Formulation-Driven Strategies for Overcoming Solubility Barriers in Drug Development: A Review


Authors : P. M. Mandhare; H. A. Ghuse

Volume/Issue : Volume 10 - 2025, Issue 12 - December


Google Scholar : https://tinyurl.com/5t3mha4t

Scribd : https://tinyurl.com/zxm65hzw

DOI : https://doi.org/10.38124/ijisrt/25dec1416

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Low water solubility is one of the most critical hurdles in pharmaceutical development, as nearly 40-50% of the newly discovered drug molecules are poorly water-soluble. This low solubility often leads to inadequate dissolution, poor absorption, and reduced bioavailability, which limit the therapeutic potential of many promising drug candidates. Consequently, enhancing solubility has become a key area of focus in formulation science to improve the clinical efficacy and commercial viability of modern pharmaceuticals. This review provides a overview of the various strategies developed to improve the solubility and dissolution rate of low water-soluble drug candidates. Based on their solubility, drugs are categorized into four classes according to the Biopharmaceutics Classification System (BCS). Solubility issues are primarily encountered in Class II and Class IV drugs. Various approaches and techniques are employed to enhance the solubility and bioavailability of these poorly soluble drugs. Conventional methods such as particle size reduction, salt formation, solid dispersion, and use of co-solvents are discussed alongside novel and emerging techniques, including nanocrystals, inclusion complexation with cyclodextrin, solid lipid nanoparticles, and amorphous solid dispersions.

Keywords : Solubility, Poorly Soluble Drugs, Nanoparticles, Hydrotropy, BCS.

References :

