Geological and Geochemical Prospecting for Gold Mineralisation in Gnimi-Yaboghan, Southwestern Burkina Faso, Western Africa


Authors : Ibrahim Ouedraogo; Olisa Olusegun.G.; Saga Sawadogo

Volume/Issue : Volume 10 - 2025, Issue 5 - May


Google Scholar : https://tinyurl.com/mr29t8d4

DOI : https://doi.org/10.38124/ijisrt/25may1828

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Gold mineralization in Gnimi-Yaboghan, southwestern Burkina Faso, was investigated to enhance understanding of its geological context and exploration potential. Geological mapping at a 1:50,000 scale revealed amphibolite, schist, granitoid, and quartz veins. Mineralogical and geochemical analyses (XRF, ICP-MS) and fire assay techniques identified quartz, feldspar, mica, and accessory minerals. The granitoids were classified as calc-alkaline, peraluminous, and S-type, indicating formation in a subduction zone. A ternary diagram suggested a hydrothermal submarine origin for the quartz veins. Lithophile elements (K, Rb, Ba, Sr) showed a genetic link between quartz veins and metasedimentary rocks, with metamorphic fluids likely responsible for gold deposition. Gold content was very low in granitoids (<0.002 ppm) but reached up to 9.9 ppm in quartz veins, confirming them as the primary gold-bearing structures. This study supports previous findings that most gold in Burkina Faso is hosted in quartz veins and highlights the significance of hydrothermal processes in mineralization.

Keywords : Geochemical Prospecting, Gold Mineralisation, Hydrothermal Fluid, Structures, Burkina-Faso.

References :

  1. Goldfarb, R.J., Groves, D.I., Gardoll, S. Orogenic gold and geologic time: A global synthesis: Ore Geology Reviews 2001; 18, Pp. 1–75.
  2. Béziat, D., Dubois, M., Debat, P., Nikiéma, S., Salvi, S., and Tollon, F. Gold metallogeny in the Birimian craton of Burkina Faso (West Africa). Journal of African Earth Sciences,2008;50(2–4), 215–233. https://doi.org/10.1016/j.jafrearsci.2007.09.017..
  3. Baratoux, L., Metelka, V., Naba, S., Ouiya, P., Siebenaller, L., Jessell, M.W., Nare, A., Salvi, S., Beziat, D., Franceschi, G.Tectonic evolution of the Gaoua region, Burkina Faso: Implications for mineralization. Journal of African Earth Sciences 2015; Volume 112, pp. 419-439.
  4. Markwitz, V., Hein, K. A. A., Jessell, M. W., and Miller, J. Metallogenic portfolio of the     West Africa craton. Ore Geology Reviews, 2016, 78, 558–563. https://doi.org/10.1016/j.oregeorev.2015.10.024
  5. Ilboudo, H., Sawadogo, S., Traoré, A. S., Sama, M., Wenmenga, U., & Lompo, M. Intrusion-related gold mineralization: Inata gold deposit, Bélahourou district, Northern Burkina Faso (West-Africa). Journal of African Earth Sciences 2018; 148, 52–58. https://doi.org/10.1016/j.jafrearsci.2018.05.015
  6. Oke, S. A., Abimbola, A. F., & Rammlmair, D. Mineralogical and Geochemical Characterization of Gold Bearing Quartz Veins and Soils in Parts of Maru Schist Belt Area , Northwestern Nigeria. Journal of Geological Research  2014; Arti(http://dx.doi.org/10.1155/2014/314214).
  7. Gustafson, L. B. (1989). SEG distinguished lecture in applied geology the importance of structural analysis in gold exploration. Economic Geology, 84(4), 987–993. https://doi.org/10.2113/gsecongeo.84.4.987
  8. Nguimatsia, F. W. D., Bolarinwa, A. T., Yongue, R. F., Ndikumana, J. de D., Olajide-Kayode, J. O., Olisa, O. G., Abdu-Salam, M. O., Kamga, M. A.,  Djou, E. S. Diversity of Gold Deposits, Geodynamics and Conditions of Formation: A Perspective View. Open Journal of Geology 2017;07(11),1690–1709. https://doi.org/10.4236/ojg.2017.711113
  9. Lovering, S. Epigenetic, diplogenetic, singenetic, and lithogene deposits.  Economic Geology (1963);V.58,PP.315-331
  10. Ouiya, P., Siebenaller, L., Salvi, S., Beziat, D., Naba, S., Baratoux, L., Nar  e, A.,  Franceschi, G.,2016. The Nassara gold prospect, Gaoua District, southwestern Burkina Faso. Ore Geol. Rev. 78, 623e630.
  11. Koffi, Y. H., Djro, S. C.,  Wenmenga, U. Lithostructural and Petrochemical Survey of Djarkadougou Gold Prospect (South West Burkina Faso /West Africa).EarthScienceResearch 2017;  6(1), 155. https://doi.org/10.5539/esr.v6n1p155
  12. Ali, R., Isdine, D., Hermann, I.,  Séta, N. Nouvelles données lithologiques et structurales du secteur de    Nindangou dans le prolongement Est de la ceinture de Goren ( Burkina Faso-Afrique de l ’ Ouest ).  Bulletin de l'Institut Scientifique · November 2022
  13. Castaing, C., Billa, M., Milesi, J., Thieblemont, D., Le Mentour, J., Egal, E., Donzeau, M., Guerrot, C., Cocherie, A., Chevremont, P. Notice explicative de la carte geologique et miniere du Burkina Faso a 1/1,000,000. BRGM BUMIGEB , 2003;147.
  14. Ouedrago, G. E., Joseph, U., Zerbo, K., Geosciences, L., Zongo, H. G., Joseph, U., Zerbo, K., and Geosciences, L. Structural Evolution and Its Implication for the Emplacement of Gold Deposit in the Central Part of Burkina Faso , West Africa. ESI Preprints  2023; 458.
  15. Ledru, P., Feybesse, J., Dommanget, A., Marcoux, E.,  Codex, O. (1992). Early Proterozoic ore deposits and tectonics of the Birimian orogenic belt , West Africa. 58,  Precambrian Research, 58 (1992) 305-344 305 Elsevier Science Publishers B.V., Amsterdam
  16. Block, S., Ganne, J., Baratoux, L., Zeh, A., Jessell, M., Ailleres, L., Siebenaller, L., Toulouse, G. E., Diop, C. A., and  Road, W. (2015). Petrological and geochronological constraints on lower crust exhumation during Paleoproterozoic ( Eburnean ) orogeny , NW Ghana , West African Craton. J. Metamorphic Geol, 33, 463–494. https://doi.org/10.1111/jmg.12129
  17. Nancy, I. (1990). A Major 2 . 1 Ga Event of Mafic Magmatism in West Africa ’ An Early Stage of Crustal Accretion regions from the manfie that growth from of sinking mobile of the Ahaggar [ Lancelot work by Boher data , 1990 ) have shown major series of orogenic episodes : ( 1 ) the Liberian The polycyclic crustal growth in West Africa. 95.
  18. Boher, M., Abouchami, W., Michard, A., Albarede, F., Arndt, N.T., 1992. Crustal growth in West Africa at 2.1 Ga. J. Geophys. Res. B Solid Earth Planets 97, 345e369.
  19. Ganne, J., Gerbault, M., Block, S., 2014. Thermo-mechanical modeling of lower crust exhumation-Constraints from the metamorphic record of the Palaeoproterozoic Eburnean orogeny, West African Craton, Precambrian Research, 243, 88–109.
  20. Caby, R., Delor, C., & Agoh, O. (2000). Lithologie, structure et metamorphisme des formations birimiennes dans la region d’Odienne (Cote d’Ivoire): Role majeur du diapirisme des plutons et des decrochements en bordure du craton de Man. Journal of African Earth Sciences, 30(2), 351–374. https://doi.org/10.1016/S0899-5362(00)00024-5
  21. Tounkara et al. (2017). Structural and Lithological Study of Gold Mineralization in the Areas of Bena and. Open Journal of Geology, 7, 1318–1326. https://doi.org/10.4236/ojg.2017.79087
  22. Abouchami et  aL ,(1990). A Major 2 . 1 Ga Event of Mafic Magmatism in West Africa ’ An Early Stage of Crustal Accretion regions from the manfie that growth from of sinking mobile of the Ahaggar [ Lancelot work by Boher data , 1990 ) have shown major series of orogenic episodes . Journal OF Geophysical Research, VOL. 95, NO. B I 1, PAGES 17,605-17,629, OCTOBER 10, 1990
  23. Oberth, T. Ulrich Vetter, Donald W. Davis, Joe A. Amanor , (1998).  Age constraints on gold mineralization and Paleoproterozoic crustal evolution in the Ashanti belt of southern Ghana.  Precamhrian Research 89 (1998) 129- 143
  24. Dabo M. et Aïfa, T. (2011). Late Eburnean deformation in the KoliaBoboti sedimentary basin, Kédougou-Kéniéba Inlier, Sénégal. Journal of African Earth Sciences, 60, 106-116, doi:10.1016/j.jafrearsci.2011.02.005.
  25. Chris Raplph,(2013).Birimian Greenstone Belt of West Africa-june 2013(Vol.82.No10)-ICMJ's Prospecting and Mining Journal.
  26. Augustin, J., Gaboury, D., & Crevier, M. (2015). The world-class Wona-Kona gold deposit ,Burkina Faso.Ore Geology Reviews, https://doi.org/10.1016/j.oregeorev.2015.10.017
  27. Block, S., Jessell, M., Aillères, L., Baratoux, L., Bruguier, O., Zeh, A., Bosch, D., Caby, R., Mensah, E., 2016. Lower crust exhumation during Paleoproterozoic (Eburnean) orogeny, NW Ghana, West African Craton: interplay of coeval contractional deformation and extensional gravitational collapse. Precambrian Research. Volume 274, pp. 82–109.
  28. Jessell, M. W. (2018). 100 years of research on the West African Craton Journal of African Earth Sciences 100 years of research on the West African Craton. October 2015. https://doi.org/10.1016/j.jafrearsci.2015.10.008
  29. Seta Naba  , Martin Lompo  , Pierre Debat , Jean Luc Bouchez , Didier Beziat (2004). Structure and emplacement model for late-orogenic Paleoproterozoic Structure and emplacement model for late-orogenic Paleoproterozoic granitoids : the Tenkodogo – Yamba elongate pluton ( Eastern Burkina Faso ). Journal of African Earth Sciences 38 (2004)41–57https://doi.org/10.1016/j.jafrearsci.2003.09.004.
  30. Reisberg, L., Le Mignot, E., Andre-Mayer, A.S., Miller, J., Bourassa, Y., 2015. Re-Os geochronological evidence for multiple Paleo-Proterozoic Gold mineralizing events at the scale of the West African Craton. In: Proceedings of the 13th SGA Biennial Meeting, Nancy, 24-27 August 2015, 4, pp. 1655e1658.
  31. Hein, K. A. A., Morel, V., Kagon, O., Kiemde, F., & Mayes, K. (2004). Birimian lithological succession and structural evolution in the Goren segment of the Boromo – Goren Greenstone Belt , Burkina Faso. 39, 1–23. https://doi.org/10.1016/j.jafrearsci.2004.05.003
  32. Metelka, V., Baratoux, L., Naba, S.,  Jessell, M. W. (2011). A geophysically constrained litho-structural analysis of the Eburnean greenstone belts and associated granitoid domains, Burkina Faso, West Africa. Precambrian Research, 190(1–4), 48–69. https://doi.org/10.1016/j.precamres.2011.08.002
  33. Chudasama, B., Porwal, A., Kreuzer, O. P., and Butera, K. (2015). Geology , geodynamics and orogenic gold prospectivity modelling of the Paleoproterozoic Kumasi Basin , Ghana , West Africa. Ore Geology Reviews, 20. https://doi.org/10.1016/j.oregeorev.2015.08.012
  34. Lüdtke, G., Hirdes, W., Konan, G., Kone, Y., N’da, D., Traore, Y., Zamble, Z., 1999. Geologie de la region Haute Comoe Suddfeuilles Dabakala (2b, d et 4b,d). Di rection de la Geologie Abidjan Bulletin, p. 176.
  35. Béziat, D., Bourges, F., Debat, P., Lompo, M., Martin, F., and  Tollon, F. A Paleoproterozoic ultramafic-mafic assemblage and associated volcanic rocks of the Boromo greenstone belt: Fractionates originating from island-arc volcanic activity in the West African craton. Precambrian Research, 2000; 101(1), 25–47. https://doi.org/10.1016/S0301-9268(99)00085-6
  36. Ilboudo, H., Sawadogo, S., Kagambega, N., and Remmal, T. Petrology, geochemistry, and source of the emplacement model of the Paleoproterozoic Tiébélé Granite Pluton, Burkina Faso (West-Africa): contribution to mineral exploration. International Journal of Earth Sciences, 2021;110(5),1753–1781. https://doi.org/10.1007/s00531-021-02039-3
  37. Masurel, Q., Eglinger, A., Thébaud, N., Allibone, A., Mcfarlane, H., Miller, J., Jessell, M., Aillères, L., Vanderhaeghe, O., Masurel, Q., Eglinger, A., Thébaud, N., and  Allibone, A. Paleoproterozoic gold events in the southern West African Craton : review and synopsis (2021).
  38. Baratoux, L., Mételka, V., Naba, S., Jessel, M.W., Grégoire, M. and Ganne, J. (2011) Juvenile Paleoproterozoic Crust Evolution during the Eburnean Orogeny (~2.2-2.0 Ga), Western Burkina Faso. Precambrian Research, 191, 18-45. https://doi.org/10.1016/j.precamres.2011.08.010
  39. Cox, K.G., Bell, J.D., Pankhurst, R.J., 1979. The interpretation of igneous rocks. Allen & Unwin, p. 1-464.
  40. Irvine, T.N., Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Canadian Journal of Earth Sciences  1971; 8, Pp. 523-548.
  41. Peccerillo, A., Taylor, S.R. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 1976; 58, Pp. 63-81.
  42. Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, R.J., Ellis, D.J., Frost, C.D. A geochemical classification for granitic rocks. Journal of Petrology 2001;42, Pp. 2035-2048.
  43. Frost, B.R., Frost, C.D.. A Geochemical Classification for Feldspathic Igneous Rocks. Journal of Petrology, 2008;11, Pp. 1955-1969.
  44. Debon, F., Le Fort, P. A chemical–mineralogical classification of common plutonic rocks and associations. Transactions of the Royal Society of Edinburgh, Earth Sciences, 1983; 73, Pp. 135–149.
  45. McDonald,G.A.,Katsura,T. Chemical composition of Hawaiian lavas.Journal of petrology  1964;5,82-113.
  46. Pearce, J.A., Harris, N.B.W., Tindle, A.G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of petrology 1984; 25, Pp. 217-235.
  47. Pearce, J.A. A user's guide to basalt discrimination diagrams. In: WYMAN, D. A. (ed.): Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide , 1996.
  48. Bonatti, T. Kraemer, and H. Rydell, “Classification and genesis of submarine iron-manganese deposits,” in Proceedings of the Conference on Ferromanganese Deposits on the Ocean Floor,D.R.Horn,Ed , 1972; pp. 149–166,ArdenHouse,Harriman, NY, USA.
  49. Turekian, K.K., Wedepohl, K.H. Distribution of the Elements in Some Major Units of the Earth's Crust. Geological Society of America Bulletin, 1961;72, Pp. 175-192.
  50. J. D. Clemens (13 Nov 2024): Igneous reasons why porphyry Cu–Au deposits are not magmatic, Australian Journal of Earth Sciences, DOI: 10.1080/08120099.2024.2422433
  51. Danbatta, U. A., Abubakar, Y. I., and Ibrahim, A. A.. Geochemistry of Gold Deposits in Anka Schist Belt, Northwestern, Nigeria. Nigerian Journal of Chemical Research 2008 ;13.
  52. J. R. Vearncombe (2023) Function and status of structural geology in the Resource industry, Australian Journal of Earth Sciences, 70:7, 908-931, DOI: 10.1080/08120099.2023.22149
  53. Garrels, R. M. and MacKenzie, F.T., Evolution of Sedimentary Rocks 1971; p. 394, Norton and Co., New York.
  54. Adebayo, S.,and Obasaju,D. Geological and Geochemical Prospecting for Gold Mineralization in Bode-Saadu Axis, Southwestern Nigeria. GeoScience Engineering  2021; 67(3), 64–76. https://doi.org/10.35180/gse-2021-0053
  55. Fontaine, A., Eglinger, A., Ada, K., Andre-Mayer, A-S., Reisberg, L., Siebenaller, L., Le Migot, E., Ganne, J., Poujol, M. Geology of the world-class Kiaka polyphase gold deposit,West African Craton, Burkina Faso. Journal of African Earth Sciences 2017; Volume 126, pp. 96-122.
  56. Debat, P., Nikiema, S., Mercier, A., Lompo, M., Beziat, D., Bourges, F., Roddaz, M., Salvi, S., Tollon, F., Wenmenga, U.A new metamorphic constraint for the Eburnean orogeny from Paleoproterozoic formations of the Man shield (Aribinda and Tampelga countries, Burkina Faso). Precambrian Research   2003; Volume 123, p. 47–65
  57. Perrouty, S., Ailleres, L., Jessell, M.W., Baratoux, L., Bourassa, Y., Crawford, B. Revised Eburnean geodynamic evolution of the gold-rich southern Ashanti Belt, Ghana, with new field and geophysical evidence of pre-Tarkwaian deformations. Precambrian Research  2012 : Volume 204-205, pp. 12-39.
  58. Ouedraogo, T., Sawadogo, S., and Kiéma, B. La minéralisation aurifère de Napélépéra , SW Burkina Faso , Afrique de l ’ Ouest : mise en place dans une zone de cisaillement tardi-orogénique Éburnéenne Résumé. Afrique SCIENCE  2022; 20(1), 81–92.
  59. Holden, E., Wong, J. C., Kovesi, P., Wedge, D., Dentith, M., and  Bagas, L. Identifying structural complexity in aeromagnetic data : An image analysis approach to green fi elds gold exploration. Ore Geology Reviews  2012 ;46, 47–59. https://doi.org/10.1016/j.oregeorev.2011.11.002

Gold mineralization in Gnimi-Yaboghan, southwestern Burkina Faso, was investigated to enhance understanding of its geological context and exploration potential. Geological mapping at a 1:50,000 scale revealed amphibolite, schist, granitoid, and quartz veins. Mineralogical and geochemical analyses (XRF, ICP-MS) and fire assay techniques identified quartz, feldspar, mica, and accessory minerals. The granitoids were classified as calc-alkaline, peraluminous, and S-type, indicating formation in a subduction zone. A ternary diagram suggested a hydrothermal submarine origin for the quartz veins. Lithophile elements (K, Rb, Ba, Sr) showed a genetic link between quartz veins and metasedimentary rocks, with metamorphic fluids likely responsible for gold deposition. Gold content was very low in granitoids (<0.002 ppm) but reached up to 9.9 ppm in quartz veins, confirming them as the primary gold-bearing structures. This study supports previous findings that most gold in Burkina Faso is hosted in quartz veins and highlights the significance of hydrothermal processes in mineralization.

Keywords : Geochemical Prospecting, Gold Mineralisation, Hydrothermal Fluid, Structures, Burkina-Faso.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe