Authors :
Manish Kumar
Volume/Issue :
Volume 10 - 2025, Issue 3 - March
Google Scholar :
https://tinyurl.com/42aj75un
Scribd :
https://tinyurl.com/2p8h4aky
DOI :
https://doi.org/10.38124/ijisrt/25mar551
Google Scholar
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 15 to 20 days to display the article.
Abstract :
In [21] Dania Santina introduced a generalization of a metric space called controlled strong b-metric space
(CSbMS) and proved a fixed point result in CSbMS. In [22], Tayyab Kamran explained the notion of b-multiplicative metric
space and proved some fixed point theorems in b-multiplicative metric space. The purpose of this paper is to establish the
concept of controlled strong b-multiplicative metric space (CSbMMS) and to prove a fixed point result on CSbMMS.
Keywords :
b-Metric Space, Strong Metric Space, Multiplicative Metric Space, Controlled Strong B-Metric Space, Controlled Strong b-Multiplicative Metric Space. 2020 AMS Subject Classification: 47H10, 54H25
References :
- Shatanawi, W. On -compatible mappings and common coupled coincidence point in cone metric spaces. ScienceDirect 2012, 25, 6.
- Shatanawi, W.; Raji´c, V.C.; Radenovi´c, S.; Al-Rawashdeh, A. ´ Mizoguchi-Takahashi, Type Theorems in Tvs-Cone Metric Spaces, Fixed Point Theory and Applications; Springer Open: Berlin/Heidelberg, Germany, 2012.
- Al-Rawashdeh, A.; Hassen, A.; Abdelbasset, F.; Sehmim, S.; Shatanawi, W. On common fixed points for α – F-contractions and applications. J. Nonlinear Sci. Appl. 2016, 9, 3445–3458.
- Shatanawi, W.; Mustafa, Z.; Tahat, N. Some coincidence point theorems for nonlinear contraction in ordered metric spaces. Fixed Point Theory Appl. 2011, 2011, 1–15.
- Shatanawi, W. Some fixed point results for generalized ψ-weak contraction mappings in orbitally metric spaces. Chaos Solitons Fractals 2012, 45, 520–526.
- Bakhtin, I. The contraction mapping principle in almost metric spaces. Funct. Anal. 1989, 30, 26–37.
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra. 1993, 1, 5–11.
- Abdeljawad, T.; Abodayeh, K.; Mlaiki, N. On fixed point generalizations to partial b-metric spaces. J. Comput. Anal. Appl. 2015, 19, 883–891.
- Afshari, H.; Atapour, M.; Aydi, H. Generalized α − ψ-Geraghty multivalued mappings on b-metric spaces endowed with a graph. Twms J. Appl. Eng. Math. 2017, 7, 248–260.
- Alharbi, N.; Aydi, H.; Felhi, A.; Ozel, C.; Sahmim, S. α-contractive mappings on rectangular b-metric spaces and an application to integral equations. J. Math. Anal. 2018, 9, 47–60.
- Aydi, H.; Karapinar, E.; Bota, M.; Mitrovi´c, S. A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88.
- Aydi, H.; Bota, M.; Karapinar, E.; Moradi, S. A common fixed point for weak φ-contractions on b-metric spaces. Fixed Point Theory 2012,
- 13, 337–346. 13. Aydi, H.; Bankovi´c, R.; Mitrovi´c, I.; Nazam, M. Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces. Discret. Dyn. Nat. Soc. 2018, 2018, 4745764.
- Karapınar, E.; Czerwik, S.; Aydi, H. (α, ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620.
- Mlaiki, N.; Mukheimer, A.; Rohen, Y.; Souayah, N.; Abdeljawad, T. Fixed point theorems for α − ψ−contractive mapping in Sb -metric spaces. J. Math. Anal. 2017, 8, 40–46.
- Souayah, N.; Mlaiki, N.; Mrad, M. The GM−contraction principle for mappings on M−metric spaces endowed with a graph and fixed point theorems. IEEE Access 2018, 6, 25178–25184.
- Souayah, N.; Mlaiki, N. A fixed point theorem in Sb metric spaces. J. Math. Comput. Sci. 2016, 16, 131–139.
- Ameer, E.; Arshad, M.; Shatanawi, W. Common fixed point results for generalized α∗ − ψ−contraction multivalued mappings in b−metric spaces. J. Fixed Point Theory Appl. 2017, 19, 3069–3086.
- Shatanawi, W. Fixed and Common Fixed Point for Mapping Satisfying Some Nonlinear Contraction in b-metric Spaces. J. Math. Anal. 2016, 7, 1–12.
- Shatanawi, W.; Pitea, A.; Lazovic, R. Contraction conditions using comparison functions on b-metric spaces. Fixed Point Theory Appl. 2014, 2014, 135.
- Dania Santina , Wan Ainun Mior Othman, Kok Bin Wong and Nabil Mlaiki, New Generalization of Metric-Type Spaces—Strong Controlled, Symmetry 2023, 15, 416, 1-12.
- Muhammad Usman Ali, Tayyab Kamran, Alia Kurdi; Fixed Point Theorems In b-Multiplicative Metric Spaces, U.P.B. Sci. Bull., Series A, Vol. 79, I. 3, 2017, 107-116.
- 30. Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer: Berlin/Heidelberg, Germany, 2014
- Matkowski, J. Fixed point theorems for mappings with a contractive iterate at a point. Proc. Am. Math. Soc. 1977, 62, 344–348.
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1968, 60, 71–76.
In [21] Dania Santina introduced a generalization of a metric space called controlled strong b-metric space
(CSbMS) and proved a fixed point result in CSbMS. In [22], Tayyab Kamran explained the notion of b-multiplicative metric
space and proved some fixed point theorems in b-multiplicative metric space. The purpose of this paper is to establish the
concept of controlled strong b-multiplicative metric space (CSbMMS) and to prove a fixed point result on CSbMMS.
Keywords :
b-Metric Space, Strong Metric Space, Multiplicative Metric Space, Controlled Strong B-Metric Space, Controlled Strong b-Multiplicative Metric Space. 2020 AMS Subject Classification: 47H10, 54H25