Authors :
Satyam Ubale; Harshal Patil; Jyotsna Waghmare
Volume/Issue :
Volume 10 - 2025, Issue 3 - March
Google Scholar :
https://tinyurl.com/3c6fhbfv
Scribd :
https://tinyurl.com/4pmz4a8e
DOI :
https://doi.org/10.38124/ijisrt/25mar262
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
This review thoroughly discusses ionic liquid-based surfactants as a groundbreaking family of materials that
connect conventional surfactants and ionic liquids. These unique compounds integrate the amphiphilic character of
conventional surfactants with the distinctive features of ionic liquids, such as zero volatility, high thermal stability, and
adjustable physicochemical properties. The review critically discusses their structural categories, synthesis methods, and
outstanding properties like lower critical micelle concentrations and improved thermal stability. Applications in various
industries such as enhanced oil recovery, pharmaceuticals, leather and textile processing, lubrication, nanoparticle
synthesis, and environmental remediation are critically assessed. Though there are favourable performance benefits,
production cost, scalability, and environmental issues are still challenges. This article summarizes recent trends in research
and future prospects for revealing the revolutionary possibilities of ionic liquid-based surfactants in consolidating
sustainable industrial processes and resolving multifaceted technological challenges.
Keywords :
Ionic Liquid Surfactants, Surface Activity; Sustainable Processing, Industrial Application.
References :
- N. H. Ansari, “Recent advances in surface active ionic liquids (SAILs): A Review,” Jabirian J. Biointerface Res. Pharm. Appl. Chem., vol. 1, no. 3, pp. 21–25, Jul. 2024, doi: 10.55559/jjbrpac.v1i3.309.
- C. S. Buettner, A. Cognigni, C. Schröder, and K. Bica-Schröder, “Surface-active ionic liquids: A review,” J. Mol. Liq., vol. 347, p. 118160, Feb. 2022, doi: 10.1016/j.molliq.2021.118160.
- V. Pino, M. Germán-Hernández, A. Martín-Pérez, and J. L. Anderson, “Ionic Liquid-Based Surfactants in Separation Science,” Sep. Sci. Technol., vol. 47, no. 2, pp. 264–276, Jan. 2012, doi: 10.1080/01496395.2011.620589.
- M. Barari, M. Lashkarbolooki, R. Abedini, and A. Z. Hezave, “Effects of conventional and ionic liquid-based surfactants and sodium tetraborate on interfacial tension of acidic crude oil,” Sci. Rep., vol. 14, no. 1, p. 2618, Jan. 2024, doi: 10.1038/s41598-024-52178-1.
- O. A. El Seoud, N. Keppeler, N. I. Malek, and P. D. Galgano, “Ionic Liquid-Based Surfactants: Recent Advances in Their Syntheses, Solution Properties, and Applications,” Polymers, vol. 13, no. 7, p. 1100, Mar. 2021, doi: 10.3390/polym13071100.
- G. F. D. Ferreira, D. Santos, S. Mattedi, L. C. L. Santos, and A. K. C. L. Lobato, “Study of the surfactant behaviour and physical properties of ammonium-based ionic liquids,” J. Mol. Liq., vol. 390, p. 123068, Nov. 2023, doi: 10.1016/j.molliq.2023.123068.
- A. Nile and A. Kulkarni, “Review on Surfactants, Preparation and Their Applications and The Ionic Liquid Base Surfactants as Next Gen,” 2024.
- M. Kharazi, J. Saien, and S. Asadabadi, “Review on Amphiphilic Ionic Liquids as New Surfactants: From Fundamentals to Applications,” Top. Curr. Chem., vol. 380, no. 1, p. 5, Feb. 2022, doi: 10.1007/s41061-021-00362-6.
- A. Salabat, B. S. Mirhoseini, and F. Mirhoseini, “Ionic liquid based surfactant-free microemulsion as a new protocol for preparation of visible light active poly(methyl methacrylate)/TiO2 nanocomposite,” Sci. Rep., vol. 14, no. 1, p. 15676, Jul. 2024, doi: 10.1038/s41598-024-66872-7.
- M. Shao, Y. Wang, P. Liu, L. Fu, T. Zhu, and X. Li, “Synthesis and Evaluation of Interfacial Properties and Carbon Capture Capacities of the Imidazolium-Based Ionic Liquid Surfactant,” ACS Omega, vol. 8, no. 23, pp. 21113–21119, Jun. 2023, doi: 10.1021/acsomega.3c02053.
- J. Ma, Y. Gong, and X. Huang, “Lipase‐Catalyzed Hydrolysis of α‐Phenylethyl Esters in a Hydrophobic Ionic Liquid‐Based Bicontinuous Microemulsion Stabilized by Zwitterionic Surfactant,” ChemistrySelect, vol. 9, no. 9, p. e202400009, Mar. 2024, doi: 10.1002/slct.202400009.
- M. Kharazi and J. Saien, “Chemical Enhanced Oil Recovery Using Ionic Liquid-Based Surfactants,” in Surfactants - Fundamental Concepts and Emerging Perspectives, O. Owoseni, Ed., IntechOpen, 2024. doi: 10.5772/intechopen.112762.
- M. U. H. Shah, M. Nazar, S. N. Shah, H. Khan, and M. Moniruzzaman, “Surfactants and Colloidal Properties of Ionic Liquids,” in Ionic Liquids: Eco-friendly Substitutes for Surface and Interface Applications, C. Verma, Ed., BENTHAM SCIENCE PUBLISHERS, 2023, pp. 55–76. doi: 10.2174/9789815136234123010008.
- B. K. Paul and S. P. Moulik, Eds., Ionic Liquid‐Based Surfactant Science: Formulation, Characterization, and Applications, 1st ed. Wiley, 2015. doi: 10.1002/9781118854501.
- Z. Lei, B. Chen, Y.-M. Koo, and D. R. MacFarlane, “Introduction: Ionic Liquids,” Chem. Rev., vol. 117, no. 10, pp. 6633–6635, May 2017, doi: 10.1021/acs.chemrev.7b00246.
- J. P. Hallett and T. Welton, “Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2,” Chem. Rev., vol. 111, no. 5, pp. 3508–3576, May 2011, doi: 10.1021/cr1003248.
- J. E. Bara et al., “Guide to CO2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids,” Ind. Eng. Chem. Res., vol. 48, no. 6, pp. 2739–2751, Mar. 2009, doi: 10.1021/ie8016237.
- K. Ghandi, “A Review of Ionic Liquids, Their Limits and Applications,” Green Sustain. Chem., vol. 04, no. 01, pp. 44–53, 2014, doi: 10.4236/gsc.2014.41008.
- A. A. Minea and S. M. S. Murshed, “A review on development of ionic liquid based nanofluids and their heat transfer behavior,” Renew. Sustain. Energy Rev., vol. 91, pp. 584–599, Aug. 2018, doi: 10.1016/j.rser.2018.04.021.
- P. Brown et al., “Anionic Surfactant Ionic Liquids with 1-Butyl-3-methyl-imidazolium Cations: Characterization and Application,” Langmuir, vol. 28, no. 5, pp. 2502–2509, Feb. 2012, doi: 10.1021/la204557t.
- H. Jia et al., “Systematic Investigation of the Effects of Zwitterionic Surface-Active Ionic Liquids on the Interfacial Tension of a Water/Crude Oil System and Their Application To Enhance Crude Oil Recovery,” Energy Fuels, vol. 32, no. 1, pp. 154–160, Jan. 2018, doi: 10.1021/acs.energyfuels.7b02746.
- X. Wang, J. Liu, L. Sun, L. Yu, J. Jiao, and R. Wang, “Interaction of Bovine Serum Albumin with Ester-Functionalized Anionic Surface-Active Ionic Liquids in Aqueous Solution: A Detailed Physicochemical and Conformational Study,” J. Phys. Chem. B, vol. 116, no. 41, pp. 12479–12488, Oct. 2012, doi: 10.1021/jp307516a.
- R. A. El-Nagar and A. Ghanem, “Surface active dicationic ionic liquids as green oil spill dispersants,” Mar. Pollut. Bull., vol. 201, p. 116280, Apr. 2024, doi: 10.1016/j.marpolbul.2024.116280.
- J. Hulsbosch, D. E. De Vos, K. Binnemans, and R. Ameloot, “Biobased Ionic Liquids: Solvents for a Green Processing Industry?,” ACS Sustain. Chem. Eng., vol. 4, no. 6, pp. 2917–2931, Jun. 2016, doi: 10.1021/acssuschemeng.6b00553.
- A. Kulshrestha, P. S. Gehlot, and A. Kumar, “Paramagnetic surface active ionic liquids: synthesis, properties, and applications,” Mater. Today Chem., vol. 21, p. 100522, Aug. 2021, doi: 10.1016/j.mtchem.2021.100522.
- M. Jain, O. El Seoud, S. K. Kailasa, and N. I. Malek, “Recent advances in synthesis, properties and applications of pH, light-responsive and functionalized surface active ionic liquids,” J. Ion. Liq., vol. 2, no. 2, p. 100046, Dec. 2022, doi: 10.1016/j.jil.2022.100046.
- M. Wojcieszak et al., “Surface-Active Ionic Liquids and Surface-Active Quaternary Ammonium Salts from Synthesis, Characterization to Antimicrobial Properties,” Molecules, vol. 29, no. 2, p. 443, Jan. 2024, doi: 10.3390/molecules29020443.
- D. Mecerreyes, “Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes,” Prog. Polym. Sci., vol. 36, no. 12, pp. 1629–1648, Dec. 2011, doi: 10.1016/j.progpolymsci.2011.05.007.
- A. Ali, R. Patel, Shahjahan, and N. H. Ansari, “Physicochemical Behavior of Some Amino Acids/Glycylglycine in Aqueous D-Galactose Solutions at Different Temperatures,” Int. J. Thermophys., vol. 31, no. 3, pp. 572–584, Mar. 2010, doi: 10.1007/s10765-010-0742-8.
- S. K. Nandwani, N. I. Malek, M. Chakraborty, and S. Gupta, “Insight into the Application of Surface-Active Ionic Liquids in Surfactant Based Enhanced Oil Recovery Processes–A Guide Leading to Research Advances,” Energy Fuels, vol. 34, no. 6, pp. 6544–6557, Jun. 2020, doi: 10.1021/acs.energyfuels.0c00343.
- L. Wei, L. Wang, Z. Cui, Y. Liu, and A. Du, “Multifunctional Applications of Ionic Liquids in Polymer Materials: A Brief Review,” Molecules, vol. 28, no. 9, p. 3836, Apr. 2023, doi: 10.3390/molecules28093836.
- A. S. Hanamertani, R. M. Pilus, and S. Irawan, “A Review on the Application of Ionic Liquids for Enhanced Oil Recovery,” in ICIPEG 2016, M. Awang, B. M. Negash, N. A. Md Akhir, L. A. Lubis, and A. G. Md. Rafek, Eds., Singapore: Springer Singapore, 2017, pp. 133–147. doi: 10.1007/978-981-10-3650-7_11.
- M. Kharazi and J. Saien, “Chemical Enhanced Oil Recovery Using Ionic Liquid-Based Surfactants,” in Surfactants - Fundamental Concepts and Emerging Perspectives, O. Owoseni, Ed., IntechOpen, 2024. doi: 10.5772/intechopen.112762.
- A. Bera, “Applications of ionic liquids as green solvents in enhanced oil recovery,” in Green Sustainable Process for Chemical and Environmental Engineering and Science, Elsevier, 2023, pp. 125–144. doi: 10.1016/B978-0-323-95156-2.00016-7.
- P. Pillai, R. K. Saw, and A. Mandal, “Formulation and characterization of ionic liquid-based nanoemulsion for enhanced oil recovery applications,” J. Mol. Liq., vol. 397, p. 124189, Mar. 2024, doi: 10.1016/j.molliq.2024.124189.
- R. M. Moshikur, Md. K. Ali, M. Moniruzzaman, and M. Goto, “Recent advances in surface-active ionic liquid-assisted self-assembly systems for drug delivery,” Curr. Opin. Colloid Interface Sci., vol. 56, p. 101515, Dec. 2021, doi: 10.1016/j.cocis.2021.101515.
- Y. Zhuo, H.-L. Cheng, Y.-G. Zhao, and H.-R. Cui, “Ionic Liquids in Pharmaceutical and Biomedical Applications: A Review,” Pharmaceutics, vol. 16, no. 1, p. 151, Jan. 2024, doi: 10.3390/pharmaceutics16010151.
- S. N. Pedro, C. S. R. Freire, A. J. D. Silvestre, and M. G. Freire, “Ionic Liquids in Drug Delivery,” Encyclopedia, vol. 1, no. 2, pp. 324–339, Apr. 2021, doi: 10.3390/encyclopedia1020027.
- G. C. Jayakumar, A. Mehta, J. R. Rao, and N. N. Fathima, “Ionic liquids: new age materials for eco-friendly leather processing,” RSC Adv., vol. 5, no. 40, pp. 31998–32005, 2015, doi: 10.1039/C5RA02167G.
- D. Hao et al., “A novel eco-friendly imidazole ionic liquids based amphoteric polymers for high performance fatliquoring in chromium-free tanned leather production,” J. Hazard. Mater., vol. 399, p. 123048, Nov. 2020, doi: 10.1016/j.jhazmat.2020.123048.
- A. Anceschi, C. Riccardi, and A. Patrucco, “The Role of Ionic Liquids in Textile Processes: A Comprehensive Review,” Molecules, vol. 30, no. 2, p. 353, Jan. 2025, doi: 10.3390/molecules30020353.
- S. H. Musavi, M. Razfar, and D. D. Ganji, “New application of ionic liquid as a green-efficient lubricant,” Results Eng., vol. 21, p. 101773, Mar. 2024, doi: 10.1016/j.rineng.2024.101773.
- M. Liu et al., “The Application of Ionic Liquids in the Lubrication Field: Their Design, Mechanisms, and Behaviors,” Lubricants, vol. 12, no. 1, p. 24, Jan. 2024, doi: 10.3390/lubricants12010024.
- S. Waheed et al., “Ionic liquids as lubricants: An overview of recent developments,” J. Mol. Struct., vol. 1301, p. 137307, Apr. 2024, doi: 10.1016/j.molstruc.2023.137307.
- J. J. Buzolic, H. Li, Z. M. Aman, D. S. Silvester, and R. Atkin, “Surface-active ionic liquids as lubricant additives to hexadecane and diethyl succinate,” Colloids Surf. Physicochem. Eng. Asp., vol. 699, p. 134669, Oct. 2024, doi: 10.1016/j.colsurfa.2024.134669.
- K. Richter, P. S. Campbell, T. Baecker, A. Schimitzek, D. Yaprak, and A. Mudring, “Ionic liquids for the synthesis of metal nanoparticles,” Phys. Status Solidi B, vol. 250, no. 6, pp. 1152–1164, Jun. 2013, doi: 10.1002/pssb.201248547.
- M. Hassanpour et al., “Ionic liquid-mediated synthesis of metal nanostructures: Potential application in cancer diagnosis and therapy,” J. Ion. Liq., vol. 2, no. 2, p. 100033, Dec. 2022, doi: 10.1016/j.jil.2022.100033.
- K. Roshdy, H. I. Mohamed, M. H. Ahmed, W. I. El-Dougdoug, and M. A. Abo-Riya, “Gemini ionic liquid-based surfactants: efficient synthesis, surface activity, and use as inducers for the fabrication of Cu2 O nanoparticles,” RSC Adv., vol. 13, no. 44, pp. 31128–31140, 2023, doi: 10.1039/D3RA04646J.
- M. U. H. Shah, A. V. B. Reddy, and M. Moniruzzaman, “Ionic liquid–based surfactants for oil spill remediation,” in Ionic Liquid-Based Technologies for Environmental Sustainability, Elsevier, 2022, pp. 257–268. doi: 10.1016/B978-0-12-824545-3.00016-7.
- S. R. Rothee, H. Heidari, M.-O. Fortier, and E. Khan, “Applications of ionic liquids in soil remediation: Mechanisms, efficiency and life cycle assessment,” Soil Environ. Health, vol. 2, no. 3, p. 100097, Aug. 2024, doi: 10.1016/j.seh.2024.100097.
This review thoroughly discusses ionic liquid-based surfactants as a groundbreaking family of materials that
connect conventional surfactants and ionic liquids. These unique compounds integrate the amphiphilic character of
conventional surfactants with the distinctive features of ionic liquids, such as zero volatility, high thermal stability, and
adjustable physicochemical properties. The review critically discusses their structural categories, synthesis methods, and
outstanding properties like lower critical micelle concentrations and improved thermal stability. Applications in various
industries such as enhanced oil recovery, pharmaceuticals, leather and textile processing, lubrication, nanoparticle
synthesis, and environmental remediation are critically assessed. Though there are favourable performance benefits,
production cost, scalability, and environmental issues are still challenges. This article summarizes recent trends in research
and future prospects for revealing the revolutionary possibilities of ionic liquid-based surfactants in consolidating
sustainable industrial processes and resolving multifaceted technological challenges.
Keywords :
Ionic Liquid Surfactants, Surface Activity; Sustainable Processing, Industrial Application.