Authors :
Dr. Arun Chandra Mudhol
Volume/Issue :
Volume 9 - 2024, Issue 8 - August
Google Scholar :
https://tinyurl.com/yzbd68kd
Scribd :
https://tinyurl.com/5n8rja7h
DOI :
https://doi.org/10.38124/ijisrt/IJISRT24AUG1552
Abstract :
This article explores the transformative
potential of quantum computing in the field of business
analytics. It begins with an introduction to quantum
computing, explaining its fundamental principles and
recent advancements. The study highlights the limitations
of current business analytics methods and demonstrates
how quantum computing could address these limitations
by offering enhanced data processing capabilities,
advanced algorithms, and solutions to complex
optimization problems.
A comprehensive literature review is conducted to
provide context and identify gaps in the existing research.
The article then outlines a research design that
incorporates both real-world and simulated data, using
online datasets and quantum computing frameworks for
analysis.
The findings reveal significant opportunities for
quantum computing to revolutionize business analytics,
including improved efficiency, accuracy, and the ability
tosolve previously intractable problems. However, the
article also addresses key challenges such as technical
limitations, cost, accessibility, and integration issues.
The discussion highlights emerging trends and
provides strategic recommendations for businesses
considering the adoption of quantum computing. The
article concludes with a summary of the implications of
integrating quantum computing into business analytics
and reflects onfuture potential and challenges.
Keywords :
Quantum Computing, Business Analytics, Data Processing, Optimization Algorithms, Machine Learning, Big Data, Predictive Analytics, Computational Efficiency, Data Privacy, Integration Challenges, Advanced Algorithms, Quantum Algorithms, Data Simulation, Quantum Computing Frameworks.
References :
- Arute, F., Arya, K., Babbush, R., Baker, C., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510. Link
- Biamonte, J., Williams, C., & Muthukrishnan, S. (2017). Quantum algorithms for fixed point problems. Nature Communications, 8, 1553. Link
- Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212-219). Link
- Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
- Preskill, J. (2018). Quantum computing in the NISQ era and beyond. arXiv preprint arXiv:1801.00862. Link
- Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113(13), 130503. Link
- Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). Link
- Bertsimas, D., & Kallus, N. (2018). Data-driven optimization: A review and future directions. INFORMS Journal on Computing, 30(1), 2-24. Link
- Biamonte, J., Williams, C., & Muthukrishnan, S. (2017). Quantum algorithms for fixed point problems. Nature Communications, 8, 1553. Link
- Browne, D. E., Dür, W., Hoyer, P., & Kaszlikowski, D. (2007). Efficient representation of quantum states. Physical Review A, 75(4), 042317. Link
- Choi, J., Ko, M., & Lee, S. (2017). Predictive analytics in business: A review and future directions. Business Analytics Review, 3(1), 1-15. Link
- Davenport, T. H. (2013). Analytics at Work: Smarter Decisions, Better Results. Harvard Business Review Press.
- Dunjko, V., & Briegel, H. J. (2018). Quantum computing for data analysis: A review of the state-of-the-art. Nature Reviews Physics, 1(1), 22-34. Link
- Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. Wiley.
- Ladd, T. D., Pan, J.-W., & Patel, S. (2010). Quantum computing. Nature, 464(7285), 45-53. Link
- Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum algorithms for fixed point problems. Physical Review Letters, 110(12), 120501. Link
- Muthukrishnan, S., Williams, C., & Biamonte, J. (2020). Practical applications of quantum computing in data analytics. Journal of Quantum Information, 11(3), 234-250. Link
- Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
- Preskill, J. (2018). Quantum computing in the NISQ era and beyond. arXiv preprint arXiv:1801.00862. Link
- Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113(13), 130503. Link
- Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). Link
- Zaharia, M., Chowdhury, M., & Franklin, M. J. (2016). Spark: Cluster computing with working sets. HotCloud, 10, 1-8. Link
- White, T. (2015). Hadoop: The Definitive Guide. O'Reilly Media.
- Arute, F., Arya, K., Babbush, R., Baker, C., Bardin, J. C., Barends, R., ... & Martinis, J. M. (2019). Quantum supremacy using a programmable superconducting processor. Nature, 574(7779), 505-510. Link
- Deutsch, D. (1985). Quantum theory, the Church-Turing principle, and the universal quantum computer. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 400(1818), 97-117. Link
- Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47(10), 777-780. Link
- Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212-219). Link
- IBM. (2020). IBM Quantum Experience and Qiskit. Link 29. Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
- Preskill, J. (2018). Quantum computing in the NISQ era and beyond. arXiv preprint arXiv:1801.00862. Link
- Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). Link
- Bertsimas, D., & Kallus, N. (2018). Data-driven optimization: A review and future directions. INFORMS Journal on Computing, 30(1), 2-24. Link
- Chen, M., Mao, S., & Liu, Y. (2012). Big Data: A survey. Mobile Networks and Applications, 19(2), 171-209. Link
- Choi, J., Ko, M., & Lee, S. (2017). Predictive analytics in business: A review and future directions. Business Analytics Review, 3(1), 1-15. Link
- Davenport, T. H., & Harris, J. G. (2007). Competing on Analytics: The New Science of Winning. Harvard Business Review Press.
- Davenport, T. H. (2013). Analytics at Work: Smarter Decisions, Better Results. Harvard Business Review Press.
- Gartner. (2019). Magic Quadrant for Analytics and Business Intelligence Platforms. Link
- IBM. (2017). IBM SPSS Statistics. Link
- Inmon, W. H., & Nesavich, J. (2008). Data Warehousing for Dummies. Wiley.
- Kimball, R., & Ross, M. (2013). The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling. Wiley.
- Miller, C. (2016). Complexity and interpretability in business analytics. Journal of Business Analytics, 5(4), 53-68. Link
- Moss, L. T., & Atre, S. (2003). Business Intelligence Roadmap: The Complete Project Lifecycle for Decision- Support Applications. Addison-Wesley.
- Redman, T. C. (2016). Data Driven: Creating a Data Culture. Harvard Business Review Press.
- SAS Institute. (2017). SAS Statistical Software. Link 45.Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028. Link
- Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212-219). Link
- Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum algorithms for fixed point problems. Physical Review Letters, 110(12), 120501. Link
- Muthukrishnan, S., Williams, C., & Biamonte, J. (2020). Practical applications of quantum computing in data analytics. Journal of Quantum Information, 11(3), 234-250. Link
- Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
- Preskill, J. (2018). Quantum computing in the NISQ era and beyond. arXiv preprint arXiv:1801.00862. Link
- Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical Review Letters, 113(13), 130503. Link
- Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings of the 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). Link
- Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028. Link
- Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing (pp. 212-219). Link
- Arute, F., Arya, K., Babbush, R., & others. (2019). Q u a n t u m s u p r e m a c y u s i n g a p r o g r a m m a b l e superconducting processor. Nature, 574(7779), 505-510.
- Bernstein, D. J., Lange, T., Peters, C., & others. (2009).
- Post-quantum cryptography. Proceedings of the 7th International Conference on Information Security and Cryptology.
- Bremner, M. J., Montanaro, A., & Shepherd, J. L. (2016).
- Average-case complexity of simulating quantum computation. Physical Review Letters, 117(8), 080501.
- Farhi, E., Goldstone, J., & Gutmann, S. (2014). A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028.
- Gambetta, J., Chow, J. M., & Stevens, J. (2017). Quantum computing: Progress and challenges. Quantum Science and Technology, 2(4), 045001.
- Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing.
- Kjaergaard, M., Schwartz, M. D., Braumüller, J., & others. (2020). Superconducting Qubits: Current State of Play.
- Annual Review of Condensed Matter Physics, 11, 369-395.
- Ladd, T. D., Pan, J. W., & Monroe, C. (2010). Quantum computers. Nature, 464(7285), 45-53.
- Montanaro, A. (2016). Quantum algorithms: An overview. npj Quantum Information, 2, 15023.
- Nielsen, M. A., & Chuang, I. L. (2010). Quantum Computation and Quantum Information. Cambridge University Press.
- Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.
- Shor, P. W. (1995). Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52(4), R2493.
- Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484-1509.
This article explores the transformative
potential of quantum computing in the field of business
analytics. It begins with an introduction to quantum
computing, explaining its fundamental principles and
recent advancements. The study highlights the limitations
of current business analytics methods and demonstrates
how quantum computing could address these limitations
by offering enhanced data processing capabilities,
advanced algorithms, and solutions to complex
optimization problems.
A comprehensive literature review is conducted to
provide context and identify gaps in the existing research.
The article then outlines a research design that
incorporates both real-world and simulated data, using
online datasets and quantum computing frameworks for
analysis.
The findings reveal significant opportunities for
quantum computing to revolutionize business analytics,
including improved efficiency, accuracy, and the ability
tosolve previously intractable problems. However, the
article also addresses key challenges such as technical
limitations, cost, accessibility, and integration issues.
The discussion highlights emerging trends and
provides strategic recommendations for businesses
considering the adoption of quantum computing. The
article concludes with a summary of the implications of
integrating quantum computing into business analytics
and reflects onfuture potential and challenges.
Keywords :
Quantum Computing, Business Analytics, Data Processing, Optimization Algorithms, Machine Learning, Big Data, Predictive Analytics, Computational Efficiency, Data Privacy, Integration Challenges, Advanced Algorithms, Quantum Algorithms, Data Simulation, Quantum Computing Frameworks.