Optimization of Process Parameters for Turning Operation on D3 Die Steel


Authors : Asabe Maruti P; Dr. Sonawane S.A.

Volume/Issue : Volume 9 - 2024, Issue 4 - April

Google Scholar : https://tinyurl.com/4y9mdp35

Scribd : https://tinyurl.com/hxb72vnk

DOI : https://doi.org/10.38124/ijisrt/IJISRT24APR028

Abstract : This research aims to determine the optimal Surface Roughness for machining D3 die steel alloy with uncoated carbide inserts. It will do this by studying the most efficient turning parameters, such as cutting speed, feed, and depth of cut. Models have been generated using a variety of statistical modeling approaches, including Genetic Algorithm with Response Surface Methodology. This research aimed to use the regression technique to develop a model that could predict surface roughness. It has also been investigated if the Taguchi Technique may be used to optimize process parameters. To decide the primary boundaries affecting Surface Unpleasantness, we used Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) tests. This paper aims to contribute valuable insights into achieving the best Surface Roughness outcomes in the machining process for D3 die steel alloy with Uncoated Carbide Inserts. The utilization of Genetic Algorithm and Response Surface Methodology showcases a robust approach for modelling intricate parameter interactions. If you know the values of the parameters, you may use the Regression Technique to forecast the surface roughness. Process parameter optimization may be made more systematic with the use of the Taguchi Technique.

Keywords : Turning Operation, Surface Roughness, Mathematical Model, ANOVA, Taguchi Technique.

This research aims to determine the optimal Surface Roughness for machining D3 die steel alloy with uncoated carbide inserts. It will do this by studying the most efficient turning parameters, such as cutting speed, feed, and depth of cut. Models have been generated using a variety of statistical modeling approaches, including Genetic Algorithm with Response Surface Methodology. This research aimed to use the regression technique to develop a model that could predict surface roughness. It has also been investigated if the Taguchi Technique may be used to optimize process parameters. To decide the primary boundaries affecting Surface Unpleasantness, we used Signal-to-Noise (S/N) ratio and Analysis of Variance (ANOVA) tests. This paper aims to contribute valuable insights into achieving the best Surface Roughness outcomes in the machining process for D3 die steel alloy with Uncoated Carbide Inserts. The utilization of Genetic Algorithm and Response Surface Methodology showcases a robust approach for modelling intricate parameter interactions. If you know the values of the parameters, you may use the Regression Technique to forecast the surface roughness. Process parameter optimization may be made more systematic with the use of the Taguchi Technique.

Keywords : Turning Operation, Surface Roughness, Mathematical Model, ANOVA, Taguchi Technique.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe