Fixed Point on Controlled Strong b-Multiplicative Metric Space


Authors : Manish Kumar

Volume/Issue : Volume 10 - 2025, Issue 3 - March


Google Scholar : https://tinyurl.com/42aj75un

Scribd : https://tinyurl.com/2p8h4aky

DOI : https://doi.org/10.38124/ijisrt/25mar551

Google Scholar

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 15 to 20 days to display the article.


Abstract : In [21] Dania Santina introduced a generalization of a metric space called controlled strong b-metric space (CSbMS) and proved a fixed point result in CSbMS. In [22], Tayyab Kamran explained the notion of b-multiplicative metric space and proved some fixed point theorems in b-multiplicative metric space. The purpose of this paper is to establish the concept of controlled strong b-multiplicative metric space (CSbMMS) and to prove a fixed point result on CSbMMS.

Keywords : b-Metric Space, Strong Metric Space, Multiplicative Metric Space, Controlled Strong B-Metric Space, Controlled Strong b-Multiplicative Metric Space. 2020 AMS Subject Classification: 47H10, 54H25

References :

  1. Shatanawi, W. On -compatible mappings and common coupled coincidence point in cone metric spaces. ScienceDirect 2012, 25, 6.
  2. Shatanawi, W.; Raji´c, V.C.; Radenovi´c, S.; Al-Rawashdeh, A. ´ Mizoguchi-Takahashi, Type Theorems in Tvs-Cone Metric Spaces, Fixed Point Theory and Applications; Springer Open: Berlin/Heidelberg, Germany, 2012.
  3. Al-Rawashdeh, A.; Hassen, A.; Abdelbasset, F.; Sehmim, S.; Shatanawi, W. On common fixed points for α – F-contractions and applications. J. Nonlinear Sci. Appl. 2016, 9, 3445–3458.
  4. Shatanawi, W.; Mustafa, Z.; Tahat, N. Some coincidence point theorems for nonlinear contraction in ordered metric spaces. Fixed Point Theory Appl. 2011, 2011, 1–15.
  5. Shatanawi, W. Some fixed point results for generalized ψ-weak contraction mappings in orbitally metric spaces. Chaos Solitons Fractals 2012, 45, 520–526.
  6. Bakhtin, I. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37.
  7. Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11.
  8. Abdeljawad, T.; Abodayeh, K.; Mlaiki, N. On fixed point generalizations to partial b-metric spaces. J. Comput. Anal. Appl. 2015, 19, 883–891.
  9. Afshari, H.; Atapour, M.; Aydi, H. Generalized α − ψ-Geraghty multivalued mappings on b-metric spaces endowed with a graph. Twms J. Appl. Eng. Math. 2017, 7, 248–260.
  10. Alharbi, N.; Aydi, H.; Felhi, A.; Ozel, C.; Sahmim, S. α-contractive mappings on rectangular b-metric spaces and an application to integral equations. J. Math. Anal. 2018, 9, 47–60.
  11. Aydi, H.; Karapinar, E.; Bota, M.; Mitrovi´c, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88.
  12. Aydi, H.; Bota, M.; Karapinar, E.; Moradi, S. A common fixed point for weak φ-contractions on b-metric spaces. Fixed Point Theory 2012,
  13. 13, 337–346. 13. Aydi, H.; Bankovi´c, R.; Mitrovi´c, I.; Nazam, M. Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces. Discret. Dyn. Nat. Soc. 2018, 2018, 4745764.
  14. Karapınar, E.; Czerwik, S.; Aydi, H. (α, ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620.
  15. Mlaiki, N.; Mukheimer, A.; Rohen, Y.; Souayah, N.; Abdeljawad, T. Fixed point theorems for α − ψ−contractive mapping in Sb -metric spaces. J. Math. Anal. 2017, 8, 40–46.
  16. Souayah, N.; Mlaiki, N.; Mrad, M. The GM−contraction principle for mappings on M−metric spaces endowed with a graph and fixed point theorems. IEEE Access 2018, 6, 25178–25184. 
  17. Souayah, N.; Mlaiki, N. A fixed point theorem in Sb metric spaces. J. Math. Comput. Sci. 2016, 16, 131–139.
  18. Ameer, E.; Arshad, M.; Shatanawi, W. Common fixed point results for generalized α∗ − ψ−contraction multivalued mappings in b−metric spaces. J. Fixed Point Theory Appl. 2017, 19, 3069–3086.
  19. Shatanawi, W. Fixed and Common Fixed Point for Mapping Satisfying Some Nonlinear Contraction in b-metric Spaces. J. Math. Anal. 2016, 7, 1–12.
  20. Shatanawi, W.; Pitea, A.; Lazovic, R. Contraction conditions using comparison functions on b-metric spaces. Fixed Point Theory Appl. 2014, 2014, 135.
  21. Dania Santina , Wan Ainun Mior Othman, Kok Bin Wong and Nabil Mlaiki, New Generalization of Metric-Type Spaces—Strong Controlled, Symmetry 2023, 15, 416, 1-12.
  22. Muhammad Usman Ali, Tayyab Kamran, Alia Kurdi; Fixed Point Theorems In b-Multiplicative Metric Spaces, U.P.B. Sci. Bull., Series A, Vol. 79, I. 3, 2017, 107-116.
  23. 30. Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Berlin/Heidelberg, Germany, 2014
  24. Matkowski, J. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 1977, 62, 344–348.
  25. Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76.

In [21] Dania Santina introduced a generalization of a metric space called controlled strong b-metric space (CSbMS) and proved a fixed point result in CSbMS. In [22], Tayyab Kamran explained the notion of b-multiplicative metric space and proved some fixed point theorems in b-multiplicative metric space. The purpose of this paper is to establish the concept of controlled strong b-multiplicative metric space (CSbMMS) and to prove a fixed point result on CSbMMS.

Keywords : b-Metric Space, Strong Metric Space, Multiplicative Metric Space, Controlled Strong B-Metric Space, Controlled Strong b-Multiplicative Metric Space. 2020 AMS Subject Classification: 47H10, 54H25

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe