Managing Cardiovascular Toxicities in Cancer Therapy


Authors : Subrahmaniyan Sujitha Lekshmi; Areebah Latif; Sadiya Qureshi; Ruby Sunny Agbana; Zoya Shaikh; Kavya Sivalingam

Volume/Issue : Volume 10 - 2025, Issue 7 - July


Google Scholar : https://tinyurl.com/ydtk7xe4

Scribd : https://tinyurl.com/26uf6yhw

DOI : https://doi.org/10.38124/ijisrt/25jul1838

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 30 to 40 days to display the article.


Abstract : Cancer therapy advancements have significantly increased the survival rates and concurrently led to the rise of the subspeciality of cardio-oncology, due to the cardiovascular side effects associated with cancer therapy. A broad spectrum of cardiotoxic effects arises due to cancer therapy, such as structural damage, cardiac arrhythmias, hypercoagulability, thrombosis, and bleeding risks, ultimately resulting in acute or chronic heart failure. Timely interventions, including early identification of cardiac dysfunction, are adopted to improve clinical outcomes for oncology patients. This review explores the spectrum of cardiotoxic effects due to cancer therapy, as well as screening strategies for cardiovascular dysfunction. It also discusses the underlying mechanisms and risk factors that led to cardiac damage due to oncologic treatment. Prevention and management strategies include the use of modified chemotherapeutic agents, cardio-protectants such as dexrazoxane, medical cardio- protection using ACE inhibitors and ARBs, along with lifestyle modifications. The review also highlights future directions in biomarker-based early detection, monitoring, and targeted interventions of cardiovascular conditions in cancer patients.

Keywords : “Cardiovascular Toxicity” “Cancer Therapy” “Radiation Therapy” “Arrhythmia” “Left Ventricular Dysfunction” “Anthracyclines” “Biomarkers”.

References :

  1. Strongman H, Gadd S, Matthews A, Mansfield KE, Stanway S, Lyon AR, et al. Medium and long-term risks of specific cardiovascular diseases in survivors of 20 adult cancers: a population-based cohort study using multiple linked UK electronic health records databases. Lancet. 2019;394(10203):1041–54. doi:10.1016/S0140-6736(19)31674-5
  2. Alexandre J, Cautela J, Ederhy S, Damaj GL, Salem J, Barlesi F, et al. Cardiovascular toxicity related to cancer treatment: a pragmatic approach to the American and European Cardio‐Oncology Guidelines. J Am Heart Assoc. 2020;9(18):e018403. doi:10.1161/JAHA.120.018403
  3. Yan T, Yu H, Li T, Dong Y. Mechanisms of cardiovascular toxicities induced by cancer therapies and promising biomarkers for their prediction: a scoping review. Heart Lung Circ. 2024;33(5):605–38. doi:10.1016/j.hlc.2023.12.006
  4. Henriksen PA, Hall P, MacPherson IR, Joshi SS, Singh T, Maclean M, et al. Multicenter, prospective, randomized controlled trial of High-Sensitivity cardiac Troponin I–Guided combination Angiotensin receptor blockade and Beta-Blocker therapy to prevent anthracycline cardiotoxicity: the Cardiac CARE Trial. Circulation. 2023;148(21):1680–90. doi:10.1161/CIRCULATIONAHA.123.064274
  5. Wu C, Lin D, Ma F, Jiang F, Wang Y. New progress in elucidating the relationship between cancer therapy and cardiovascular toxicity. BioSci Trends. 2021;15(4):211–8. doi:10.5582/bst.. 2021.01278
  6. Ruddy KJ, Patel SR, Higgins AS, Armenian SH, Herrmann J. Cardiovascular health during and after cancer therapy. Cancers (Basel). 2020;12(12):3737. doi:10.3390/cancers12123737
  7. Alshahrani AA, Kontopantelis E, Morgan C, Ravindrarajah R, Martin GP, Mamas MA. Cardiovascular diseases in patients with cancer: a comprehensive review of epidemiological trends, cardiac complications, and prognostic implications. Chin Med J (Engl). 2024. doi:10.1097/CM9.0000000000003419
  8. Lee C, Zhang J, Yuan KS, Wu ATH, Wu S. Risk of cardiotoxicity induced by adjuvant anthracycline-based chemotherapy and radiotherapy in young and old Asian women with breast cancer. Strahlenther Onkol. 2019;195(7):629–39. doi:10.1007/s00066-019-01428-7
  9. Peng Y, Li D, Wampfler J, Luo Y, Kumar A, Gu Z, et al. Targeted therapy associated cardiotoxicity in patients with stage IV lung cancer with or without cardiac comorbidities. Oncol Rep. 2024;53(2):8858. doi:10.3892/or.2024.8858
  10. Negishi T, Thavendiranathan P, Penicka M, Lemieux J, Murbraech K, Miyazaki S, et al. Cardioprotection using global longitudinal strain surveillance: the SUCCOUR randomized trial. J Am Coll Cardiol. 2022;79(10):957–67. doi:10.1016/j.jacc.2022.01.019
  11. Madanat L, Gupta R, Weber P, Kumar N, Chandra R, Ahaneku H, et al. Cardiotoxicity of biological therapies in cancer patients: An in-depth review. Curr Cardiol Rev. 2022;19(3). doi:10.2174/1573403X18666220531094800
  12. Camilli M, Cipolla CM, Dent S, Minotti G, Cardinale DM. Anthracycline cardiotoxicity in adult cancer patients. JACC CardioOncol. 2024;6(5):655–77. doi:10.1016/j.jaccao.2024.07.016
  13. Sotiropoulou IM, Manetas-Stavrakakis N, Kourek C, Xanthopoulos A, Magouliotis D, Giamouzis G, et al. Prevention of anthracyclines and HER2 inhibitor-induced cardiotoxicity: A systematic review and meta-analysis. Cancers (Basel). 2024;16(13):2419. doi:10.3390/cancers16132419
  14. Zhao Y, Jia H, Hua X, An T, Song J. Cardio-oncology: shared genetic, metabolic, and pharmacologic mechanism. Curr Cardiol Rep. 2023;25(8):863–78. doi:10.1007/s11886-023-01906-6
  15. Wong-Siegel JR, Hayashi RJ, Foraker R, Mitchell JD. Cardiovascular toxicities after anthracycline and VEGF-targeted therapies in adolescent and young adult cancer survivors. Cardio-Oncol. 2023;9(1). doi:10.1186/s40959-023-00181-2
  16. Kundnani NR, Passini V, Carlogea IS, Dumitrescu P, Meche V, Buzas R, et al. Overview of oncology: Drug-induced cardiac toxicity. Medicina (Kaunas). 2025;61(4):709. doi:10.3390/medicina61040709
  17. Chin V, Finnegan RN, Keall P, Otton J, Delaney GP, Vinod SK. Overview of cardiac toxicity from radiation therapy. J Med Imaging Radiat Oncol. 2024. doi:10.1111/1754-9485.13757
  18. Lessomo FYN, Mandizadza OO, Mukuka C, Wang Z. A comprehensive review on immune checkpoint inhibitors induced cardiotoxicity characteristics and associated factors. Eur J Med Res. 2023;28(1). doi:10.1186/s40001-023-01464-1
  19. Xiao J, Li X, Wang X, Guan Y, Liu H, Liang J, et al. Clinical characteristics and management of immune checkpoint inhibitor-related cardiotoxicity: A single-center experience. Front Cardiovasc Med. 2023;10. doi:10.3389/fcvm.2023.1093383
  20. Edpuganti S, Thomas KS, Ponnuri SSA, Tomar RK, Kapuge PH. Obesity and metabolic syndrome: Pathophysiological mechanisms driving cardiovascular risk. J Junior Res. 2025;3(3):20–35. doi:10.52340/jr.2025.03.03.03
  21. Edpuganti S. Fungal endocarditis: Microbial insights, diagnostic and therapeutic challenges in the modern era. Explor Cardiol. 2025;3. doi:10.37349/ec.2025.101264
  22. Bouwer NI, Jager A, Liesting C, Kofflard MJ, Brugts JJ, Kitzen JJ, et al. Cardiac monitoring in HER2-positive patients on trastuzumab treatment: A review and implications for clinical practice. Breast. 2020;52:33–44. doi:10.1016/j.breast.2020.04.005
  23. Negishi T, Miyazaki S, Negishi K. Echocardiography and cardio-oncology. Heart Lung Circ. 2019;28(9):1331–8. https://doi.org/10.1016/j.hlc.2019.04.023
  24. Jordan JH, Hundley WG. MRI of cardiotoxicity. Cardiol Clin. 2019;37(4):429–39. https://doi.org/10.1016/j.ccl.2019.07.007
  25. Keramida K, Farmakis D, Fernández TL, Lancellotti P. Focused echocardiography in cardio-oncology. Echocardiography. 2020;37(8):1149–58. https://doi.org/10.1111/echo.14800
  26. Oikonomou EK, Kokkinidis DG, Kampaktsis PN, Amir EA, Marwick TH, Gupta D, et al. Assessment of prognostic value of left ventricular global longitudinal strain for early prediction of chemotherapy-induced cardiotoxicity. JAMA Cardiol. 2019;4(10):1007. https://doi.org/10.1001/jamacardio.2019.2952
  27. Sorodoc V, Sirbu O, Lionte C, Haliga RE, Stoica A, Ceasovschih A, et al. The value of troponin as a biomarker of chemotherapy-induced cardiotoxicity. Life (Basel). 2022;12(8):1183. https://doi.org/10.3390/life12081183
  28. Ananthan K, Lyon AR. The role of biomarkers in cardio-oncology. J Cardiovasc Transl Res. 2020;13(3):431–50. https://doi.org/10.1007/s12265-020-10042-3
  29. Herrmann J, Lenihan D, Armenian S, Barac A, Blaes A, Cardinale D, et al. Defining cardiovascular toxicities of cancer therapies: an International Cardio-Oncology Society (IC-OS) consensus statement. Eur Heart J. 2022;43(4):280–99. https://doi.org/10.1093/eurheartj/ehab674
  30. Franco YL, Vaidya TR, Ait-Oudhia S. Anticancer and cardio-protective effects of liposomal doxorubicin in the treatment of breast cancer. Breast Cancer (Dove Med Press). 2018;10:131–41. https://doi.org/10.2147/BCTT.S170239
  31. Upshaw JN, Parson SK, Buchsbaum RJ, Schlam I, Ruddy KJ, Durani U, et al. Dexrazoxane to prevent cardiotoxicity in adults treated with anthracyclines: JACC: CardioOncology controversies in cardio-oncology. JACC CardioOncol. 2024;6(2):322–4. https://doi.org/10.1016/j.jaccao.2024.02.004
  32. Avila MS, Ayub-Ferreira SM, de Barros Wanderley MR Jr, das Dores Cruz F, Gonçalves Brandão SM, Rigaud VOC, et al. Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial. J Am Coll Cardiol. 2018;71(20):2281–90. https://doi.org/10.1016/j.jacc.2018.02.049
  33. Kourek C, Touloupaki M, Rempakos A, Loritis K, Tsougkos E, Paraskevaidis I, et al. Cardioprotective strategies from cardiotoxicity in cancer patients: a comprehensive review. J Cardiovasc Dev Dis. 2022;9(8):259. https://doi.org/10.3390/jcdd9080259
  34. Osmanska J, Hawkins NM, Toma M, Ignaszewski A, Virani SA. Eligibility for cardiac resynchronization therapy in patients hospitalized with heart failure. ESC Heart Fail. 2018;5(4):668–74. https://doi.org/10.1002/ehf2.12297
  35. Mohammed T, Singh M, Tiu JG, Kim AS. Etiology and management of hypertension in patients with cancer. Cardio-Oncology. 2021;7(1). https://doi.org/10.1186/s40959-021-00101-2
  36. Coppola C, Rienzo A, Piscopo G, Barbieri A, Arra C, Maurea N. Management of QT prolongation induced by anti-cancer drugs: target therapy and old agents. Different algorithms for different drugs. Cancer Treat Rev. 2018;63:135–43. https://doi.org/10.1016/j.ctrv.2017.11.009
  37. Streiff MB, Abutalib SA, Farge D, Murphy M, Connors JM, Piazza G. Update on guidelines for the management of cancer-associated thrombosis. Oncologist. 2021;26(1):e24–40. https://doi.org/10.1002/onco.13596
  38. Spadafora L, Di Muro FM, Intonti C, Massa L, Monelli M, Pedretti RFE, et al. Lifestyle and pharmacological interventions to prevent anthracycline-related cardiotoxicity in cancer patients. J Cardiovasc Dev Dis. 2025;12(6):212. doi:10.3390/jcdd12060212
  39. Rachma B, Savitri M, Sutanto H. Cardiotoxicity in platinum-based chemotherapy: mechanisms, manifestations, and management. Cancer Pathog Ther. 2024;3(2):101–8. doi:10.1016/j.cpt.2024.04.004
  40. Cabrera PR, Dinelli I, Baker N, Bates A, Torrance A, Gajendran I, et al. Cardiomyopathy in childhood cancer survivors: etiology, pathophysiology, diagnosis, treatment, and screening. Prog Pediatr Cardiol. 2024;75:101766. doi:10.1016/j.ppedcard.2024.101766
  41. Genetics of cardiomyopathy risk in cancer survivors differ by age of onset [Internet]. St. Jude Children’s Research Hospital. [cited 2025]. Available from: https://www.stjude.org/media-resources/news-releases/2025-medicine-science-news/genetics-of-cardiomyopathy-risk-in-cancer-survivors-differ-by-age-of-onset.html
  42. Bottinor W, Im C, Doody DR, Armenian SH, Arynchyn A, Hong B, et al. Mortality after major cardiovascular events in survivors of childhood cancer. J Am Coll Cardiol. 2024;83(8):827–38. doi:10.1016/j.jacc.2023.12.022
  43. Ioffe D, Bhatia-Patel SC, Gandhi S, Hamad EA, Dotan E. Cardiovascular concerns, cancer treatment, and biological and chronological aging in cancer. JACC CardioOncol. 2024;6(2):143–58. doi:10.1016/j.jaccao.2024.02.001
  44. Muhandiramge J, Zalcberg JR, Warner ET, Polekhina G, Gibbs P, Van Londen GJ, et al. Cardiovascular disease and stroke following cancer and cancer treatment in older adults. Cancer. 2024. doi:10.1002/cncr.35503
  45. Hudson MM, Ehrhardt MJ. At the heart of safe and successful pregnancies in cancer survivors. JACC CardioOncol. 2020;2(2):163–5. doi:10.1016/j.jaccao.2020.04.008
  46. Comments on the 2022 ESC guidelines on cardio-oncology. Rev Esp Cardiol (Engl Ed). 2022;76(6):409–16. doi:10.1016/j.rec.2022.12.004
  47. Searles CD. MicroRNAs and cardiovascular disease risk. Curr Cardiol Rep. 2024;26(2):51–60. doi:10.1007/s11886-023-02014-1
  48. Zhang X, Sun Y, Zhang Y, Fang F, Liu J, Xia Y, et al. Cardiac biomarkers for the detection and management of cancer therapy-related cardiovascular toxicity. J Cardiovasc Dev Dis. 2022;9(11):372. doi:10.3390/jcdd9110372
  49. Kim Y, Seidman JG, Seidman CE. Genetics of cancer therapy-associated cardiotoxicity. J Mol Cell Cardiol. 2022;167:85–91. doi:10.1016/j.yjmcc.2022.03.010
  50. Dilsizian V, Chandrashekhar Y. Molecular imaging. JACC Cardiovasc Imaging. 2022;15(11):2019–21. doi:10.1016/j.jcmg.2022.10.001
  51. Khera R, Asnani AH, Krive J, Addison D, Zhu H, Vasbinder A, et al. Artificial intelligence to enhance precision medicine in cardio-oncology: a scientific statement from the American Heart Association. Circ Genom Precis Med. 2025. doi:10.1161/hcg.0000000000000097
  52. Edpuganti S, Shamim A, Gangolli VH, Weerasekara R a D K N W, Yellamilli A. Artificial intelligence in cardiovascular imaging: current landscape, clinical impact, and future directions. Discoveries. 2025;13(2):e211. doi:10.15190/d.2025.
  53. Sadler D, Okwuosa T, Teske AJ, Guha A, Collier P, Moudgil R, et al. Cardio-oncology: digital innovations, precision medicine and health equity. Front Cardiovasc Med. 2022;9. doi:10.3389/fcvm.2022.951551

Cancer therapy advancements have significantly increased the survival rates and concurrently led to the rise of the subspeciality of cardio-oncology, due to the cardiovascular side effects associated with cancer therapy. A broad spectrum of cardiotoxic effects arises due to cancer therapy, such as structural damage, cardiac arrhythmias, hypercoagulability, thrombosis, and bleeding risks, ultimately resulting in acute or chronic heart failure. Timely interventions, including early identification of cardiac dysfunction, are adopted to improve clinical outcomes for oncology patients. This review explores the spectrum of cardiotoxic effects due to cancer therapy, as well as screening strategies for cardiovascular dysfunction. It also discusses the underlying mechanisms and risk factors that led to cardiac damage due to oncologic treatment. Prevention and management strategies include the use of modified chemotherapeutic agents, cardio-protectants such as dexrazoxane, medical cardio- protection using ACE inhibitors and ARBs, along with lifestyle modifications. The review also highlights future directions in biomarker-based early detection, monitoring, and targeted interventions of cardiovascular conditions in cancer patients.

Keywords : “Cardiovascular Toxicity” “Cancer Therapy” “Radiation Therapy” “Arrhythmia” “Left Ventricular Dysfunction” “Anthracyclines” “Biomarkers”.

CALL FOR PAPERS


Paper Submission Last Date
31 - December - 2025

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe