Nerve Physiology and Injury: Mechanisms, Responses, and Therapeutic Approaches


Authors : Mangalparthi Sai Shashank; Soni Nileshkumar Indarbhai; Barot Siddhant Dineshkumar; Anannya Vakheel; Nand Lal

Volume/Issue : Volume 9 - 2024, Issue 11 - November


Google Scholar : https://tinyurl.com/p456jmh7

Scribd : https://tinyurl.com/yc6xwfm2

DOI : https://doi.org/10.38124/ijisrt/IJISRT24NOV808

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Nerve injuries represent a significant clinical challenge due to the complex structure and function of the nervous system, as well as the limited regenerative capacity, particularly within the central nervous system (CNS). This review examines nerve physiology and the mechanisms involved in nerve injury and repair, providing a comprehensive foundation for understanding current and emerging therapeutic approaches. We begin with an exploration of the anatomical and functional organization of nerves, including the roles of key cellular components such as Schwann cells and glial cells, which are essential for maintaining nerve integrity and facilitating repair in the peripheral nervous system (PNS). Nerve injuries are classified based on the degree of structural damage and involve distinct molecular and cellular responses, including Wallerian degeneration, immune modulation, and the activation of neurotrophic factors. Therapeutic strategies for nerve repair range from surgical interventions, such as nerve grafts and transfers, to pharmacological treatments that manage pain and enhance neuroprotection. Emerging approaches, including stem cell and gene therapies, as well as the development of advanced biomaterials, are advancing our ability to support nerve regeneration and improve functional outcomes. However, challenges such as scar formation, inhibitory molecules in the CNS, and the complexity of immune responses underscore the need for further research to enhance regenerative potential. We highlight critical research gaps and propose future directions, emphasizing the importance of immune modulation, advanced biomaterials, and personalized treatment approaches. By connecting basic physiological insights with innovative therapeutic strategies, this review underscores the potential for integrated, multidisciplinary approaches to address the limitations of nerve repair. This synthesis of knowledge contributes to the advancement of nerve injury management, fostering hope for improved patient outcomes and quality of life following nerve injuries.

Keywords : Nerve Injury; Therapeutic Strategies; Schwann Cells; Oligodendrocytes; Immune Response.

References :

  1. InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. In brief: How does the nervous system work? [Updated 2023 May 4]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279390/
  2. Strommen, J. A., Skinner, S., & Crum, B. A. (2022). Neurophysiology during peripheral nerve surgery. Handbook of clinical neurology, 186, 295–318. https://doi.org/10.1016/B978-0-12-819826-1.00022-3
  3. Menorca, R. M., Fussell, T. S., & Elfar, J. C. (2013). Nerve physiology: mechanisms of injury and recovery. Hand clinics, 29(3), 317–330. https://doi.org/10.1016/j.hcl.2013.04.002
  4. Piagkou, M., Demesticha, T., Skandalakis, P., & Johnson, E. O. (2011). Functional anatomy of the mandibular nerve: consequences of nerve injury and entrapment. Clinical anatomy (New York, N.Y.), 24(2), 143–150. https://doi.org/10.1002/ca.21089
  5. de Carvalho, M., & Swash, M. (2023). Upper and lower motor neuron neurophysiology and motor control. Handbook of clinical neurology, 195, 17–29. https://doi.org/10.1016/B978-0-323-98818-6.00018-2
  6. Garritsen, O., van Battum, E. Y., Grossouw, L. M., & Pasterkamp, R. J. (2023). Development, wiring and function of dopamine neuron subtypes. Nature reviews. Neuroscience, 24(3), 134–152. https://doi.org/10.1038/s41583-022-00669-3
  7. Morell P, Quarles RH. The Myelin Sheath. In: Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven; 1999. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27954/
  8. Althagafi, A., & Nadi, M. (2023). Acute Nerve Injury. In StatPearls. StatPearls Publishing.
  9. Huang, Z., Powell, R., Phillips, J. B., & Haastert-Talini, K. (2020). Perspective on Schwann Cells Derived from Induced Pluripotent Stem Cells in Peripheral Nerve Tissue Engineering. Cells, 9(11), 2497. https://doi.org/10.3390/cells9112497
  10. Pan, B., Guo, D., Jing, L., Li, K., Li, X., Li, G., Gao, X., Li, Z. W., Zhao, W., Feng, H., & Cao, M. H. (2023). Long noncoding RNA Pvt1 promotes the proliferation and migration of Schwann cells by sponging microRNA-214 and targeting c-Jun following peripheral nerve injury. Neural regeneration research, 18(5), 1147–1153. https://doi.org/10.4103/1673-5374.353497
  11. Abe, N., & Cavalli, V. (2008). Nerve injury signaling. Current opinion in neurobiology, 18(3), 276–283. https://doi.org/10.1016/j.conb.2008.06.005
  12. Joseph, L., & Butera, R. J. (2011). High-frequency stimulation selectively blocks different types of fibers in frog sciatic nerve. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society, 19(5), 550–557. https://doi.org/10.1109/TNSRE.2011.2163082
  13. Tavee J. (2019). Nerve conduction studies: Basic concepts. Handbook of clinical neurology, 160, 217–224. https://doi.org/10.1016/B978-0-444-64032-1.00014-X
  14. Tominaga, M., & Takamori, K. (2022). Peripheral itch sensitization in atopic dermatitis. Allergology international : official journal of the Japanese Society of Allergology, 71(3), 265–277. https://doi.org/10.1016/j.alit.2022.04.003
  15. Tereshenko, V., Dotzauer, D. C., Luft, M., Ortmayr, J., Maierhofer, U., Schmoll, M., Festin, C., Carrero Rojas, G., Klepetko, J., Laengle, G., Politikou, O., Farina, D., Blumer, R., Bergmeister, K. D., & Aszmann, O. C. (2022). Autonomic Nerve Fibers Aberrantly Reinnervate Denervated Facial Muscles and Alter Muscle Fiber Population. The Journal of neuroscience : the official journal of the Society for Neuroscience, 42(44), 8297–8307. https://doi.org/10.1523/JNEUROSCI.0670-22.2022
  16. Bosch-Queralt, M., Fledrich, R., & Stassart, R. M. (2023). Schwann cell functions in peripheral nerve development and repair. Neurobiology of disease, 176, 105952. https://doi.org/10.1016/j.nbd.2022.105952
  17. López-Muguruza, E., & Matute, C. (2023). Alterations of Oligodendrocyte and Myelin Energy Metabolism in Multiple Sclerosis. International journal of molecular sciences, 24(16), 12912. https://doi.org/10.3390/ijms241612912
  18. Vainchtein, I. D., & Molofsky, A. V. (2020). Astrocytes and Microglia: In Sickness and in Health. Trends in neurosciences, 43(3), 144–154. https://doi.org/10.1016/j.tins.2020.01.003
  19. Lauryn McLoughlin “Oligodendrocytes: What Are They?” Assay Genie, 22 Jun 2023, https://www.assaygenie.com/blog/oligodendrocytes-what-are-they
  20. Sulaiman, W., & Gordon, T. (2013). Neurobiology of peripheral nerve injury, regeneration, and functional recovery: from bench top research to bedside application. Ochsner journal, 13(1), 100–108.
  21. David J. Magee, BPT, PhD, CM and Robert C. Manske, PT, DPT, SCS, MEd, ATC, CSCS, (12-14-2020), Orthopedic Physical Assessment (7th Edition), Elsevier, ISBN: 9780323522991.
  22. Carballo Cuello CM, De Jesus O. Neurapraxia. [Updated 2023 Aug 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK560501
  23. Chaney B, Nadi M. Axonotmesis. [Updated 2023 Sep 4]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562304/