  1. Borgaonkar, V. B., Jain, C. M., Jaiswal, A. R., Irache, P., Yelane, A. H., & Tattu, H. P. (2024). A review on solubility enhancement technique for pharmaceutical drugs. GSC Biological and Pharmaceutical Sciences, 26(2), 239–253. https://doi.org/10.30574/gscbps.2024.26.2.0069
  2. Arun Kumar, M. S., Rajesh, M., & Subramanian, L. (2023). Solubility enhancement techniques: A comprehensive review. World Journal of Biology Pharmacy and Health Sciences, 13(3), 141–149. https://doi.org/10.30574/wjbphs.2023.13.3.0125
  3. Brahmbhatt, K., Patel, J., & Upadhyaya, U. (2022). A review article on solubility enhancement. National Journal of Pharmaceutical Sciences, 2(2), 84–90.
  4. Kadam, S.V., Shinkar, D.M., & Saudagar, R.B. (2013). Review on solubility enhancement techniques. International Journal of Pharmacy and Biological Sciences, 3(3), 462-475.
  5. Baldota, J. S., & Shukla, K. (2023). Solubility Enhancement of Poorly Soluble Drug of BCS Class II And IV By Using Different Techniques: A Review. _Bulletin of Environment, Pharmacology and Life Sciences_, 12(11), 328-334.
  6. Sharma, P.K., & Shukla, S. (2020). A review on solubility enhancement techniques. International Journal of Pharmacy & Pharmaceutical Research, _19_ (1). https://www.ijppr.humanjournals.com
  7. Vemula, V. R., Lagishetty, V., & Lingala, S. (2010). Solubility enhancement techniques. International Journal of Pharmaceutical Sciences Review and Research, 5(1), 41-51.
  8. Chaudhari, V. D., & Khandre, R. A. (2022). Solubility enhancement techniques: An overview. _International Journal of Creative Research Thoughts (IJCRT), 10_ (10). ISSN: 2320-2882
  9. Gupta, J., & Devi, A. (2019). Solubility Enhancement Techniques for Poorly Soluble Pharmaceuticals: A Review. Indian Journal of Pharmaceutical and Biological Research (IJPBR), 7(2), 9-16. DOI: https://doi.org/10.30750/ijpbr.7.2.2
  10. Krishna Shailaja, M. Usha, P. Sankeerthana, R. Jaya Sri, S. Niharika, & S. Madhuri. (2023). Review on solubility enhancement techniques for poorly soluble drugs. Journal of Pharmaceutics and Pharmacology Research, 6(3). https://doi.org/10.31579/2693-7247/126.
  11. Mahapatra, A. P. K., Patil, V., & Patil, R. (2020). Solubility enhancement of poorly soluble drugs by using novel techniques: A comprehensive review. International Journal of PharmTech Research, 13(2), 80–93. https://doi.org/10.20902/IJPTR.2019.130211 .
  12. Savjani, K. T., Gajjar, A. K., & Savjani, J. K. (2012). Drug solubility: Importance and enhancement techniques. ISRN Pharmaceutics, 2012, Article ID 195727, 1–10. https://doi.org/10.5402/2012/195727 .
  13. Kumar, L. A., Pattnaik, G., Satapathy, B. S., Patro, C. S., Naik, S., & Dash, A. K. (2022). Solubility enhancement techniques: Updates and prospectives. Journal of Pharmaceutical Negative Results, 13(Special Issue 8), 353–*. https://doi.org/10.47750/pnr.2022.13.S08.353 .
  14. Bhairav, B. A., Bachhav, J. K., & Saudagar, R. B. (2016). Review on solubility enhancement techniques. Asian Journal of Pharmaceutical Research, 6(3), 147–152. https://doi.org/10.5958/2231-5691.2016.00025.3 .
  15. Amidon, G. L., Lennernäs, H., Shah, V. P., & Crison, J. R. (1995). A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharmaceutical Research, 12(3), 413–420.
  16. Yasir, M., Asif, M., Kumar, A., & Aggarwal, A. (2010). Biopharmaceutical Classification System: An account. International Journal of Pharmaceutical Sciences Review and Research, 2(1), 74–79.
  17. Shah, V. P., Amidon, G. L., & others. (2014). G. L. Amidon, H. Lennernäs, V. P. Shah, and J. R. Crison: Backstory of BCS. AAPS Journal, 16(5), 894–897.
  18. World Health Organization. (2006). Guidelines on registration requirements to establish interchangeability for multisource (generic) pharmaceutical products. Geneva, Switzerland.
  19. Dhake, P. R., & colleagues. (2024). Biowaiver based on biopharmaceutics classification system. Journal of Drug Delivery and Therapeutics, 14(2), 1–12.
  20. U.S. Food and Drug Administration. (2000). Guidance for industry: Waiver of in vivo bioavailability and bioequivalence studies for immediate‑release solid oral dosage forms based on a biopharmaceutics classification system. Silver Spring, MD.
  21. Kumar, S., Banga, A. K., & others. (2018). Biopharmaceutics Classification System (BCS) class IV drugs: An overview. Journal of Advanced Pharmaceutical Technology & Research, 9(4), 159–167.
  22. Papich, M. G. (2015). AAPS Journal, 17(4), 948–964.
  23. Kawabata, Y., Wada, K., Nakatani, M., Yamaguchi, T., & Onoue, S. (2011). Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. International Journal of Pharmaceutics, 420(1), 1-10. https://doi.org/10.1016/j.ijpharm.2011.07.014
  24. Censi, R., & Di Martino, P. (2015). Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules, 20(10), 18759–18776. https://doi.org/10.3390/molecules201018759
  25. Parmar, A., Patel, K., Baria, A., & Patel, M. (2019). Solubility enhancement (Solid Dispersions) novel boon to increase bioavailability. Journal of Drug Delivery and Therapeutics, 9(2), 100-106. https://jddtonline.info/index.php/jddt/article/view/2437
  26. Coltescu, A. R. (2020). The importance of solubility for new drug molecules. Biomedical & Pharmaceutical Journal, 13(2), 643-652. https://biomedpharmajournal.org/vol13no2/the-importance-of-solubility-for-new-drug-molecules/
  27. Csicsák, D., Vágvölgyi, C., Rácz, D., & Budai-Szűcs, M. (2023). The effect of the particle size reduction on the biorelevant solubility and dissolution of drugs. Pharmaceutics, 15(1), Article 197. https://doi.org/10.3390/pharmaceutics15010197.
  28. Sun, J., Duan, J. A., Tang, Y. P., & Su, S. B. (2012). Effect of particle size on solubility, dissolution rate, and oral bioavailability: A comprehensive review. International Journal of Pharmaceutics, 436(1-2), 32-45. https://doi.org/10.1016/j.ijpharm.2012.07.067.
  29. Rabinow, B. E. (2004). Nanosuspensions in drug delivery. Nature Reviews Drug Discovery, 3(9), 785–796. https://doi.org/10.1038/nrd1494
  30. Ritchie, I. K., & co-authors. (2007). Crystal engineering approaches for habit modification and dissolution enhancement of poorly soluble drugs. Advanced Drug Delivery Reviews, 59(7), 682–690. https://doi.org/10.1016/j.addr.2007.05.011
  31. Kulasinski, K., Suresh, K., & Price, S. L. (2025). The impact of crystal habit on the pharmaceutical properties of active pharmaceutical ingredients. CrystEngComm, 27(14), 2150–2175. https://doi.org/10.1039/d4ce01170h
  32. Kumar, B. (2016). Solid dispersion – A review. PharmaTutor, 4(10), 7-14. https://www.pharmatutor.org/articles/solid-dispersion-review
  33. Serajuddin, A. T. M. (2007). Salt formation to improve drug solubility. Advanced Drug Delivery Reviews, 59(7), 603-616. https://doi.org/10.1016/j.addr.2007.05.012
  34. Alshammari, M. A., et al. (2021). Effect of pH modifiers on the solubility, dissolution rate, and stability of telmisartan solid dispersions produced by hot-melt extrusion technology. Journal of Drug Delivery Science and Technology, 62, 102353. https://doi.org/10.1016/j.jdds.2021.102353
  35. Loftsson, T. (2017). Drug solubilization by complexation. Pharmaceutical Research, 34(4), 2356-2367. https://doi.org/10.1007/s11095-016-2059-0
  36. Shinde, D. B., Awate, S. S., Arote, S. R., & Dhumal, R. C. (2025). Inclusion complexation: A technique to enhance solubility of poorly water-soluble drugs. International Journal of Pharmaceutical and Pharmacological Research. Retrieved from https://ijppr.humanjournals.com
  37. Deshmukh, A. S. (2024). Solubility enhancement of meloxicam by phospholipid complexation. Journal of Drug Delivery and Therapeutics, 14(1). https://jddtonline.info/index.php/jddt/article/view/6390
  38. IJPSR. (2025). CO-CRYSTALLIZATION: A technique for solubility enhancement. International Journal of Pharmaceutical Sciences and Research. https://ijpsr.com/bft-article/co-crystallization-a-technique-for-solubility-enhancement/
  39. Triggle, D. J., & Houston, J. (2025). Prodrugs in modern medicine: Strategies, applications, and future perspectives. Scientifica, 2025, Article ID 145302. https://www.scirp.org/journal/paperinformation?paperid=145302
  40. Asian Pharm Tech. (2023). Surfactants in pharmaceutical formulations: Enhancing drug solubility and bioavailability. Asian Journal of Pharmaceutical Technology, 12(2). https://www.asianpharmtech.com/articles/surfactants-in-pharmaceutical-formulations-enhancing-drug-solubility-and-bioavailability
  41. Maheshwari, R. K., Patel, H. D., & Bhatt, J. K. (2011). Mixed hydrotropy: Novel science of solubility enhancement. International Journal of Pharmacy and Pharmaceutical Sciences, 3(4), 106-110. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267302/
  42. Shah, R., Swarnakar, N., & Jones, D. (2024). Enhancing solubility and bioavailability with nanotechnology. Pharmaceutical Technology. https://www.pharmtech.com/view/enhancing-solubility-and-bioavailability-with-nanotechnology
  43. Kim, J., Lee, H., & Park, J. (2021). Pharmaceutical applications of supercritical fluid extraction for drug solubility and bioavailability enhancement: A review. Pharmaceutics, 13(11), 1757. https://pmc.ncbi.nlm.nih.gov/articles/PMC8625501/
  44. Khan, M., & Patel, N. (2024). Liquisolid technique: A review. International Journal of Pharmaceutical Sciences and Research, 15(9), 4486-4494. https://ijpsr.com/bft-article/liquisolid-technique-a-review/
  45. Liversidge, G. G., Liversidge, E. R., & Cooper, E. R. (1991). U.S. Patent No. 5,145,684. Washington, DC: U.S. Patent and Trademark Office. (Describes pearl milling for drug nanocrystals).
  46. Müller, R. H., Peters, K., Becker, R., & Kröner, B. (1995). Nanosuspensions—a novel formulation principle to overcome the barriers of poorly soluble drugs. Pharmazeutische Industrie, 57(10), 741–746.
  47. Osmani, R. A. M., Hani, U., Bhosale, U. R., Kazi, M., & Ozkan, T. (2023). Formulation and evaluation of piroxicam nanosponge for improved solubility and bioavailability. Drug Delivery and Translational Research, 13(5), 1234-1248. https://doi.org/10.1007/s13346-023-01345-6
  48. Dhumal, R. S., Biradar, S. V., Yamamura, S., & Paradkar, A. R. (2010). Solubility enhancement of rosiglitazone by using melt sonocrystallization. Chemical and Pharmaceutical Bulletin, 58(11), 1550-1555. https://doi.org/10.1248/cpb.58.1550
  49. Sharma, S., & Shukla, S. (2010). Microemulsion drug delivery system: A platform for improving dissolution rate of poorly water-soluble drug. International Journal of Pharmaceutical Sciences and Nanotechnology, 3(4), 1253–1259. https://doi.org/10.37285/ijpsn.2010.3.4.6
  50. Mahajan, N., Mujtaba, M. A., Fule, R., Thakre, S., Akhtar, M. S., Alavudeen, S. S., Anwer, M. K., Aldawsari, M. F., Mahmood, D., & Alam, M. S. (2024). Self-emulsifying drug delivery system for enhanced oral delivery of tenofovir: Formulation, physicochemical characterization, and bioavailability assessment. ACS Omega, 9(7), 8139–8150. https://doi.org/10.1021/acsomega.3c08565
  51. Yalkowsky, S. H., & Roseman, T. J. (1984). Solubilization of drugs by cosolvents. In Techniques of solubilization of drugs (pp. 16-59). Marcel Dekker. (Establishes cosolvency theory).
  52. Percy, S. (1872). Improvement in drying and concentrating liquids by atomizing and desiccation (U.S. Patent No. 125,777). U.S. Patent and Trademark Office.
  53. Paudel, A., Worku, Z. A., Meeus, J., Guns, S., & Van den Mooter, G. (2013). Manufacturing of solid dispersions of poorly water-soluble drugs by spray drying: Formulation and process considerations. International Journal of Pharmaceutics, 453(1), 253-284. https://doi.org/10.1016/j.ijpharm.2012.07.015
  54. Kawashima, Y., Takenaka, H., Niwa, T., & Okamoto, H. (1989). Spherical crystallization: Direct preparation of agglomerated crystals by the solvent-change method. Journal of Pharmaceutical Sciences, 78(11), 907-912. https://doi.org/10.1002/jps.2600781112

Low water solubility is one of the most critical hurdles in pharmaceutical development, as nearly 40-50% of the newly discovered drug molecules are poorly water-soluble. This low solubility often leads to inadequate dissolution, poor absorption, and reduced bioavailability, which limit the therapeutic potential of many promising drug candidates. Consequently, enhancing solubility has become a key area of focus in formulation science to improve the clinical efficacy and commercial viability of modern pharmaceuticals. This review provides a overview of the various strategies developed to improve the solubility and dissolution rate of low water-soluble drug candidates. Based on their solubility, drugs are categorized into four classes according to the Biopharmaceutics Classification System (BCS). Solubility issues are primarily encountered in Class II and Class IV drugs. Various approaches and techniques are employed to enhance the solubility and bioavailability of these poorly soluble drugs. Conventional methods such as particle size reduction, salt formation, solid dispersion, and use of co-solvents are discussed alongside novel and emerging techniques, including nanocrystals, inclusion complexation with cyclodextrin, solid lipid nanoparticles, and amorphous solid dispersions.

Keywords : Solubility, Poorly Soluble Drugs, Nanoparticles, Hydrotropy, BCS.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe