Authors :
Zakaria EL KODMIRI; Abdelati Ouamani
Volume/Issue :
Volume 9 - 2024, Issue 8 - August
Google Scholar :
https://shorturl.at/kd0Uq
Scribd :
https://shorturl.at/mUz5B
DOI :
https://doi.org/10.38124/ijisrt/IJISRT24AUG813
Abstract :
Human Immunodeficiency Virus (HIV) exerts
profound effects on both the immune and hematological
systems, leading to a range of complications that
significantly influence patient outcomes and quality of
life. This review examines the intricate interplay between
HIV infection, immune system dysfunction, and
hematological abnormalities. We detail the mechanisms
underlying these complications, including the direct
impact of HIV on CD4+ T lymphocytes, the persistent
immune activation observed despite antiretroviral
therapy (ART), and the diverse etiologies of HIV-
associated anemia, thrombocytopenia, and leukopenia.
Additionally, we address the clinical implications of these
issues, emphasizing their role in disease progression and
the current therapeutic approaches. This review
highlights the imperative for continued research and the
advancement of integrated care strategies to enhance
long-term outcomes for individuals living with HIV.
Keywords :
HIV; Immune Dysfunction; Hematological Abnormalities; CD4+ T Lymphocytes; Antiretroviral Therapy (ART); Chronic Immune Activation; Anemia; Thrombocytopenia; Leukopenia; Pathophysiology; Clinical Implications; Inflammation; Opportunistic Infections.
References :
- UNAIDS. (2023). Global HIV & AIDS statistics — Fact sheet. UNAIDS. Retrieved from https://www.unaids.org/en/resources/fact-sheet
- World Health Organization. (2023). HIV/AIDS. WHO. Retrieved from https://www.who.int/news-room/fact-sheets/detail/hiv-aids
- Deeks, S. G., Overbaugh, J., Phillips, A., & Buchbinder, S. (2015). HIV infection. Nature Reviews Disease Primers, 1, 15035. https://doi.org/10.1038/nrdp.2015.35
- Gupta, R. K., Abdul-Jawad, S., McCoy, L. E., Mok, H. P., Peppa, D., Salgado, M., ... & Olavarria, E. (2019). HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature, 568(7751), 244-248. https://doi.org/10.1038/s41586-019-1027-4
- Sundquist, W. I., & Kräusslich, H. G. (2012). HIV-1 assembly, budding, and maturation. Cold Spring Harbor Perspectives in Medicine, 2(7), a006924. https://doi.org/10.1101/cshperspect.a006924
- Doitsh, G., Galloway, N. L., Geng, X., Yang, Z., Monroe, K. M., Zepeda, O., ... & Greene, W. C. (2014). Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection. Nature, 505(7484), 509-514. https://doi.org/10.1038/nature12940
- Appay, V., & Sauce, D. (2008). Immune activation and inflammation in HIV-1 infection: causes and consequences. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland, 214(2), 231-241. https://doi.org/10.1002/path.2276
- Chun, T. W., Stuyver, L., Mizell, S. B., Ehler, L. A., Mican, J. A., Baseler, M., ... & Fauci, A. S. (1997). Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy. Proceedings of the National Academy of Sciences, 94(24), 13193-13197. https://doi.org/10.1073/pnas.94.24.13193
- Brenchley, J. M., Price, D. A., Schacker, T. W., Asher, T. E., Silvestri, G., Rao, S., ... & Douek, D. C. (2006). Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nature Medicine, 12(12), 1365-1371. https://doi.org/10.1038/nm1511
- Sandler, N. G., & Douek, D. C. (2012). Microbial translocation in HIV infection: causes, consequences and treatment opportunities. Nature Reviews Microbiology, 10(9), 655-666. https://doi.org/10.1038/nrmicro2848
- McGary, C. S., Deleage, C., Harper, J., Micci, L., Ribeiro, S. P., Paganini, S., ... & Silvestri, G. (2017). CTLA-4+PD-1− memory CD4+ T cells critically contribute to viral persistence in antiretroviral therapy-suppressed, SIV-infected rhesus macaques. Immunity, 47(4), 776-788.e5. https://doi.org/10.1016/j.immuni.2017.09.018
- Deeks, S. G. (2011). HIV infection, inflammation, immunosenescence, and aging. Annual Review of Medicine, 62, 141-155. https://doi.org/10.1146/annurev-med-042909-093756
- Appay, V., & Rowland-Jones, S. L. (2002). Premature ageing of the immune system: the cause of AIDS? Trends in Immunology, 23(12), 580-585 https://doi.org/10.1016/S1471-4906(02)02338-4
- Moir, S., Malaspina, A., & Fauci, A. S. (2011). Prospects for an HIV vaccine: leading B cells down the right path. Nature Structural & Molecular Biology, 18(2), 131-132. https://doi.org/10.1038/nsmb.2194
- Moir, S., Malaspina, A., Ogwaro, K. M., Donoghue, E. T., Hallahan, C. W., Ehler, L. A., ... & Fauci, A. S. (2001). HIV-1 induces phenotypic and functional perturbations of B cells in chronically infected individuals. Proceedings of the National Academy of Sciences, 98(18), 10362-10367. https://doi.org/10.1073/pnas.181347898
- Titanji, K., Chiodi, F., Bellocco, R., Schepis, D., Osorio, L., Vendrell, A., ... & Biberfeld, P. (2005). Primary HIV-1 infection sets the stage for important B lymphocyte dysfunctions. AIDS, 19(17), 1947-1955. https://doi.org/10.1097/01.aids.0000191231.54170.89
- Plotkin, S. A. (2008). Vaccines: correlates of vaccine-induced immunity. Clinical Infectious Diseases, 47(3), 401-409. https://doi.org/10.1086/589862
- Alter, G., & Altfeld, M. (2011). NK cells in HIV-1 infection: evidence for their role in the control of HIV-1 infection. Journal of Internal Medicine, 269(1), 29-42. https://doi.org/10.1111/j.1365-2796.2008.02045.x
- Wallet, M. A., Rodriguez, C. A., Yin, L., Saporta, S., Chinratanapisit, S., Hou, W., ... & Chang, L. J. (2010). Microbial translocation induces persistent macrophage activation unrelated to HIV-1 levels or T-cell activation following therapy. AIDS, 24(9), 1281-1290. https://doi.org/10.1097/QAD.0b013e328339e228
- Ellis, R. J., Caligiuri, M., & McCune, J. M. (2007). Immunopathogenesis of HIV infection. Immunological Reviews, 218(1), 29-44. https://doi.org/10.1146/annurev.micro.50.1.825
- Belperio, P. S., & Rhew, D. C. (2004). Prevalence and outcomes of anemia in individuals with human immunodeficiency virus: a systematic review of the literature. The American Journal of Medicine, 116(Suppl 7A), 27S-43S. https://doi.org/10.1016/j.amjmed.2003.12.010
- Weiss, G., & Goodnough, L. T. (2005). Anemia of chronic disease. New England Journal of Medicine, 352(10), 1011-1023. https://doi.org/10.1056/NEJMra041809
- Sullivan, P. S., Hanson, D. L., Chu, S. Y., Jones, J. L., & Ward, J. W. (1998). Epidemiology of anemia in human immunodeficiency virus (HIV)-infected persons: results from the multistate adult and adolescent spectrum of HIV disease surveillance project. Blood, 91(1), 301-308. https://doi.org/10.1182/blood.V91.1.301
- Semba, R. D., Shah, N., Klein, R. S., Mayer, K. H., Schuman, P., Vlahov, D., & Womens Interagency HIV Study. (2002). Prevalence and cumulative incidence of and risk factors for anemia in a multicenter cohort study of HIV-infected and uninfected women. Clinical Infectious Diseases, 34(2), 260-266. https://doi.org/10.1086/338151
- Awamura T, Nakasone ES, Gangcuangco LM, Subia NT, Bali A-J, Chow DC, et al. Title of the article. Journal Name. 2023 Nov; 13(11): 1608. https://doi.org/10.3390/biom13111608.
- Talargia F, Getacher L. Thrombocytopenia and associated factors among HIV-infected patients in pre- and post-anti-retroviral therapy, North East Ethiopia. Journal of Blood Medicine. 2021; 12: 741-748. https://doi.org/10.2147/JBM.S323086
- Phillips AN, Lazzarin A, Gonzales-Lahoz J, Lundgren JD, Johnson AM; The AIDS in Europe Study Group. Factors associated with the CD4+ lymphocyte count at diagnosis of acquired immunodeficiency syndrome. J Clin Epidemiol. 1996 Nov;49(11):1253-1258. DOI: https://doi.org/10.1016/S0895-4356(96)00216-8.
- Redig, A. J., & Berliner, N. (2013). Pathogenesis and clinical implications of HIV-related anemia in 2013. Hematology/Oncology Clinics, 27(2), 337-352. https://doi.org/10.1182/asheducation-2013.1.377
- Tilahun M, Gedefie A, Ebrahim E, Seid A, Ali A, Shibabaw A, Belete MA, Fiseha M, Tesfaye M, Ebrahim H, Abera A. Immuno-haematological abnormalities of HIV-infected patients before and after initiation of highly active antiretroviral therapy in the antiretroviral therapy clinics of six health facilities at Dessie Town, Northeast Ethiopia. J Blood Med. 2022;13:243-253. DOI: https://doi.org/10.2147/JBM.S364700.
- Mocroft, A., Lifson, A. R., Touloumi, G., Baxter, J., Clumeck, N., D'Arminio Monforte, A., ... & Ledergerber, B. (1999). Haemoglobin and anaemia in the SMART study: associations with clinical and laboratory parameters. Antiviral Therapy, 14(8), 1097-1104. https://doi.org/10.3851/IMP1746
Human Immunodeficiency Virus (HIV) exerts
profound effects on both the immune and hematological
systems, leading to a range of complications that
significantly influence patient outcomes and quality of
life. This review examines the intricate interplay between
HIV infection, immune system dysfunction, and
hematological abnormalities. We detail the mechanisms
underlying these complications, including the direct
impact of HIV on CD4+ T lymphocytes, the persistent
immune activation observed despite antiretroviral
therapy (ART), and the diverse etiologies of HIV-
associated anemia, thrombocytopenia, and leukopenia.
Additionally, we address the clinical implications of these
issues, emphasizing their role in disease progression and
the current therapeutic approaches. This review
highlights the imperative for continued research and the
advancement of integrated care strategies to enhance
long-term outcomes for individuals living with HIV.
Keywords :
HIV; Immune Dysfunction; Hematological Abnormalities; CD4+ T Lymphocytes; Antiretroviral Therapy (ART); Chronic Immune Activation; Anemia; Thrombocytopenia; Leukopenia; Pathophysiology; Clinical Implications; Inflammation; Opportunistic Infections.