  24. Matos Cruz AJ, De Jesus O. Neurotmesis. [Updated 2023 Aug 23]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559108/
  25. Lecturio. Peripheral Nerve Injuries in the Upper Extremity. Sunderland classification of nerve injuries [PHOTO]. Leipzig: Lecturio, 2021
  26. Althagafi A, Nadi M. Acute Nerve Injury. [Updated 2023 Aug 7]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK549848/
  27. Wu, D., & Murashov, A. K. (2013). Molecular mechanisms of peripheral nerve regeneration: emerging roles of microRNAs. Frontiers in physiology, 4, 55. https://doi.org/10.3389/fphys.2013.00055
  28. Rotshenker S. (2011). Wallerian degeneration: the innate-immune response to traumatic nerve injury. Journal of neuroinflammation, 8, 109. https://doi.org/10.1186/1742-2094-8-109
  29. Gu, D., Xia, Y., Ding, Z., Qian, J., Gu, X., Bai, H., Jiang, M., & Yao, D. (2024). Inflammation in the Peripheral Nervous System after Injury. Biomedicines, 12(6), 1256. https://doi.org/10.3390/biomedicines12061256
  30. Liao, M. F., Lu, K. T., Hsu, J. L., Lee, C. H., Cheng, M. Y., & Ro, L. S. (2022). The Role of Autophagy and Apoptosis in Neuropathic Pain Formation. International journal of molecular sciences, 23(5), 2685. https://doi.org/10.3390/ijms23052685
  31. Mediators of Inflammation, Volume: 2015, Issue: 1, First published: 31 March 2015, DOI: 10.1155/2015/251204
  32. Life-or-Death Decisions upon Axonal Damage, Roselli, Francesco et al. Neuron, Volume 73, Issue 3, 405 – 407
  33. Davies Alexander J. , Rinaldi Simon , Costigan Michael , Oh Seog Bae, Cytotoxic Immunity in Peripheral Nerve Injury and Pain, Frontiers in Neuroscience, 14, 2020, www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.00142, 10.3389/fnins.2020.00142
  34. Peruzzotti-Jametti, L., Donegá, M., Giusto, E., Mallucci, G., Marchetti, B., & Pluchino, S. (2014). The role of the immune system in central nervous system plasticity after acute injury. Neuroscience, 283, 210–221. https://doi.org/10.1016/j.neuroscience.2014.04.036
  35. Tafti, D., Ehsan, M., & Xixis, K. L. (2024). Multiple Sclerosis. In StatPearls. StatPearls Publishing.
  36. Scholz, J., & Woolf, C. J. (2007). The neuropathic pain triad: neurons, immune cells and glia. Nature neuroscience, 10(11), 1361–1368. https://doi.org/10.1038/nn1992
  37. Carnicer-Lombarte, A., Barone, D. G., Wronowski, F., Malliaras, G. G., Fawcett, J. W., & Franze, K. (2023). Regenerative capacity of neural tissue scales with changes in tissue mechanics post injury. Biomaterials, 303, 122393. https://doi.org/10.1016/j.biomaterials.2023.122393
  38. Tuszynski, M. H., & Steward, O. (2012). Concepts and methods for the study of axonal regeneration in the CNS. Neuron, 74(5), 777–791. https://doi.org/10.1016/j.neuron.2012.05.006
  39. Gomez-Sanchez, J. A., Pilch, K. S., van der Lans, M., Fazal, S. V., Benito, C., Wagstaff, L. J., Mirsky, R., & Jessen, K. R. (2017). After Nerve Injury, Lineage Tracing Shows That Myelin and Remak Schwann Cells Elongate Extensively and Branch to Form Repair Schwann Cells, Which Shorten Radically on Remyelination. The Journal of neuroscience : the official journal of the Society for Neuroscience, 37(37), 9086–9099. https://doi.org/10.1523/JNEUROSCI.1453-17.2017
  40. Li, R., Li, D. H., Zhang, H. Y., Wang, J., Li, X. K., & Xiao, J. (2020). Growth factors-based therapeutic strategies and their underlying signaling mechanisms for peripheral nerve regeneration. Acta pharmacologica Sinica, 41(10), 1289–1300. https://doi.org/10.1038/s41401-019-0338-1
  41. Fitch, M. T., & Silver, J. (2008). CNS injury, glial scars, and inflammation: Inhibitory extracellular matrices and regeneration failure. Experimental neurology, 209(2), 294–301. https://doi.org/10.1016/j.expneurol.2007.05.014
  42. Höke A. (2006). Mechanisms of Disease: what factors limit the success of peripheral nerve regeneration in humans?. Nature clinical practice. Neurology, 2(8), 448–454. https://doi.org/10.1038/ncpneuro0262
  43. Modrak, M., Talukder, M. A. H., Gurgenashvili, K., Noble, M., & Elfar, J. C. (2020). Peripheral nerve injury and myelination: Potential therapeutic strategies. Journal of neuroscience research, 98(5), 780–795. https://doi.org/10.1002/jnr.24538
  44. Piedra Buena IT, Fichman M. Sural Nerve Graft. [Updated 2023 Mar 27]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557715/
  45. M F, G., M, M., S, H., & Khan, W. S. (2014). Peripheral nerve injury: principles for repair and regeneration. The open orthopaedics journal, 8, 199–203. https://doi.org/10.2174/1874325001408010199
  46. Domeshek, L. F., Novak, C. B., Patterson, J. M. M., Hasak, J. M., Yee, A., Kahn, L. C., & Mackinnon, S. E. (2019). Nerve Transfers-A Paradigm Shift in the Reconstructive Ladder. Plastic and reconstructive surgery. Global open, 7(6), e2290. https://doi.org/10.1097/GOX.0000000000002290
  47. Binnetoglu, A., Demir, B., Akakin, D. et al. Bacterial cellulose tubes as a nerve conduit for repairing complete facial nerve transection in a rat model. Eur Arch Otorhinolaryngol 277, 277–283 (2020). https://doi.org/10.1007/s00405-019-05637-9
  48. Gschwind, C.R., Ledgard, J.P., Scott, T.R.D. (2023). Neuroengineering of the Upper Limb: Manipulation of the Peripheral and Central Nervous System to Improve Function. In: Thakor, N.V. (eds) Handbook of Neuroengineering. Springer, Singapore. https://doi.org/10.1007/978-981-16-5540-1_55
  49. Ding, W., Li, X., Pan, J., Zhang, P., Yin, S., Zhou, X., Li, J., Wang, L., Wang, X., & Dong, J. (2020). Repair Method for Complete High Ulnar Nerve Injury Based on Nerve Magnified Regeneration. Therapeutics and clinical risk management, 16, 155–168. https://doi.org/10.2147/TCRM.S237851
  50. Wilcox, M., Gregory, H., Powell, R., Quick, T. J., & Phillips, J. B. (2020). Strategies for Peripheral Nerve Repair. Current tissue microenvironment reports, 1(2), 49–59. https://doi.org/10.1007/s43152-020-00002-z
  51. McNicol, E. D., Midbari, A., & Eisenberg, E. (2013). Opioids for neuropathic pain. The Cochrane database of systematic reviews, 2013(8), CD006146. https://doi.org/10.1002/14651858.CD006146.pub2
  52. Davari, M., Amani, B., Amani, B., Khanijahani, A., Akbarzadeh, A., & Shabestan, R. (2020). Pregabalin and gabapentin in neuropathic pain management after spinal cord injury: a systematic review and meta-analysis. The Korean journal of pain, 33(1), 3–12. https://doi.org/10.3344/kjp.2020.33.1.3
  53. Teng Wan, Feng-Shi Zhang, Ming-Yu Qin, Hao-Ran Jiang, Meng Zhang, Yang Qu, Yi-Lin Wang, Pei-Xun Zhang, Growth factors: Bioactive macromolecular drugs for peripheral nerve injury treatment – Molecular mechanisms and delivery platforms, Biomedicine & Pharmacotherapy, Volume 170, 2024, 116024, doi.org/10.1016/j.biopha.2023.116024. www.sciencedirect.com/science/article/pii/S075333222301822X
  54. Novak, C. B., & von der Heyde, R. L. (2013). Evidence and techniques in rehabilitation following nerve injuries. Hand clinics, 29(3), 383–392. https://doi.org/10.1016/j.hcl.2013.04.012
  55. Hite, S. L., Hassebrock, J. D., & DeGeorge, B. R. (2024). Optimizing Rehabilitation for Nerve Gap Repair: Evidence-Based Recommendations. Journal of hand surgery global online, 6(5), 756–759. https://doi.org/10.1016/j.jhsg.2023.12.008
  56. Machado-Pereira, N. A. M. M., do Nascimento, P. S., de Freitas, G. R., Bobinski, F., do Espírito Santo, C. C., & Ilha, J. (2024). Electrical Stimulation Prevents Muscular Atrophy and the Decrease of Interleukin-6 in Paralyzed Muscles after Spinal Cord Injury in Rats. Revista brasileira de ortopedia, 59(4), e526–e531. https://doi.org/10.1055/s-0044-1787767
  57. Kaminska, A., Radoszkiewicz, K., Rybkowska, P., Wedzinska, A., & Sarnowska, A. (2022). Interaction of Neural Stem Cells (NSCs) and Mesenchymal Stem Cells (MSCs) as a Promising Approach in Brain Study and Nerve Regeneration. Cells, 11(9), 1464. https://doi.org/10.3390/cells11091464
  58. Hoyng, S. A., de Winter, F., Tannemaat, M. R., Blits, B., Malessy, M. J., & Verhaagen, J. (2015). Gene therapy and peripheral nerve repair: a perspective. Frontiers in molecular neuroscience, 8, 32. https://doi.org/10.3389/fnmol.2015.00032
  59. Teoli D, Dua A, An J. Transcutaneous Electrical Nerve Stimulation. [Updated 2024 Mar 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537188/
  60. Huebner, E. A., & Strittmatter, S. M. (2009). Axon regeneration in the peripheral and central nervous systems. Results and problems in cell differentiation, 48, 339–351. https://doi.org/10.1007/400_2009_19
  61. Chang Sun, Junhao Deng, Yifei Ma, Fanqi Meng, Xiang Cui, Ming Li, Jiantao Li, Jia Li, Pengbin Yin, Lingjie Kong, Licheng Zhang, Peifu Tang, The dual role of microglia in neuropathic pain after spinal cord injury: Detrimental and protective effects, Experimental Neurology, Volume 370, 2023, ISSN 0014-4886, https://doi.org/10.1016/j.expneurol.2023.114570.
  62. Sayad Fathi, S., & Zaminy, A. (2017). Stem cell therapy for nerve injury. World journal of stem cells, 9(9), 144–151. https://doi.org/10.4252/wjsc.v9.i9.144
  63. Powell, R., Eleftheriadou, D., Kellaway, S., & Phillips, J. B. (2021). Natural Biomaterials as Instructive Engineered Microenvironments That Direct Cellular Function in Peripheral Nerve Tissue Engineering. Frontiers in bioengineering and biotechnology, 9, 674473. https://doi.org/10.3389/fbioe.2021.674473
  64. Jiang, J., Yu, Y., Zhang, Z., Ji, Y., Guo, H., Wang, X., & Yu, S. (2021). Effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 54(9), e10842. https://doi.org/10.1590/1414-431X2020e10842
  65. Willerth SM, Sakiyama-Elbert SE. Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. 2008 Jul 9. In: StemBook [Internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK27050/ doi: 10.3824/stembook.1.1.1

Nerve injuries represent a significant clinical challenge due to the complex structure and function of the nervous system, as well as the limited regenerative capacity, particularly within the central nervous system (CNS). This review examines nerve physiology and the mechanisms involved in nerve injury and repair, providing a comprehensive foundation for understanding current and emerging therapeutic approaches. We begin with an exploration of the anatomical and functional organization of nerves, including the roles of key cellular components such as Schwann cells and glial cells, which are essential for maintaining nerve integrity and facilitating repair in the peripheral nervous system (PNS). Nerve injuries are classified based on the degree of structural damage and involve distinct molecular and cellular responses, including Wallerian degeneration, immune modulation, and the activation of neurotrophic factors. Therapeutic strategies for nerve repair range from surgical interventions, such as nerve grafts and transfers, to pharmacological treatments that manage pain and enhance neuroprotection. Emerging approaches, including stem cell and gene therapies, as well as the development of advanced biomaterials, are advancing our ability to support nerve regeneration and improve functional outcomes. However, challenges such as scar formation, inhibitory molecules in the CNS, and the complexity of immune responses underscore the need for further research to enhance regenerative potential. We highlight critical research gaps and propose future directions, emphasizing the importance of immune modulation, advanced biomaterials, and personalized treatment approaches. By connecting basic physiological insights with innovative therapeutic strategies, this review underscores the potential for integrated, multidisciplinary approaches to address the limitations of nerve repair. This synthesis of knowledge contributes to the advancement of nerve injury management, fostering hope for improved patient outcomes and quality of life following nerve injuries.

Keywords : Nerve Injury; Therapeutic Strategies; Schwann Cells; Oligodendrocytes; Immune Response.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe