Neural Radiance Fields-Comprehensive Survey


Authors : Anay Dongre

Volume/Issue : Volume 8 - 2023, Issue 1 - January

Google Scholar : https://bit.ly/3IIfn9N

Scribd : https://bit.ly/3JQInR1

DOI : https://doi.org/10.5281/zenodo.7597137

Abstract : Neural Radiance Fields (NeRF) is a machine learning model that can generate high-resolution, photorealistic 3D models of scenes or objects from a set of 2D images. It does this by learning a continuous 3D function that maps positions in 3D space to the radiance (intensity and color) of the light that would be observed at that position in the scene. To create a NeRF model, the model is trained on a dataset of 2D images of the scene or object, along with their corresponding 3D positions and orientations. The model learns to predict the radiance at each 3D position in the scene by using a combination of convolutional neural networks (CNNs) and a differentiable renderer.

Neural Radiance Fields (NeRF) is a machine learning model that can generate high-resolution, photorealistic 3D models of scenes or objects from a set of 2D images. It does this by learning a continuous 3D function that maps positions in 3D space to the radiance (intensity and color) of the light that would be observed at that position in the scene. To create a NeRF model, the model is trained on a dataset of 2D images of the scene or object, along with their corresponding 3D positions and orientations. The model learns to predict the radiance at each 3D position in the scene by using a combination of convolutional neural networks (CNNs) and a differentiable renderer.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe