Authors :
Oresegun Olakunle Ibrahim; Obanla Rukayat Oyinlola; Francis Mekunye; Egbuzie Daniel Chinemerem; Stephen Tochi Nkwocha; Samuel Chiedu Okonkwo; Mohammed Issa AbdulRahman; Abiodun Dolapo Olorunfemi
Volume/Issue :
Volume 10 - 2025, Issue 3 - March
Google Scholar :
https://tinyurl.com/7te64rsx
Scribd :
https://tinyurl.com/2ee3csvh
DOI :
https://doi.org/10.38124/ijisrt/25mar1721
Google Scholar
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 15 to 20 days to display the article.
Abstract :
This study investigates the mechanical and electrical performance of stretchable electrodes fabricated from
pyrolyzed banana peel and orange peel activated carbon (OPBLAC), blended with styrene-isoprene-styrene (SIS)
copolymer, carbon black, and nickel nanoparticles (NiNPs). The electrodes were prepared with varying compositions of
OPBLAC: SIS: Carbon black: NiNPs to evaluate their strain, strain retention, stress, and electrical conductivity. Results
demonstrate that the incorporation of NiNPs significantly enhances the mechanical and electrical properties of the
composite. The optimal composition (40:20:10:30) exhibited a stress of 2.2 MPa, strain of 220%, strain retention of 94%,
and electrical conductivity of 4.0 S/cm. These findings highlight the potential of using sustainable fruit peel-derived
activated carbon reinforced with NiNPs for high-performance stretchable electrodes in flexible electronics, offering a
balance of mechanical durability and electrical performance
Keywords :
Stretchable Electrodes, Activated Carbon, Nickel Nanoparticles (NiNPs) Flexible Electronics.
References :
- H. Suda, K. Haraya, Chem. Commun. (1997) 93–94.
- L.F. Velasco, B. Tsyntsarski, B. Petrova, T. Budinova, N. Petrov, J.B. Parra, C.O. Ania, J. Hazard. Mater. 184 (2010) 843–848.
- F. Rodriguez-Reinoso, Carbon 36 (1998) 159–175.
- Y. Lv, M. Liu, L. Gan, Y. Cao, L. Chen, W. Xiong, Z. Xu, Z. Hao, H. Liu, L. Chen, Chem.Lett. 40 (2011) 236–238.
- D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed. 47 (2008)373–376.
- D.R. Rolison, Science 299 (2003) 1698–1701.
- T. Morishita, Y. Soneda, T. Tsumura, M. Inagaki, Carbon 44 (2006) 2360–2367.
- J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313(2006) 1760–1763.
- A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 273 (1996) 483–487.
- C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. Delachapelle, S. Lefrant, P.Deniard, R. Lee, J.E. Fischer, Nature 402 (1999) 276–279.
- B. Zheng, C.G. Lu, G. Gu, A. Makarovski, G. Finkelstein, J. Liu, Nano Lett. 2 (2002)895–898.
- M. Liu, L. Gan, C. Tian, J. Zhu, Z. Xu, Z. Hao, L. Chen, Carbon 45 (2007) 3045–3046.
- T.W. Kim, I.S. Park, R. Ryoo, Angew. Chem. Int. Ed. 42 (2003) 4375–4379.
- B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Y. Yang, J. Power Sources 195 (2010)2118–2124.
- Y.I. Jang, N.J. Dudney, T.N. Tiegs, J.W. Klett, J. Power Sources 161 (2006) 1392–1399.
- B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 130 (2008) 5390–5391.
- M. Hu, J. Reboul, S. Furukawa, L. Radhakrishnan, Y.J. Zhang, P. Srinivasu, H. Iwai, H.J. Wang, Y. Nemoto, N. Suzuki, S. Kitagawa, Y. Yamauchi, Chem. Commun. 47 (2011) 8124–8126.
- B. Liu, H. Shioyama, H.L. Jiang, X.B. Zhang, Q. Xu, Carbon 48 (2010) 456–463.
- L. Radhakrishnan, J. Reboul, S. Furukawa, P. Srinivasu, S. Kitagawa, Y. Yamauchi,Chem. Mater. 23 (2011) 1225–1231.
- J.A. Hu, H.L. Wang, Q.M. Gao, H.L. Guo, Carbon 48 (2010) 3599–3606.
- H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402 (1999) 276–279.
- A. Carton, A. Mesbah, L. Aranda, P. Rabu, M. Francois, Solid State Sci. 11 ( 2009)818–823.
- H.J. Liu, X.M. Wang, W.J. Cui, Y.Q. Dou, D.Y. Zhao, Y.Y. Xia, J. Mater. Chem.20(2010) 4223–4230.
- E. Raymundo-Pinero, F. Leroux, F. Beguin, Adv. Mater. 18 (2006) 1877–1882.
- G.D. Ruan, Z.Z. Sun, Z.W. Peng, J.M. Tour, ACS Nano 5 (2011) 7601–7607.
- T.H. Emaga, C. Robert, S.N. Ronkart, B. Wathelet, M. Paquot, Bioresour. Technol.99 (2008) 4346–4354.
- M. Thirumavalavan, Y.L. Lai, L.C. Lin, J.F. Lee, J. Chem. Eng. Data 55 (2010)1186–1192.
- M. Achak, A. Hafidi, N. Ouazzani, S. Sayadi, L. Mandi, J. Hazard. Mater. 166 (2009)117–125.
- V.N. Gunaseelan, Bioresour. Technol. 98 (2007) 1270–1277.
- A. Bankar, B. Joshi, A.R. Kumar, S. Zinjarde, Colloids Surf. B 80 (2010) 45 -50.
- R.S.D. Castro, L. Caetano, G. Ferreira, P.M. Padilha, M.J. Saeki, L.F. Zara, M.A.U.Martines, G.R. Castro, Ind. Eng. Chem. Res. 50 (2011) 3446–3451.
- A. Bankar, B. Joshi, A.R. Kumar, S. Zinjarde, Mater. Lett. 64 (2010) 1951–1953.
- A. Bankar, B. Joshi, A.R. Kumar, S. Zinjarde, Colloids Surf. A 368 (2010) 58–63.
This study investigates the mechanical and electrical performance of stretchable electrodes fabricated from
pyrolyzed banana peel and orange peel activated carbon (OPBLAC), blended with styrene-isoprene-styrene (SIS)
copolymer, carbon black, and nickel nanoparticles (NiNPs). The electrodes were prepared with varying compositions of
OPBLAC: SIS: Carbon black: NiNPs to evaluate their strain, strain retention, stress, and electrical conductivity. Results
demonstrate that the incorporation of NiNPs significantly enhances the mechanical and electrical properties of the
composite. The optimal composition (40:20:10:30) exhibited a stress of 2.2 MPa, strain of 220%, strain retention of 94%,
and electrical conductivity of 4.0 S/cm. These findings highlight the potential of using sustainable fruit peel-derived
activated carbon reinforced with NiNPs for high-performance stretchable electrodes in flexible electronics, offering a
balance of mechanical durability and electrical performance
Keywords :
Stretchable Electrodes, Activated Carbon, Nickel Nanoparticles (NiNPs) Flexible Electronics.