Authors :
Jibrin Abdullahi; Aminu Alhaji Abdulhamid
Volume/Issue :
Volume 9 - 2024, Issue 5 - May
Google Scholar :
https://tinyurl.com/5cyb3kmc
Scribd :
https://tinyurl.com/57nu63rn
DOI :
https://doi.org/10.38124/ijisrt/IJISRT24MAY479
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
This study investigates transformer
performance by combining Finite Element Method
(FEM) and MATLAB/Simulink modeling and
simulations, focusing on efficiency, core losses, and
ferroresonance phenomena. Analyzing transformer
behaviors, including anisotropy and non-linearity, via
FEM simulations and analytical formulations reveals
significant insights. Grounded in the Nonlinear
Inductance Electromagnetic Transformer (NIEMT)
Model and Maxwell's equations, the study models core
losses, reluctivity, and relative permeability to capture
magnetic flux dynamics. MATLAB/Simulink models
simulate ferroresonance effects on distribution
transformer behavior in low voltage power systems.
Findings highlight differences in ferroresonance
resilience: Total Harmonic Distortion (THD) in the
baseline transformer is up to 30% higher than in the
optimized transformer. Additionally, respective flux
density and losses are 40% and 2.55% higher in the
baseline compared to the optimized transformer,
demonstrating how design changes enhance performance.
Experimental validation underscores practical
implications, while ferroresonance analysis identifies
stability challenges and mitigation strategies. This
research offers valuable insights for transformer design
and power system stability enhancement.
Keywords :
Finite Element Method (FEM), Ferroresonance Phenomena, Anisotropy, NIEMT Model, Maxwell's Equations, Total Harmonic Distortion (THD).
References :
- Roy, M., & Roy, C. K. (2009). A Study on Ferroresonance with Varying Initial Conditions using a Nonlinear Model of Transformer. In 2009 Third International Conference on Power Systems (pp. 213). Kharagpur, India: IEEE. DOI: 10.1109/ICPES.2009.5384247.
- Hepziba, R. J., Balaji, G., Muralikrishna, R., & Rathinavel, S. (2024). A Case Study on Transformer Ferroresonance for Subsea Cable Connected 230 kV Substations using PSCAD. Electric Power Systems Research, 230, 110192. ISSN 0378-7796. https://doi.org/10.1016/j.epsr.2024.110192.
- Abdul-Malek, Z., Mehranzamir, K., Salimi, B., Nabipour Afrouzi, H., & Vahabi Mashak, S. (2013). Investigation of Ferroresonance Mitigation Techniques in Voltage Transformer Using ATP-EMTP Simulation. Jurnal Teknologi, 64(4), 85–95. Retrieved from www.jurnalteknologi.utm.my.
- Kutija, M. & Pravica, L. (2021). Effect of Harmonics on Ferroresonance in Low Voltage Power Factor Correction System - A Case Study. Applied Sciences, 11(10), 1-20. https://doi.org/10.3390/app11104322.
- Koledowo, S. O., Ashigwuike, E. C. & Bawa, A. (2020). A Study of Ferroresonance in Underground Distribution Network for 15MVA, 33/11 kV Injection Substation. Nigerian Journal of Technology (NIJOTECH), 39(1), 219-227. http://dx.doi.org/10.4314/njt.v39i1.25.
- Olguín-Becerril, M. A., Angeles-Camacho, C., & Fuerte-Esquivel, C. R. (2014). Ferroresonance in subharmonic 3rd mode in an inductive voltage transformer, a real case analysis. Electrical Power and Energy Systems, 61, 318–325. https://doi.org/10.1016/j.ijepes.2014.03.057.
- Erbay, A. (2012). Parameter Study of Ferro-Resonance with Harmonic Balance Method. Supervised Degree Project in Parameter Study of Ferro-Resonance with Harmonic Balance Method. Stockholm, Sweden: Electric Power Systems. XR-EE-ES 2012:010.
- Ang, S. P. (2010). Ferroresonance Simulation Studies of Transmission Systems. Doctoral dissertation, The University of Manchester, Faculty of Engineering and Physical Sciences, School of Electrical and Electronic Engineering. Retrieved from: https://core.ac.uk/download/pdf/40031831.pdf.
- Ma, X., Jia, R., Liang, C., Du, H., Dong, X., & Ding, M. (2022). Study of Transformer Harmonic Loss Characteristic in Distribution Network Based on Field-Circuit Coupling Method. Sustainability, 14(20), 12975. https://doi.org/10.3390/su142012975.
- Thinh, D. X., Halim, H. A., Liu, Z., & Phung, T. (2016). Voltage harmonic effect on losses in distribution transformers. In 2016 IEEE International Conference on Sustainable Green Technologies and Environmental Impact of ICT (ICSGTEIS) (pp. 1-4). IEEE. DOI: 10.1109/ICSGTEIS.2016.7885761.
- Mokryani, G., Haghifam, M., Latafat, H., & Gharbali, A. A. (2010). Analysis of ferroresonance in a 20kV distribution network. In 2010 International Power and Energy Conference (PECon) (pp. 305-309). IEEE. DOI: 10.1109/PEITS.2009.5407008.
- Rojas, R. E., Chaves, J. S., & Tavares, M. C. (2023). Ferroresonance mitigation for the unconventional rural electrification system. Electric Power Systems Research, 223, 109590. https://doi.org/10.1016/j.epsr.2023.109590.
- Mousavi, S. A. (2015). Electromagnetic modelling of power transformers for study and mitigation of effects of GICs [Doctoral thesis, Royal Institute of Technology (KTH), School of Electrical Engineering, Division of Electromagnetic Engineering]. Teknikringen 33 SE–100 44 Stockholm, Sweden.
- Ferreira, R. S. d. A., Picher, P., Meghnefi, F., Fofana, I., Ezzaidi, H., Volat, C., & Behjat, V. (2023). Reproducing Transformers’ Frequency Response from Finite Element Method (FEM) Simulation and Parameters Optimization. Energies, 16(11), 4364. https://doi.org/10.3390/en16114364.
- Mehboob, N. (2012). Hysteresis Properties of Soft Magnetic Materials (Doctoral dissertation). University of Vienna.
- Sarac, V. (2017). FEM 2D and 3D design of transformer for core losses computation. In Scientific Proceedings XIV International Congress "Machines. Technologies. Materials." 2017 - Summer Session. Faculty of Electrical Engineering, University "Goce Delcev", R. Macedonia.
- Chen, Y., & Pillay, P. (2002). An improved formula for lamination core loss calculations in machines operating with high frequency and high flux density excitation. In Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344) (pp. 759-766 vol.2). Pittsburgh, PA, USA. DOI: 10.1109/IAS.2002.1042645.
- Riemer, B., Lange, E., & Hamayer, K. (2013). Calculation of the flux density distribution of three phase five limb power transformers considering nonlinear material properties. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 32(4), 1230-1243.
- Digalovski, M., Petkovska, L., & Najdenkoski, K. (2013). Determination of three-phase transformer reactances with 3D finite element method. International Journal on Information Technology and Security, 4(2), 65-72.
- Sudha, B., Praveen, L. S. & Vadde, A. (2022). Classification of Faults in Distribution Transformer Using Machine Learning. Materials Today: Proceedings, 58(1), 616-622. https://doi.org/10.1016/j.matpr.2022.04.514.
- Agarwala, A., Tahsin, T., Ali, M. F., Sarker, S. K., Hussain, S., Das, A. S. K., Das, P., Hasan, M. M., Tasneem, Z., Islam, M. M., Islam, M. R., Badal, M. F. R. & Ahamed, M. H. (2024). Towards next generation power grid transformer for renewables: Technology review. Engineering Reports. Advance online publication. https://doi.org/10.1002/eng2.12848.
- Worku, M. Y. (2022). Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review. Sustainability, 14(10), 1-18. https://doi.org/10.3390/su14105985.
- Behdani, B., Allahbakhshi, M., & Tajdinian, M. (2021). On the Impact of Geomagnetically Induced Currents in Driving Series Capacitor Compensated Power Systems to Ferroresonance. International Journal of Electrical Power & Energy Systems, 125 (2), 106424. https://doi.org/10.1016/j.ijepes.2020.106424.
- Huang, S.J. & Hsieh, C.H. (2013). Relation Analysis for Ferroresonance of Bus Potential Transformer and Circuit Breaker Grading Capacitance. International Journal of Electrical Power & Energy Systems, 51(10), 61-70. https://doi.org/10.1016/j.ijepes.2013.03.005.
- Kraszewski, W., Syrek, P. & Mitoraj, M. (2022). Methods of Ferroresonance Mitigation in Voltage Transformers in a 30 kV Power Supply Network. Energies, 15(24), 1 - 17. https://doi.org/10.3390/en15249516.
- Ding, N., Wang, Q., Chen, Y., Xie, P., Liu, Z., Zheng, H.T. & Sun, M. (2023). Applying Second Order Optimization to Deep Transformers with Parameter-Efficient Tuning. (Accessed online on 2/6/2023). Retrieved from https://openreview.net/forum?id=4Fi-5Jiyy5w.
- Hamzaçebi, C. (2020). Taguchi Method as a Robust Design Tool. In Quality Control: Intelligent Manufacturing, Robust Design and Charts. doi: 10.5772/intechopen.94908.
- Barua, A., Deb, P. K., Maheshwari, R. & Tekade, R. K. (2018). Statistical Techniques in Pharmaceutical Product Development. In R. K. Tekade (Ed.), Advances in Pharmaceutical Product Development and Research: Dosage Form Design Parameters (pp. 339-362). Academic Press.
- Pramono, W.B., Wijaya, F.D., Hadi, S.P., Wahyudi, M.S. & Indarto, A. (2023). Designing Power Transformer Using Particle Swarm Optimization with Respect to Transformer Noise, Weight, and Losses. Designs, 7(31), 1-22. Doi:10.3390/designs7010031.
- Hernandez, C., Lara, J., Arjona, M. A. & Melgoza-Vazquez, E. (2023). Multi-Objective Electromagnetic Design Optimization of a Power Transformer Using 3D Finite Element Analysis, Response Surface Methodology, and the Third Generation Non-Sorting Genetic Algorithm. Energies, 16(5), 1-21. https://doi.org/10.3390/en16052248.
- Li, H., Han, L., He, B. & Yang, S. (2001). Application research based on improved genetic algorithm for optimum design of power transformers. In ICEMS'2001. Proceedings of the Fifth International Conference on Electrical Machines and Systems (IEEE Cat. No.01EX501) (pp. 242-245 vol.1). Shenyang, China. doi: 10.1109/ICEMS.2001.970657.
- Zhang, K., Chen, W., Cao, X., Song, Z., Qiao, G. & Sun, L. (2018). Optimization Design Of High-Power High-Frequency Transformer Based On Multi-Objective Genetic Algorithm. In 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC) (pp. 1-5). Shenzhen, China. doi: 10.1109/PEAC.2018.8590371.
- Kul, S., Tezcan, S. S., Duysak, H., & Celtek, S. A. (2022). FEM-based Modeling and Optimization of Dry-Type Transformers with Metaheuristic Algorithms. Technical Gazette, 29(5), 1678-1685. doi:10.17559/TV-20220114203522.
- Azizian, D. & Gharehpetian, G. B. (2018). Split-winding transformer design using new hybrid optimization algorithm based on PSO and I-BB-BC. IET Science, Measurement & Technology, 12(7), 936-944. doi: 10.1049/iet-smt.2017.0118.
This study investigates transformer
performance by combining Finite Element Method
(FEM) and MATLAB/Simulink modeling and
simulations, focusing on efficiency, core losses, and
ferroresonance phenomena. Analyzing transformer
behaviors, including anisotropy and non-linearity, via
FEM simulations and analytical formulations reveals
significant insights. Grounded in the Nonlinear
Inductance Electromagnetic Transformer (NIEMT)
Model and Maxwell's equations, the study models core
losses, reluctivity, and relative permeability to capture
magnetic flux dynamics. MATLAB/Simulink models
simulate ferroresonance effects on distribution
transformer behavior in low voltage power systems.
Findings highlight differences in ferroresonance
resilience: Total Harmonic Distortion (THD) in the
baseline transformer is up to 30% higher than in the
optimized transformer. Additionally, respective flux
density and losses are 40% and 2.55% higher in the
baseline compared to the optimized transformer,
demonstrating how design changes enhance performance.
Experimental validation underscores practical
implications, while ferroresonance analysis identifies
stability challenges and mitigation strategies. This
research offers valuable insights for transformer design
and power system stability enhancement.
Keywords :
Finite Element Method (FEM), Ferroresonance Phenomena, Anisotropy, NIEMT Model, Maxwell's Equations, Total Harmonic Distortion (THD).