Performance of Stretchable Electrodes from Pyrolyzed Fruit Peels Properties with Nickel Nanoparticles Reinforcement for Flexible Electronics Applications


Authors : Oresegun Olakunle Ibrahim; Obanla Rukayat Oyinlola; Francis Mekunye; Egbuzie Daniel Chinemerem; Stephen Tochi Nkwocha; Samuel Chiedu Okonkwo; Mohammed Issa AbdulRahman; Abiodun Dolapo Olorunfemi

Volume/Issue : Volume 10 - 2025, Issue 3 - March


Google Scholar : https://tinyurl.com/7te64rsx

Scribd : https://tinyurl.com/2ee3csvh

DOI : https://doi.org/10.38124/ijisrt/25mar1721

Google Scholar

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 15 to 20 days to display the article.


Abstract : This study investigates the mechanical and electrical performance of stretchable electrodes fabricated from pyrolyzed banana peel and orange peel activated carbon (OPBLAC), blended with styrene-isoprene-styrene (SIS) copolymer, carbon black, and nickel nanoparticles (NiNPs). The electrodes were prepared with varying compositions of OPBLAC: SIS: Carbon black: NiNPs to evaluate their strain, strain retention, stress, and electrical conductivity. Results demonstrate that the incorporation of NiNPs significantly enhances the mechanical and electrical properties of the composite. The optimal composition (40:20:10:30) exhibited a stress of 2.2 MPa, strain of 220%, strain retention of 94%, and electrical conductivity of 4.0 S/cm. These findings highlight the potential of using sustainable fruit peel-derived activated carbon reinforced with NiNPs for high-performance stretchable electrodes in flexible electronics, offering a balance of mechanical durability and electrical performance

Keywords : Stretchable Electrodes, Activated Carbon, Nickel Nanoparticles (NiNPs) Flexible Electronics.

References :

  1. H. Suda, K. Haraya, Chem. Commun. (1997) 93–94.
  2. L.F. Velasco, B. Tsyntsarski, B. Petrova, T. Budinova, N. Petrov, J.B. Parra, C.O. Ania, J. Hazard. Mater. 184 (2010) 843–848.
  3. F. Rodriguez-Reinoso, Carbon 36 (1998) 159–175.
  4. Y. Lv, M. Liu, L. Gan, Y. Cao, L. Chen, W. Xiong, Z. Xu, Z. Hao, H. Liu, L. Chen, Chem.Lett. 40 (2011) 236–238.
  5. D.W. Wang, F. Li, M. Liu, G.Q. Lu, H.M. Cheng, Angew. Chem. Int. Ed. 47 (2008)373–376.
  6. D.R. Rolison, Science 299 (2003) 1698–1701.
  7. T. Morishita, Y. Soneda, T. Tsumura, M. Inagaki, Carbon 44 (2006) 2360–2367.
  8. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science 313(2006) 1760–1763.
  9. A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, C.H. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler, D.T. Colbert, G.E. Scuseria, D. Tomanek, J.E. Fischer, R.E. Smalley, Science 273 (1996) 483–487.
  10. C. Journet, W.K. Maser, P. Bernier, A. Loiseau, M.L. Delachapelle, S. Lefrant, P.Deniard, R. Lee, J.E. Fischer, Nature 402 (1999) 276–279.
  11. B. Zheng, C.G. Lu, G. Gu, A. Makarovski, G. Finkelstein, J. Liu, Nano Lett. 2 (2002)895–898.
  12. M. Liu, L. Gan, C. Tian, J. Zhu, Z. Xu, Z. Hao, L. Chen, Carbon 45 (2007) 3045–3046.
  13. T.W. Kim, I.S. Park, R. Ryoo, Angew. Chem. Int. Ed. 42 (2003) 4375–4379.
  14. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, Y. Yang, J. Power Sources 195 (2010)2118–2124.
  15. Y.I. Jang, N.J. Dudney, T.N. Tiegs, J.W. Klett, J. Power Sources 161 (2006) 1392–1399.
  16. B. Liu, H. Shioyama, T. Akita, Q. Xu, J. Am. Chem. Soc. 130 (2008) 5390–5391.
  17. M. Hu, J. Reboul, S. Furukawa, L. Radhakrishnan, Y.J. Zhang, P. Srinivasu, H. Iwai, H.J. Wang, Y. Nemoto, N. Suzuki, S. Kitagawa, Y. Yamauchi, Chem. Commun. 47 (2011) 8124–8126.
  18. B. Liu, H. Shioyama, H.L. Jiang, X.B. Zhang, Q. Xu, Carbon 48 (2010) 456–463.
  19. L. Radhakrishnan, J. Reboul, S. Furukawa, P. Srinivasu, S. Kitagawa, Y. Yamauchi,Chem. Mater. 23 (2011) 1225–1231.
  20. J.A. Hu, H.L. Wang, Q.M. Gao, H.L. Guo, Carbon 48 (2010) 3599–3606.
  21. H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Nature 402 (1999) 276–279.
  22. A. Carton, A. Mesbah, L. Aranda, P. Rabu, M. Francois, Solid State Sci. 11 (            2009)818–823.
  23. H.J. Liu, X.M. Wang, W.J. Cui, Y.Q. Dou, D.Y. Zhao, Y.Y. Xia, J. Mater. Chem.20(2010) 4223–4230.
  24. E. Raymundo-Pinero, F. Leroux, F. Beguin, Adv. Mater. 18 (2006) 1877–1882.
  25. G.D. Ruan, Z.Z. Sun, Z.W. Peng, J.M. Tour, ACS Nano 5 (2011) 7601–7607.
  26. T.H. Emaga, C. Robert, S.N. Ronkart, B. Wathelet, M. Paquot, Bioresour. Technol.99 (2008) 4346–4354.
  27. M. Thirumavalavan, Y.L. Lai, L.C. Lin, J.F. Lee, J. Chem. Eng. Data 55 (2010)1186–1192.
  28. M. Achak, A. Hafidi, N. Ouazzani, S. Sayadi, L. Mandi, J. Hazard. Mater. 166 (2009)117–125.
  29. V.N. Gunaseelan, Bioresour. Technol. 98 (2007) 1270–1277.
  30. A. Bankar, B. Joshi, A.R. Kumar, S. Zinjarde, Colloids Surf. B 80 (2010) 45 -50.
  31. R.S.D. Castro, L. Caetano, G. Ferreira, P.M. Padilha, M.J. Saeki, L.F. Zara, M.A.U.Martines, G.R. Castro, Ind. Eng. Chem. Res. 50 (2011) 3446–3451.
  32. A. Bankar, B. Joshi, A.R. Kumar, S. Zinjarde, Mater. Lett. 64 (2010) 1951–1953.
  33. A. Bankar, B. Joshi, A.R. Kumar, S. Zinjarde, Colloids Surf. A 368 (2010) 58–63.

This study investigates the mechanical and electrical performance of stretchable electrodes fabricated from pyrolyzed banana peel and orange peel activated carbon (OPBLAC), blended with styrene-isoprene-styrene (SIS) copolymer, carbon black, and nickel nanoparticles (NiNPs). The electrodes were prepared with varying compositions of OPBLAC: SIS: Carbon black: NiNPs to evaluate their strain, strain retention, stress, and electrical conductivity. Results demonstrate that the incorporation of NiNPs significantly enhances the mechanical and electrical properties of the composite. The optimal composition (40:20:10:30) exhibited a stress of 2.2 MPa, strain of 220%, strain retention of 94%, and electrical conductivity of 4.0 S/cm. These findings highlight the potential of using sustainable fruit peel-derived activated carbon reinforced with NiNPs for high-performance stretchable electrodes in flexible electronics, offering a balance of mechanical durability and electrical performance

Keywords : Stretchable Electrodes, Activated Carbon, Nickel Nanoparticles (NiNPs) Flexible Electronics.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe