Authors :
Afin Tomy T; Litty Jose
Volume/Issue :
Volume 10 - 2025, Issue 4 - April
Google Scholar :
https://tinyurl.com/32cvk78u
Scribd :
https://tinyurl.com/y4eys5ta
DOI :
https://doi.org/10.38124/ijisrt/25apr645
Google Scholar
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 15 to 20 days to display the article.
Abstract :
This study explores the use of laser technology to photograph bullet trajectories in well-lit outdoor crime scenes,
addressing the challenge of laser visibility in bright conditions. Using a high-powered green laser, a Canon EOS R50 camera,
ND filters, and long exposure photography, bullet paths were successfully captured under daylight. A moving reflector
enhanced laser visibility for accurate trajectory representation. Tests showed early morning and evening offered optimal
conditions, with lower exposure and higher apertures improving clarity. Findings highlight laser trajectory photography as
a valuable forensic tool for crime scene reconstruction and courtroom evidence. Future research should explore automated
reflector systems and advanced imaging techniques.
Keywords :
ND Filter; Long Exposure Photography; Laser; Laser Alignment.
References :
- Aphalo, P. J. (2019). Neutral density filters: theory vs. reality. Uv4 Plants Bulletin, 2019(1), 51–60. https://doi.org/10.19232/uv4pb.2019.1.15
- Bansal, S. K., & Kaur, G. (2022). Utility of 3-dimensional photographs in reconstruction of crime scene. Journal of Xidian University, 16(4), 185–190. https://doi.org/10.37896/jxu16.4/023
- Bhatia, V., Gregorski, S. J., Pikula, D., Chaparala, S. C., Loeber, D. a. S., Gollier, J., Gregorski, J. D., Hempstead, M., Ozeki, Y., Hata, Y., Shibatani, K., Nagai, F., Mori, N., Nakabayashi, Y., Mitsugi, N., & Nakano, S. (2009). Efficient and compact green laser for micro‐projector applications. Journal of the Society for Information Display, 17(3), 271–277. https://doi.org/10.1889/jsid17.3.271
- Butler, B., Fries, C., Panock, J., Jorden, M. A., & Melinek, J. (2016). Catching a bullet: Gunshot wound trajectory analysis used to establish body position. Academic Forensic Pathology, 6(4), 739–745. https://doi.org/10.23907/2016.070
- Carew, R. M., & Errickson, D. (2020). An overview of 3D printing in forensic Science: The Tangible Third‐Dimension. Journal of Forensic Sciences, 65(5), 1752–1760. https://doi.org/10.1111/1556-4029.14442
- Causin, V., & Guzzini, G. (2018). CHAPTER 1. Light for crime scene examination. In Comprehensive series in photochemistry and photobiology/Comprehensive series in photochemical & photobiological sciences (pp. 1–26) https://doi.org/10.1039/9781788010344-00001
- Delbracio, M., Kelly, D., Brown, M. S., & Milanfar, P. (2021). Mobile Computational Photography: a tour. Annual Review of Vision Science, 7(1), 571–604 https://doi.org/10.1146/annurev-vision-093019-115521
- Duncan, C. D. (2010). Daytime laser photography. The Chesapeake Examiner, 48(1), 6–12. https://www.cbdiai.org/uploads/1/2/4/0/124025868/daytime_laser_photography.pdf
- Faccio, D., & Velten, A. (2018). A trillion frames per second: the techniques and applications of light-in-flight photography. Reports on Progress in Physics, 81(10), 105901. https://doi.org/10.1088/1361-6633/aacca1
- Fatima, F. (2019). Forensic photography: A visual and legal record of crime scene. International Journal for Electronic Crime Investigation, 3(2), 10. https://doi.org/10.54692/ijeci.2019.030234
- Gilmour, P. M. (2019). The application of photography in investigating fraud. The Imaging Science Journal, 67(4), 215–223. https://doi.org/10.1080/13682199.2019.1600254
- Gouse, S., Karnam, S., Girish, H. C., & Murgod, S. (2018). Forensic photography: Prospect through the lens. Journal of Forensic Dental Sciences, 10(1), 2. https://doi.org/10.4103/jfo.jfds_2_16
- Hanna, T. N., Shuaib, W., Han, T., Mehta, A., & Khosa, F. (2015). Firearms, bullets, and wound ballistics: An imaging primer. Injury, 46(7), 1186–1196 https://doi.org/10.1016/j.injury.2015.01.034
- Hassan, A. T., & Fritsch, D. (2019). Integration of laser scanning and photogrammetry in 3D/4D cultural heritage preservation – A review. International Journal of Applied Science and Technology, 9(4), 9–16. https://doi.org/10.30845/ijast.v9n4p9
- Laurenzis, M., & Christnacher, F. (2013). Laser gated viewing at ISL for vision through smoke, active polarimetry, and 3D imaging in NIR and SWIR wavelength bands. Advanced Optical Technologies, 2(5–6), 397–405. https://doi.org/10.1515/aot-2013-0040
- Li, S., Cheng, X., Mei, P., Lu, S., Yang, H., & Zhang, H. (2014). Multiple scattering of light transmission in a smoke layer. Optik, 125(9), 2185–2190. https://doi.org/10.1016/j.ijleo.2013.10.040
- Mattijssen, E. J. (2020). Interpol review of forensic firearm examination 2016-2019. Forensic Science International Synergy, 2, 389–403. https://doi.org/10.1016/j.fsisyn.2020.01.008
- Misawa, H., & Juodkazis, S. (1999). Photophysics and photochemistry of a laser manipulated microparticle. Progress in Polymer Science, 24(5), 665–697. https://doi.org/10.1016/s0079-6700(99)00009-x
- Ogemdi, I. K. (2019). Properties and Uses of Colloids: A review. Colloid and Surface Science, 4(2), 24. https://doi.org/10.11648/j.css.20190402.12
- Pierson, C., Cauwerts, C., Bodart, M., & Wienold, J. (2020). Tutorial: Luminance Maps for Daylighting Studies from High Dynamic Range Photography. LEUKOS the Journal of the Illuminating Engineering Society of North America, 17(2), 140–169. https://doi.org/10.1080/15502724.2019.1684319
- Russ, J. C. (2001). Forensic uses of digital imaging. https://openlibrary.org/books/OL8258799M/Forensic_Uses_of_Digital_Imaging
- Sahu, P., Gupta, N., & Sharma, N. (2014). A survey on underwater image enhancement techniques. International Journal of Computer Applications, 87(13), 19–23. https://doi.org/10.5120/15268-3743
- Sheppard, K., Fieldhouse, S. J., & Cassella, J. P. (2020). Experiences of evidence presentation in court: an insight into the practice of crime scene examiners in England, Wales and Australia. Egyptian Journal of Forensic Sciences, 10(1). https://doi.org/10.1186/s41935-020-00184-5
- Tung, N. D., Barr, J., Sheppard, D. J., Elliot, D. A., Tottey, L. S., & Walsh, K. a. J. (2015). Spherical photography and virtual tours for presenting crime scenes and forensic evidence in New Zealand courtrooms. Journal of Forensic Sciences, 60(3), 753–758. https://doi.org/10.1111/1556-4029.12736
- Velten, A., Raskar, R., Wu, D., Jarabo, A., Masia, B., Barsi, C., Joshi, C., Lawson, E., Bawendi, M., & Gutierrez, D. (2013). Femto-photography: capturing and visualizing the propagation of light. Other Repository. https://dspace.mit.edu/handle/1721.1/82039
- Villa, C., Lynnerup, N., & Jacobsen, C. (2023). A virtual, 3D multimodal approach to victim and crime scene reconstruction. Diagnostics, 13(17), 2764. https://doi.org/10.3390/diagnostics13172764
- Wright, F. D., & Golden, G. S. (2010). The use of full spectrum digital photography for evidence collection and preservation in cases involving forensic odontology. Forensic Science International, 201(1–3), 59–67. https://doi.org/10.1016/j.forsciint.2010.03.013
- Yao, Y., Liu, X., Qi, D., Yao, J., Jin, C., He, Y., Huang, Z., He, Y., Shen, Y., Deng, L., Wang, Z., Sun, Z., Liang, J., & Zhang, S. (2024). Capturing Transient Events in Series: A review of Framing photography. Laser & Photonics Review. https://doi.org/10.1002/lpor.202400219
- Zhang, M. (2022). Forensic imaging: a powerful tool in modern forensic investigation. Forensic Sciences Research, 7(3), 385–392. https://doi.org/10.1080/20961790.2021.2008705
- Ziernicki, R. M. (2001). Forensic engineering techniques to reconstruct shooting incidents. Journal of the National Academy of Forensic Engineers, 18(1) https://doi.org/10.51501/jotnafe.v18i1.586
This study explores the use of laser technology to photograph bullet trajectories in well-lit outdoor crime scenes,
addressing the challenge of laser visibility in bright conditions. Using a high-powered green laser, a Canon EOS R50 camera,
ND filters, and long exposure photography, bullet paths were successfully captured under daylight. A moving reflector
enhanced laser visibility for accurate trajectory representation. Tests showed early morning and evening offered optimal
conditions, with lower exposure and higher apertures improving clarity. Findings highlight laser trajectory photography as
a valuable forensic tool for crime scene reconstruction and courtroom evidence. Future research should explore automated
reflector systems and advanced imaging techniques.
Keywords :
ND Filter; Long Exposure Photography; Laser; Laser Alignment.