltoe, S.M., 2015. Phytochemical screening and mineral analysis of Grewia mollis stems bark.
  36. Smith, C.M., 2005. Origin and uses of primum non nocere—above all, do no harm!. The Journal of Clinical Pharmacology45(4), pp.371-377.
  37. Stoeckle, M.Y., Gamble, C.C., Kirpekar, R., Young, G., Ahmed, S. and Little, D.P., 2011. Commercial teas highlight plant DNA barcode identification successes and obstacles. Scientific reports1(1), p.42.
  38. Techen, N., Parveen, I., Pan, Z. and Khan, I.A., 2014. DNA barcoding of medicinal plant material for identification. Current opinion in Biotechnology25, pp.103-110.
  39. Toma, A. and Deyno, S., 2014. Phytochemistry and pharmacological activities of Moringa oleifera. International Journal of Pharmacognosy1(4), pp.222-231.
  40. Twilley, D., Rademan, S. and Lall, N., 2020. A review on traditionally used South African medicinal plants, their secondary metabolites and their potential development into anticancer agents. Journal of ethnopharmacology261, p.113101.
  41. Usman, W.A., Jada, M.S. and Abdulazeez, M.B.L., 2014. Crude extract of leaf and stem bark of Cassia siamea have in vitro antimicrobial activity. Open Journal of Biochemistry1(1), pp.43-48.
  42. White, N.J., 1992. Antimalarial drug resistance: the pace quickens. Journal of Antimicrobial Chemotherapy30(5), pp.571-585.
  43. White, N.J., 2012. Counter perspective: artemisinin resistance: facts, fears, and fables. The American journal of tropical medicine and hygiene87(5), p.785.
  44. WHO 2002. WHO 2002_eng.pdf>.

Malaria remains a major health concern despite significant progress in both preventive and therapeutic measures during the 20th century. Globally malaria cause 229 million cases and 409,000 fatalities in 2019, while in 2021 it was responsible for 247 million cases and 619,000 fatalities. This study verified the antiplasmodial properties of Cassia sieberiana, Moringa oleifera, Senna siamea and Nuclea latifolia plants. The leaves, stem bark and roots of Cassia sieberiana, Moringa oleifera, Senna siamea and Nuclea latifolia in methanol extract showed alkaloids, glycosides, terpenoids, tannins, and saponins, carbohydrate and flavonoids. Antiplasmodial activity was also observed for the methanol extracts of Cassia sieberiana, Moringa oleifera, Senna siamea and Nuclea latifolia. From the results, these plants can search for free radicals and contains bioactive chemicals that can kill the malaria parasite. The methanol extract was shown to be the most effective of the two extracts tested, implying that the plants should be exploited in the development of novel antimalarial medicines.

Keywords : Cassia Sieberiana, Moringa Oleifera, Senna Siamea and Nuclea Latifolia.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe