Optimizing Gas and Steam Turbine Performance Through Predictive Maintenance and Thermal Optimization for Sustainable and Cost-Effective Power Generation


Authors : James Avevor; Selasi Agbale Aikins; Lawrence Anebi Enyejo

Volume/Issue : Volume 10 - 2025, Issue 3 - March


Google Scholar : https://tinyurl.com/3tkz7tmx

Scribd : https://tinyurl.com/29mmeawy

DOI : https://doi.org/10.38124/ijisrt/25mar1336

Google Scholar

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 15 to 20 days to display the article.


Abstract : The performance of gas and steam turbines plays a pivotal role in the efficiency and sustainability of power generation systems. This review explores innovative approaches to optimizing turbine performance through predictive maintenance and thermal optimization, with a focus on enhancing the sustainability and cost-effectiveness of power plants. Predictive maintenance, leveraging advanced data analytics, machine learning algorithms, and Internet of Things (IoT) technologies, enables early detection of turbine faults and performance degradation, thereby reducing downtime and maintenance costs. Thermal optimization techniques, such as advanced cooling systems, improved heat recovery processes, and optimized combustion strategies, are essential for maximizing the thermal efficiency of turbines and minimizing energy losses. The integration of both strategies—predictive maintenance and thermal optimization—enables power plants to achieve optimal performance, reduce fuel consumption, extend the lifespan of turbines, and contribute to the reduction of carbon emissions. This paper also examines case studies and the application of these technologies in the context of modern gas and steam turbine systems, providing insights into their potential to drive sustainable and cost-effective power generation solutions. Furthermore, challenges such as high capital investment, technological complexity, and the need for skilled workforce development are discussed, along with recommendations for overcoming these barriers to achieve the full potential of predictive maintenance and thermal optimization.

Keywords : Predictive Maintenance (PdM); Thermal Optimization; Gas Turbines; Steam Turbines; Power Generation; Energy Efficiency.

References :

  1. Aikins, S, A., Yeboah, F. A.B, Enyejo, L. A., & Kareem, L. A. (2025). The Role of Thermomechanical and Aeroelastic Optimization in FRP-Strengthened Structural Elements for High-Performance Aerospace and Civil Applications. International Journal of Scientific Research in Mechanical and Materials Engineering Volume 9, Issue 1  ISSN : 2457-0435   doi : https://doi.org/10.32628/IJSRMME25144 
  2. Ajayi, A. A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Quantum Cryptography and Blockchain-Based Social Media Platforms as a Dual Approach to Securing Financial Transactions in CBDCs and Combating Misinformation in U.S. Elections. International Journal of Innovative Science and Research Technology. Volume 9, Issue 10, Oct.– 2024  ISSN No:-2456-2165  https://doi.org/10.38124/ijisrt/IJISRT24OCT1697.
  3. Amirnia, A. (2024). From Concept to Reality: Integrating AI-Powered Tools and Database Technology in a Renewable Energy Consultancy Company.
  4. Ayoola, V. B., Idoko, P. I., Danquah, E. O.,  Ukpoju, E. A.,  Obasa, J.,  Otakwu, A. & Enyejo, J. O. (2024). Optimizing Construction Management and Workflow Integration through Autonomous Robotics for Enhanced Productivity Safety and Precision on Modern Construction Sites. International Journal of Scientific Research and Modern Technology (IJSRMT). Vol 3, Issue 10, 2024. https://www.ijsrmt.com/index.php/ijsrmt/article/view/56
  5. Bakir, I., Yildirim, M., & Ursavas, E. (2021). An integrated optimization framework for multi-component predictive analytics in wind farm operations & maintenance. arXiv preprint arXiv:2101.01084. https://doi.org/10.48550/arXiv.2101.01084
  6. Bandyopadhyay, S., & Saha, S. (2024). Sustainable energy transition: A steam system optimization case study. Energy Reports, 10, 1234-1245. https://doi.org/10.1016/j.egyr.2024.05.001
  7. Bassily, A. M. (2016). Optimum performance enhancing strategies of the gas turbine. MATEC Web of Conferences, 47, 01002. https://doi.org/10.1051/matecconf/20164701002
  8. Bello, S. F., Wada, I. U., Ige, O. B., Chianumba, E. C., & Adebayo, S. A. (2024). AI-driven predictive maintenance and optimization of renewable energy systems for enhanced operational efficiency and longevity. International Journal of Science and Research Archive, 13(1), 23–37.
  9. Cao, J., Ye, M., Li, H., Wang, T., & Che, Z. (2024). Heat transfer enhancement by mist/air two-phase flow in a high-temperature channel. arXiv preprint arXiv:2407.05130. https://doi.org/10.48550/arXiv.2407.05130
  10. Center, A. F. D. (2021). US Department of Energy. US Public and Private Electric Vehicle Charging Infrastructure
  11. Chevtchenko, S. F., dos Santos, M. C. M., Vieira, D. M., Mota, R. L. M., Rocha, E., Cruz, B. V., Araújo, D., & Andrade, E. (2023). Predictive maintenance model based on anomaly detection in induction motors: A machine learning approach using real-time IoT data. arXiv preprint arXiv:2310.14949. https://doi.org/10.48550/arXiv.2310.14949
  12. Ding, Y., & Shi, Y. (2019). Real-time boiler control optimization with machine learning. arXiv preprint arXiv:1903.04958.
  13. Durmaz, G. (2024). European Green Deal From a Neo-Gramscian Perspective: A Case of Green Trasformismo (Doctoral dissertation, Middle East Technical University (Turkey)).
  14. Ebika, I. M., Idoko, D. O., Efe, F., Enyejo, L. A.,  Otakwu, A., & Odeh, I. I., (2024). Utilizing Machine Learning for Predictive Maintenance of Climate-Resilient Highways through Integration of Advanced Asphalt Binders and Permeable Pavement Systems with IoT Technology. International Journal of Innovative Science and Research Technology. Volume 9, Issue 11, November– 2024 ISSN No:-2456-2165. https://doi.org/10.38124/ijisrt/IJISRT24NOV074 
  15. Eguagie, M. O., Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Okafor, F. C. & Onwusi, C. N. (2025). Geochemical and Mineralogical Characteristics of Deep Porphyry Systems: Implications for Exploration Using ASTER. International Journal of Scientific Research in Civil Engineering.  2025 | IJSRCE | Volume 9 | Issue 1 | ISSN : 2456-6667. doi : https://doi.org/10.32628/IJSRCE25911 
  16. Enyejo, J. O., Adeyemi, A. F., Olola, T. M., Igba, E & Obani, O. Q. (2024). Resilience in supply chains: How technology is helping USA companies navigate disruptions. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 261–277. https://doi.org/10.30574/msarr.2024.11.2.0129
  17. Enyejo, J. O., Babalola, I. N. O., Owolabi, F. R. A. Adeyemi, A. F., Osam-Nunoo, G., & Ogwuche, A. O. (2024). Data-driven digital marketing and battery supply chain optimization in the battery powered aircraft industry through case studies of Rolls-Royce’s ACCEL and Airbus's E-Fan X Projects. International Journal of Scholarly Research and Reviews, 2024, 05(02), 001–020.  https://doi.org/10.56781/ijsrr.2024.5.2.0045
  18. Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika, C. J.,  Awotiwon,  B. O., & Olola, T. M. (2024). Digital Twin Technology, Predictive Analytics, and Sustainable Project Management in Global Supply Chains for Risk Mitigation, Optimization, and Carbon Footprint Reduction through Green Initiatives. International Journal of Innovative Science and Research Technology, Volume 9, Issue 11, November– 2024.  ISSN No:-2456-2165.   https://doi.org/10.38124/ijisrt/IJISRT24NOV1344
  19. Enyejo, L. A., Adewoye, M. B. & Ugochukwu, U. N. (2024). Interpreting Federated Learning (FL) Models on Edge Devices by Enhancing Model Explainability with Computational Geometry and Advanced Database Architectures. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. Vol. 10 No. 6 (2024): November-December doi : https://doi.org/10.32628/CSEIT24106185
  20. Exenberger, J., Di Salvo, M., Hirsch, T., Wotawa, F., & Schweiger, G. (2024). Generalizable temperature nowcasting with physics-constrained RNNs for predictive maintenance of wind turbine components. arXiv preprint arXiv:2404.04126. https://doi.org/10.48550/arXiv.2404.04126
  21. Gigoni, L., Betti, A., Tucci, M., & Crisostomi, E. (2019). A scalable predictive maintenance model for detecting wind turbine component failures based on SCADA data. arXiv preprint arXiv:1910.09808. https://doi.org/10.48550/arXiv.1910.09808
  22. Gülen, S. (2019). Gas turbine combined cycle power plants. CRC Press.
  23. Han, J., & Wright, L. M. (2007). Enhanced internal cooling of turbine blades and vanes. NETL Gas Turbine Handbook. https://netl.doe.gov/sites/default/files/gas-turbine-handbook/4-2-2-2.pdf
  24. Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. *Global Journal of Engineering and Technology Advances*, 19(01), 006-036.
  25. Igba E., Ihimoyan, M. K.,  Awotinwo, B., & Apampa, A. K. (2024). Integrating BERT, GPT, Prophet Algorithm, and Finance Investment Strategies for Enhanced Predictive Modeling and Trend Analysis in Blockchain Technology. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 1620-1645.https://doi.org/10.32628/CSEIT241061214 
  26. Igba, E., Danquah, E. O.,  Ukpoju, E. A.,   Obasa, J.,  Olola, T. M., & Enyejo, J. O. (2024). Use of Building Information Modeling (BIM) to Improve Construction Management in the USA. World Journal of Advanced Research and Reviews, 2024, 23(03), 1799–1813. https://wjarr.com/content/use-building-information-modeling-bim-improve-construction-management-usa
  27. Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I & Daniel, D. O. (2024). Integrating community-based partnerships for enhanced health outcomes: A collaborative model with healthcare providers, clinics, and pharmacies across the USA. Open Access Research Journal of Biology and Pharmacy, 2024, 10(02), 081–104. https://oarjbp.com/content/integrating-community-based-partnerships-enhanced-health-outcomes-collaborative-model
  28. Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I., Olajide, F. I. & Enyejo, L. A. (2024). Precision healthcare analytics: Integrating ML for automated image interpretation, disease detection, and prognosis prediction. World Journal of Biology Pharmacy and Health Sciences, 2024, 18(01), 336–354. https://wjbphs.com/sites/default/files/WJBPHS-2024-0214.pdf
  29. Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf
  30. Jacobs, A. F. (2009). FUEL FOR THOUGHT (October-mid December 2008). Energy & Environment, 20.
  31. Jardine, A. K. S., Lin, D., & Banjevic, D. (2006). A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mechanical Systems and Signal Processing, 20(6), 1483–1510. https://doi.org/10.1016/j.ymssp.2005.09.012
  32. Karim, R., Galar, D., & Kumar, U. (2023). AI factory: theories, applications and case studies. CRC Press.
  33. Kashyapa, R. (2021). What Is Predictive Maintenance And How Can It Help You? https://qualitastech.com/quality-control-insights/what-is-predictive-maintenance-and-how-can-it-help-you/
  34. Kumar, A., & Gupta, R. (2024). Development of a modified gas turbine-based sustainable power generation system. Renewable and Sustainable Energy Reviews, 158, 112-120. https://doi.org/10.1016/j.rser.2024.109852
  35. Lawal, Y. A., Sanwoolu, J. A., Adebayo, O. T., & Olateju, O. I. (2024). Enhancing Sustainability in Project Management through Smart Technology Integration: A Case Study Approach to Green Building Projects. Dutch Journal of Finance and Management, 7(2).
  36. Max. (2022). The Practical Guide To The Difference Between Gas Turbine and Steam Turbines. https://www.linquip.com/blog/difference-between-gas-turbine-and-steam-turbines/
  37. Mechanical Engineering world (2025). Steam Turbine Efficiency. https://www.linkedin.com/pulse/steam-turbine-efficiency-mechanical-engineering-world-pohoc
  38. Mobley, R. K. (2002). An introduction to predictive maintenance. Butterworth-Heinemann.
  39. Mrzljak, V., Anđelić, N., Lorencin, I., & Baressi Šegota, S. (2021). The influence of various optimization algorithms on nuclear power plant steam turbine exergy efficiency and destruction. arXiv preprint arXiv:2107.03897. https://doi.org/10.48550/arXiv.2107.03897
  40. Najjar, Y. S. (2001). Efficient use of energy by utilizing gas turbine combined systems. Applied Thermal Engineering, 21(4), 407-438.
  41. Okeke, R. O., Ibokette, A. I., Ijiga, O. M., Enyejo, L. A., Ebiega, G. I., & Olumubo, O. M. (2024). The reliability assessment of power transformers. *Engineering Science & Technology Journal*, 5(4), 1149-1172.
  42. Okoh, O. F., Ukpoju, E. A., Otakwu. A., Ayoolad, V. B. & Enyejo, L. A. (2024). CONSTRUCTION MANAGEMENT: SOME ISSUES IN THE CONSTRUCTION PROJECT. Engineering Heritage Journal (GWK). ISSN: 2521-0440 (Online).  DOI: http://doi.org/10.26480/gwk.01.2024.42.50
  43. Onwusinkwue, S., Osasona, F., Ahmad, I. A. I., Anyanwu, A. C., Dawodu, S. O., Obi, O. C., & Hamdan, A. (2024). Artificial intelligence (AI) in renewable energy: A review of predictive maintenance and energy optimization. World Journal of Advanced Research and Reviews, 21(1), 2487-2499.
  44. Sayyaadi, H., & Mehrabipour, R. (2012). Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger. Energy, 38(1), 362-375.
  45. Seshadri, L., Kumar, P., Nassar, A., & Giri, G. (2022). Analysis of turbomachinery losses in sCO2 Brayton power blocks. Journal of Energy Resources Technology, 144(11), 112101.
  46. Smith, J., & Patel, M. (2024). Gas turbines in modern power plants: Efficiency, flexibility, and environmental impact. Energy Science & Engineering, 12(3), 345-360. https://doi.org/10.1002/ese3.1234
  47. Telford, S., Mazhar, M. I., & Howard, I. (2011). Condition based maintenance (CBM) in the oil and gas industry: An overview of methods and techniques. In Proceedings of the 2011 international conference on industrial engineering and operations management, Kuala Lumpur, Malaysia (pp. 22-24).
  48. U.S. Energy Information Administration. (2020). How electricity is generated. U.S. Energy Information Administration. Retrieved from
  49. Ugbane, S. I., Umeaku, C., Idoko, I. P., Enyejo, L. A., Michael, C. I. & Efe, F. (2024). Optimization of Quadcopter Propeller Aerodynamics Using Blade Element and Vortex Theory. International Journal of Innovative Science and Research Technology. Volume 9, Issue 10, October– 2024 ISSN No:-2456-2165.   https://doi.org/10.38124/ijisrt/IJISRT24OCT1820
  50. Veeravalli, S. D. (2025). INTEGRATION OF SALESFORCE DATA CLOUD AND AGENT FORCE: A TECHNICAL ANALYSIS. Technology (IJRCAIT), 8(1).
  51. Wu, C., Yang, X., Tang, X., Ding, J., & Weng, P. (2023). A cooled turbine blade design and optimization method considering both aerodynamic and heat transfer performance. Physics of Fluids, 36(1), 016132. https://doi.org/10.1063/5.0137217
  52. Xu, C., & Amano, R. S. (2001). Flux-splitting finite volume method for turbine flow and heat transfer analysis. Computational Mechanics, 27(2), 119–127. https://doi.org/10.1007/s004660100274
  53. Xu, C., & Amano, R. S. (2001). Flux-splitting finite volume method for turbine flow and heat transfer analysis. Computational Mechanics, 27(2), 119–127. https://doi.org/10.1007/s004660100274
  54. Xu, C., Amano, R. S., & Lee, E. K. (2004). Computational analysis of pitch-width effects on the secondary flows of turbine blades. Computational Mechanics, 34(2), 111–120. https://doi.org/10.1007/s00466-004-0601-1
  55. Xu, C., Amano, R. S., & Lee, E. K. (2004). Computational analysis of pitch-width effects on the secondary flows of turbine blades. Computational Mechanics, 34(2), 111–120. https://doi.org/10.1007/s00466-004-0601-1
  56. Yildirim, M., Gebraeel, N. Z., & Sun, X. A. (2016). Integrated predictive analytics & optimization for opportunistic maintenance and operations in wind farms. IEEE Transactions on Power Systems, 31(4), 2969–2978. https://doi.org/10.1109/TPWRS.2016.2527238
  57. Yildirim, M., Gebraeel, N. Z., & Sun, X. A. (2016). Integrated Predictive Analytics & Optimization for Opportunistic Maintenance and Operations in Wind Farms. IEEE Transactions on Power Systems, 31(4), 2969–2978. https://ieeexplore.ieee.org/document/7462421
  58. Zhan, X., Xu, H., Zhang, Y., Zhu, X., Yin, H., & Zheng, Y. (2021). DeepThermal: Combustion optimization for thermal power generating units using offline reinforcement learning. arXiv preprint arXiv:2102.11492. https://doi.org/10.48550/arXiv.2102.11492
  59. Zhang, S., Luo, M., Qian, H., Liu, L., Yang, H., Zhang, Y., ... & Zhang, W. (2023). A review of valve health diagnosis and assessment: Insights for intelligence maintenance of natural gas pipeline valves in China. Engineering Failure Analysis, 153, 107581.
  60. Zheng, H., Paiva, A. R., & Gurciullo, C. S. (2020). Advancing from predictive maintenance to intelligent maintenance with AI and IIoT. arXiv preprint arXiv:2009.00351. https://doi.org/10.48550/arXiv.2009.00351

The performance of gas and steam turbines plays a pivotal role in the efficiency and sustainability of power generation systems. This review explores innovative approaches to optimizing turbine performance through predictive maintenance and thermal optimization, with a focus on enhancing the sustainability and cost-effectiveness of power plants. Predictive maintenance, leveraging advanced data analytics, machine learning algorithms, and Internet of Things (IoT) technologies, enables early detection of turbine faults and performance degradation, thereby reducing downtime and maintenance costs. Thermal optimization techniques, such as advanced cooling systems, improved heat recovery processes, and optimized combustion strategies, are essential for maximizing the thermal efficiency of turbines and minimizing energy losses. The integration of both strategies—predictive maintenance and thermal optimization—enables power plants to achieve optimal performance, reduce fuel consumption, extend the lifespan of turbines, and contribute to the reduction of carbon emissions. This paper also examines case studies and the application of these technologies in the context of modern gas and steam turbine systems, providing insights into their potential to drive sustainable and cost-effective power generation solutions. Furthermore, challenges such as high capital investment, technological complexity, and the need for skilled workforce development are discussed, along with recommendations for overcoming these barriers to achieve the full potential of predictive maintenance and thermal optimization.

Keywords : Predictive Maintenance (PdM); Thermal Optimization; Gas Turbines; Steam Turbines; Power Generation; Energy Efficiency.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe