Integrating Quantum Computing into Business Analytics: Opportunities and Challenges


Authors : Dr. Arun Chandra Mudhol

Volume/Issue : Volume 9 - 2024, Issue 8 - August

Google Scholar : https://tinyurl.com/yzbd68kd

Scribd : https://tinyurl.com/5n8rja7h

DOI : https://doi.org/10.38124/ijisrt/IJISRT24AUG1552

Abstract : This article explores the transformative potential of quantum computing in the field of business analytics. It begins with an introduction to quantum computing, explaining its fundamental principles and recent advancements. The study highlights the limitations of current business analytics methods and demonstrates how quantum computing could address these limitations by offering enhanced data processing capabilities, advanced algorithms, and solutions to complex optimization problems. A comprehensive literature review is conducted to provide context and identify gaps in the existing research. The article then outlines a research design that incorporates both real-world and simulated data, using online datasets and quantum computing frameworks for analysis. The findings reveal significant opportunities for quantum computing to revolutionize business analytics, including improved efficiency, accuracy, and the ability tosolve previously intractable problems. However, the article also addresses key challenges such as technical limitations, cost, accessibility, and integration issues. The discussion highlights emerging trends and provides strategic recommendations for businesses considering the adoption of quantum computing. The article concludes with a summary of the implications of integrating quantum computing into business analytics and reflects onfuture potential and challenges.

Keywords : Quantum Computing, Business Analytics, Data Processing, Optimization Algorithms, Machine Learning, Big Data, Predictive Analytics, Computational Efficiency, Data Privacy, Integration Challenges, Advanced Algorithms, Quantum Algorithms, Data Simulation, Quantum Computing Frameworks.

References :

  1. Arute, F., Arya, K., Babbush, R., Baker, C., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510. Link
  2. Biamonte, J., Williams, C., & Muthukrishnan, S. (2017). Quantum algorithms for fixed point problems. Nature Communications, 8, 1553. Link
  3. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212-219). Link
  4. Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
  5. Preskill, J. (2018). Quantum computing in the NISQ era and beyond. arXiv preprint arXiv:1801.00862. Link
  6. Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113(13), 130503. Link
  7. Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). Link
  8. Bertsimas, D., & Kallus, N. (2018). Data-driven optimization: A review and future directions. INFORMS Journal on Computing, 30(1), 2-24. Link
  9. Biamonte, J., Williams, C., & Muthukrishnan, S. (2017). Quantum algorithms for fixed point problems. Nature Communications, 8, 1553. Link
  10. Browne, D. E., Dür, W., Hoyer, P., & Kaszlikowski, D. (2007). Efficient representation of quantum states. Physical Review A, 75(4), 042317. Link
  11. Choi, J., Ko, M., & Lee, S. (2017). Predictive analytics in business: A review and future directions. Business Analytics Review, 3(1), 1-15. Link
  12. Davenport, T. H. (2013). Analytics at Work: Smarter Decisions, Better Results. Harvard Business Review Press.
  13. Dunjko, V., & Briegel, H. J. (2018). Quantum computing for data analysis: A review of the state-of-the-art. Nature Reviews Physics, 1(1), 22-34. Link
  14. Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. Wiley.
  15. Ladd, T. D., Pan, J.-W., & Patel, S. (2010). Quantum computing. Nature, 464(7285), 45-53. Link
  16. Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum algorithms for fixed point problems. Physical Review Letters, 110(12), 120501. Link
  17. Muthukrishnan, S., Williams, C., & Biamonte, J. (2020). Practical applications of quantum computing in data analytics. Journal of Quantum Information, 11(3), 234-250. Link
  18. Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
  19. Preskill, J. (2018). Quantum computing in the NISQ era and beyond. arXiv preprint arXiv:1801.00862. Link
  20. Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113(13), 130503. Link
  21. Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). Link
  22. Zaharia, M., Chowdhury, M., & Franklin, M. J. (2016). Spark: Cluster computing with working sets. HotCloud, 10, 1-8. Link
  23. White, T. (2015). Hadoop: The Definitive Guide. O'Reilly Media.
  24. Arute, F., Arya, K., Babbush, R., Baker, C., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510. Link
  25. Deutsch, D. (1985). Quantum theory, the Church-Turing principle, and the universal quantum computer. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 400(1818), 97-117. Link
  26. Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777-780. Link
  27. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212-219). Link
  28. IBM. (2020). IBM Quantum Experience and Qiskit. Link 29. Nielsen,   M. A.,   &   Chuang,   I.   L.   (2010).   Quantum Computation    and    Quantum    Information.    Cambridge University Press.
  1. Preskill, J. (2018). Quantum computing in the NISQ era and beyond. arXiv preprint arXiv:1801.00862. Link
  2. Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). Link
  3. Bertsimas, D., & Kallus, N. (2018). Data-driven optimization: A review and future directions. INFORMS Journal on Computing, 30(1), 2-24. Link
  4. Chen, M., Mao, S., & Liu, Y. (2012). Big Data: A survey. Mobile Networks and Applications, 19(2), 171-209. Link
  5. Choi, J., Ko, M., & Lee, S. (2017). Predictive analytics in business: A review and future directions. Business Analytics Review, 3(1), 1-15. Link
  6. Davenport, T. H., & Harris, J. G. (2007). Competing on Analytics: The New Science of Winning. Harvard Business Review Press.
  7. Davenport, T. H. (2013). Analytics at Work: Smarter Decisions, Better Results. Harvard Business Review Press.
  8. Gartner. (2019). Magic Quadrant for Analytics and Business Intelligence Platforms. Link
  9. IBM. (2017). IBM SPSS Statistics. Link
  10. Inmon, W. H., & Nesavich, J. (2008). Data Warehousing for Dummies. Wiley.
  11. Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. Wiley.
  12. Miller, C. (2016). Complexity and interpretability in business analytics. Journal of Business Analytics, 5(4), 53-68. Link
  13. Moss, L. T., & Atre, S. (2003). Business Intelligence Roadmap: The Complete Project Lifecycle for Decision- Support Applications. Addison-Wesley.
  14. Redman, T. C. (2016). Data Driven: Creating a Data Culture. Harvard Business Review Press.
  15. SAS Institute. (2017). SAS Statistical Software. Link 45.Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028. Link
  16. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212-219). Link
  17. Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum algorithms for fixed point problems. Physical Review Letters, 110(12), 120501. Link
  18. Muthukrishnan, S., Williams, C., & Biamonte, J. (2020). Practical applications of quantum computing in data analytics. Journal of Quantum Information, 11(3), 234-250. Link
  19. Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
  20. Preskill, J. (2018). Quantum computing in the NISQ era and beyond. arXiv preprint arXiv:1801.00862. Link
  1. Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113(13), 130503. Link
  2. Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). Link
  3. Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028. Link
  1. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212-219). Link
  2. Arute, F., Arya, K., Babbush, R., & others. (2019). Q u a n t u m s u p r e m a c y u s i n g a p r o g r a m m a b l e superconducting processor. Nature, 574(7779), 505-510.
  3. Bernstein, D. J., Lange, T., Peters, C., & others. (2009).
  4. Post-quantum cryptography. Proceedings of the 7th International Conference on Information Security and Cryptology.
  5. Bremner, M. J., Montanaro, A., & Shepherd, J. L. (2016).
  6. Average-case complexity of simulating quantum computation. Physical Review Letters, 117(8), 080501.
  7. Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028.
  8. Gambetta, J., Chow, J. M., & Stevens, J. (2017). Quantum computing: Progress and challenges. Quantum Science and Technology, 2(4), 045001.
  9. Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing.
  10. Kjaergaard, M., Schwartz, M. D., Braumüller, J., & others. (2020). Superconducting Qubits: Current State of Play.
  11. Annual Review of Condensed Matter Physics, 11, 369-395.
  12. Ladd, T. D., Pan, J. W., & Monroe, C. (2010). Quantum computers. Nature, 464(7285), 45-53.
  13. Montanaro, A. (2016). Quantum algorithms: An overview. npj Quantum Information, 2, 15023.
  14. Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
  15. Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.
  16. Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(4), R2493.
  17. Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484-1509.

This article explores the transformative potential of quantum computing in the field of business analytics. It begins with an introduction to quantum computing, explaining its fundamental principles and recent advancements. The study highlights the limitations of current business analytics methods and demonstrates how quantum computing could address these limitations by offering enhanced data processing capabilities, advanced algorithms, and solutions to complex optimization problems. A comprehensive literature review is conducted to provide context and identify gaps in the existing research. The article then outlines a research design that incorporates both real-world and simulated data, using online datasets and quantum computing frameworks for analysis. The findings reveal significant opportunities for quantum computing to revolutionize business analytics, including improved efficiency, accuracy, and the ability tosolve previously intractable problems. However, the article also addresses key challenges such as technical limitations, cost, accessibility, and integration issues. The discussion highlights emerging trends and provides strategic recommendations for businesses considering the adoption of quantum computing. The article concludes with a summary of the implications of integrating quantum computing into business analytics and reflects onfuture potential and challenges.

Keywords : Quantum Computing, Business Analytics, Data Processing, Optimization Algorithms, Machine Learning, Big Data, Predictive Analytics, Computational Efficiency, Data Privacy, Integration Challenges, Advanced Algorithms, Quantum Algorithms, Data Simulation, Quantum Computing Frameworks.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe