Fabrication of a Weeding Equipment Using IoT Sensor and Camera in a Small Boat


Authors : Sangeetha.N; Abhijith K.V; Rishikesh Jayaraj; Praveenkumar K.; Raju R.

Volume/Issue : Volume 10 - 2025, Issue 2 - February


Google Scholar : https://tinyurl.com/mwzfadyn

Scribd : https://tinyurl.com/49yx83fp

DOI : https://doi.org/10.5281/zenodo.14979497


Abstract : Agriculture plays a vital role in sustaining human life, yet challenges such as environmental stress, pest infestations, and inefficient weed management often lead to significant crop losses. To address these issues, the agricultural sector is increasingly adopting digital technologies, particularly IoT-enabled smart sensors and robotic weeding systems. These innovations enhance productivity, optimize resource use, and reduce environmental impact.Robotic weeding, a key advancement in digital agriculture, operates through sensing, thinking, and acting. Sophisticated sensing technologies, including RGB, NIR, spectral, and thermal cameras, as well as non-imaging methods like LIDAR, ToF, and ultrasonic systems, play a crucial role in precise weed detection and elimination. Meanwhile, IoT-integrated sensors monitor critical environmental parameters such as moisture, humidity, temperature, soil composition, and greenhouse gases. These technologies also facilitate precision fertilization and real-time pest surveillance through unmanned aerial vehicles (UAVs). Despite their benefits—such as cost reduction, increased efficiency, and reduced soil and water pollution—smart farming and robotic weeding face significant challenges. High implementation costs, data security concerns, and a lack of digital literacy among farmers hinder widespread adoption. Addressing these barriers through economic policies, data encryption, and targeted digital education will be crucial in advancing sustainable and technology-driven agriculture.

Keywords : EEWS, HSE Protocol, IoT

References :

  1. D.C. Slaughter, D.K. Giles, D. Downey. “Autonomous robotic weed control systems”, University of California, Biological and Agricultural Engineering, Davis, United States, 2008, 61(1), pp.63-78.
  2.  K. Rangaraj, Dr. K. J. Rathanraj, “Design and development of semi-Automatic weeder”, 2010, 3(1), pp.34– 39.
  3.  Tijmen Bakker, Kees Asselt van et.al, “Systematic design for autonomous platform for robotic weed”, 2010, 47(2), pp. 63-73.
  4. Y. Zhang, D.C. Slaughter, “Influence of solar irradiance on hyperspectral imaging-based plant recognition for autonomous weed control 2011, 110(2), pp 560-600.
  5.  K. Khanna, R. N. Jorgensen, and M. S. Olsen," Image-based weed recognition for variable-rate herbicide application", Weed Research, 2013, 53(3), PP 194-203.
  6. "Robotic weed control" by Hugo P. da Silva, Martin H. Andersen, and Rasmus N. Jorgensen, Precision Agriculture, 2015, 16(3), pp. 241-255.
  7. "A machine learning approach for automatic weed recognition using highly optimized LBP and color features," by M. S. Mohamed A dcnwer, N. M. Elsayed, and H. M. Mohamed, Ninth International Conference on Machine Vision (ICMV), 2016, pp.
  8.  "Autonomous robotic weed control systems," University of California, Biological and Agricultural Engineering, Davis, United States, 2008, 61(1), pp. 63-78, D.C. Slaughter, D.K. Giles, and D. Downey.
  9. "Design and development of semi-Automatic weeder," K. Rangaraj and Dr. K. J. Rathanraj, 2010, 3(1), pp. 34–39.
  10.  "Systematic design for autonomous platform for robotic weed," by Tijmen Bakker, Kees Asselt van et al., 2010, 47(2), pp. 63-73.
  11. Solar irradiance's impact on hyperspectral imaging-based plant recognition for autonomous weed management, by Y. Zhang and D.C. Slaughter, 2011, 110(2), pp. 560-600.
  12. "Image-based weed recognition for variable-rate herbicide application," Weed Research, 2013, 53(3), pp. 194-203, K. Khanna, R. N. Jorgensen, and M. S. Olsen.
  13. "Automated weed detection in grain crops" by Thomas N. Olsen, Michael S. Olsen, and Rasmus N. Jørgensen, Precision Agriculture, 2016, 17 (2), pp. 183.
  14. "Weed Mapping in Rice Fields Using Fully Convolutional," by Uwe Hahn, Peter Biber, and Anna-Katharina Horn Remote Sensing 2017, 9(3), pp. 269, "Neural Networks."
  15. "Deep Weeds: A Multiclass Weed Species Image Dataset for Deep Learning" by Peter Biber, Joe T. White, and Brendon J. Wood, Sensors, 2017, 20(4), pp. 1109.
  16. "Deep learning for weed detection and control in agriculture: A survey" by Truyen Tran, Shengpan Lin, and Dinh Phung, Computers and Electronics in Agriculture, 2017 39(1), pp. 265.
  17. Mayur V. Bhadke and Rahul S. Gite, "Automated Inter-Row Weeding Machine Design and Fabrication," 2018, 6(5), pp. 2321-9653.
  18. “Various aspects of Weeders for Economical Cultivation,” 2013, 3(1), pp. 3296-3299; Mr. Vivek D. Raut; B.D. Deshmukh; Dinesh Dekate; et al.
  19. "Crop/weed discrimination in cereal fields with context-driven, low-level vision" by Alireza Mousavi, Søren Skovsen, and Rasmus N. Jørgensen, Precision Agriculture, 2014, 15(1), pp. 22-34.
  20. "Robotic weed control" by Hugo P. da Silva, Martin H. Andersen, and Rasmus N. Jorgensen, Precision Agriculture, 2015, 16(3), pp. 241-255. In the Journal of Sensors, PP2016 (1), 701-750,
  21. Xiaolin Zheng and Yunhong Wang reviewed "A review on plant detection and plant stress detection for agriculture monitoring."
  22. Collins, Mike (1999). One promising technology is thermal weed control.
  23. Diver, Steve (June 2002). For vegetable crops, flame weeding is used. Ascard, Johan (October 1, 2008). Effects of burner angle on temperature patterns and weed control in flame weeding.
  24. On July 8, 2009, Merfield, Hampton, and Wratten, C. N. A steam weeder that is shot directly. 5. Frantisek Varga and Miroslav MOJZIS (2013). impact of flame weeder parameter settings on the efficiency of weed control.
  25.  Loni, R., Jafari, A., and M. Loghavi (2014). Design, development, and assessment of machine vision-based targeted discrete-flame weeding for interrow weed management. Agricultural Science and Technology, American Journal.
  26. "Deep learning for weed detection and control in agriculture: A survey" by Truyen Tran, Shengpan Lin, and Dinh Phung, Computers and Electronics in Agriculture, 2017 39(1), pp. 265.
  27. Mayur V. Bhadke and Rahul S. Gite, "Automated Inter-Row Weeding Machine Design and Fabrication," 2018, 6(5), pp. 2321-9653.
  28. Wang, A.; Zhang, W.; Wei, X. A review on weed detection using ground-based machine vision and image processing techniques. Comput. Electron. Agric. 2019, 158, 226–240. [CrossRef]
  29. Ranjan, P.N.; Ram, C.J.; Anurag, T.; Nilesh, J.; Kumar, P.B.; Suresh, Y.; Kumar, S.; Rahul, K. Breeding for herbicide tolerance in crops: A review. Res. J. Biotechnol. 2020, 15, 154–162.
  30. Hauvermale, A.L.; Sanad, M.N.M.E. Phenological plasticity of wild and cultivated plants. In Plant Communities and Their Environment; IntechOpen: London, UK, 2019.
  31. Smith, J.D.; Dubois, T.; Mallogo, R.; Njau, E.F.; Tua, S.; Srinivasan, R. Host range of the invasive tomato pest Tuta absoluta Meyrick (Lepidoptera: Gelechiidae) on Solanaceous crops and weeds in Tanzania. Fla. Entomol. 2018, 101, 573–579. [CrossRef]
  32.  Brêda-Alves, F.; Militão, F.P.; de Alvarenga, B.F.; Miranda, P.F.; de Oliveira Fernandes, V.; Cordeiro-Araújo, M.K.; Chia, M.A. Clethodim (herbicide) alters the growth and toxins content of Microcystis aeruginosa and Raphidiopsis raciborskii. Chemosphere 2020, 243, 1–9. [CrossRef]
  33. Mantle, P. Comparative ergot alkaloid elaboration by selected plecten-chymatic mycelia of Claviceps purpurea through sequential cycles of axenic culture and plant parasitism. Biology 2020, 9, 41. [CrossRef] [PubMed]
  34. Adkins, S.W.; Shabbir, A.; Dhileepan, K. Parthenium Weed: Biology, Ecology and Management; CABI: Wallingford, UK, 2018; Volume 7.
  35. Alvarez, D.O.; Mendes, K.F.; Tosi, M.; De Souza, L.F.; Cedano, J.C.C.; Falcão, N.P.D.S.; Dunfield, K.; Tsai, S.M.; Tornisielo, V.L. Sorption-desorption and biodegradation of sulfometuron-methyl and its effects on the bacterial communities in Amazonian soils amended with aged biochar. Ecotoxicol. Environ. Saf. 2021, 207, 111222. [CrossRef] [PubMed]
  36. Beasley, V.R. Direct and Indirect Effects of Environmental Contaminants on Amphibians, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2020.
  37.  Kim, K.H.; Kabir, E.; Jahan, S.A. Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [CrossRef] [PubMed]
  38. Chen, Y.; Wu, Z.; Zhao, B.; Fan, C.; Shi, S. Weed and corn seedling detection in field based on multi feature fusion and support vector machine. Sensors 2021, 21, 212. [CrossRef]
  39. Esposito, M.; Crimaldi, M.; Cirillo, V.; Sarghini, F.; Maggio, A. Drone and sensor technology for sustainable weed management: A review. Chem. Biol. Technol. 2021, 8, 1–11.
  40.  Somerville, G.J.; Sønderskov, M.; Mathiassen, S.K.; Metcalfe, H. Spatial modelling of within-field weed populations: A review. Agronomy 2020, 10, 1044. [CrossRef]
  41. Al-Samarai, G.F.; Mahdi, W.M.; Al-Hilali, B.M. Reducing environmental pollution by chemical herbicides using natural plant derivatives–allelopathy effect. Ann. Agric. Environ. Med. 2018, 25, 449–452. [CrossRef] [PubMed]
  42. Jensen, H.; Jacobsen, L.; Pedersen, S.; Tavella, E. Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precis. Agric. 2012, 13, 661–677. [CrossRef]
  43. Jin, X.; Che, J.; Chen, Y. Weed Identification Using Deep Learning and Image Processing in Vegetable Plantation. IEEE Access 2021, 9, 10940–10950. [CrossRef]
  44. Bahuguna, S.; Anchal, S.; Guleria, D.; Devi, M.; Kumar, D.; Kumar, R.; Kumar, A. Unmanned aerial vehicle-based multispectral remote sensing for commercially important aromatic crops in India for its efficient monitoring and management. J. Indian Soc. Remote Sens. 2021, 1–11, in press.
  45. Rasmussen, J.; Nielsen, J. A novel approach to estimating the competitive ability of Cirsium arvense in cereals using unmanned aerial vehicle imagery. Weed Res. 2020, 60, 150–160. [CrossRef]
  46. Matikainen, L.; Karila, K.; Hyyppä, J.; Puttonen, E.; Litkey, P.; Ahokas, E. Feasibility of multispectral airborne laser scanning for land cover classification, road mapping and map updating. In Proceedings of the The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Jyväskylä, Finland, 25–27 October 2017; Volume 42(3/W3).
  47. Yano, I.H.; Santiago, W.E.; Alves, J.R.; Mota, L.T.M.; Teruel, B. Choosing classifier for weed identification in sugarcane fields through images taken by UAV. Bulg. J. Agric. Sci. 2017, 23, 491–497.
  48. Olson, D.; Anderson, J. Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. J. Agron. 2021, 113, 971–992. [CrossRef]
  49. Warner, T.A.; Skowronski, N.S.; Gallagher, M.R. High spatial resolution burn severity mapping of the New Jersey Pine Barrens with WorldView-3 near-infrared and shortwave infrared imagery. Int. J. Remote Sens. 2017, 38, 598–616. [CrossRef]
  50.  Orlikova, L. Using Neural Networks for the Extraction of Built-Up Areas from Sentinel-2. In Proceedings of the 8th International Workshop on Computer Science and Engineering (WCSE 2018), Bangkok, Thailand, 28–30 June 2008; pp. 308–312.
  51. Varghese, D.; Radulovi´c, M.; Stojkovi´c, S.; Crnojevi´c, V. Reviewing the Potential of Sentinel-2 in Assessing the Drought. Remote Sens. 2021, 13, 3355. [CrossRef]
  52. Abascal Zorrilla, N.; Vantrepotte, V.; Gensac, E.; Huybrechts, N.; Gardel, A. The advantages of Landsat 8-OLI-derived suspended particulate matter maps for monitoring the subtidal extension of Amazonian coastal mud banks (French Guiana). Remote Sens. 2018, 10, 1733. [CrossRef]
  53. Malamiri, H.R.G.; Aliabad, F.A.; Shojaei, S.; Morad, M.; Band, S.S. A study on the use of UAV images to improve the separation accuracy of agricultural land areas. Int. J. Remote Sens. 2021, 184, 106079.
  54. Rodríguez, J.; Lizarazo, I.; Prieto, F.; Angulo-Morales, V. Assessment of potato late blight from UAV-based multispectral imagery. Comput. Electron. Agric. 2021, 184, 106061. [CrossRef] 28. Cao, Y.; Li, G.L.; Luo, Y.K.; Pan, Q.; Zhang, S.Y. Monitoring of sugar beet growth indicators using wide-dynamic-range vegetation index (WDRVI) derived from UAV multispectral images. Comput. Electron. Agric. 2020, 171, 105331. [CrossRef]
  55. Van Evert, F.K.; Fountas, S.; Jakovetic, D.; Crnojevic, V.; Travlos, I.; Kempenaar, C. Big Data for weed control and crop protection. Weed Res. 2007, 57, 218–233. [CrossRef]
  56. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. The PRISMA Group: Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLOS Med. 2009, 6, e1000097. [CrossRef]
  57. Ansong, M.; Pickering, C. Are weeds hitchhiking a ride on your car? A systematic review of seed dispersal on cars. PLoS ONE 2013, 8, e80275. [CrossRef]
  58. Koricheva, J.; Gurevitch, J. Uses and misuses of meta-analysis in plant ecology. J. Ecol. 2014, 102, 828–844. [CrossRef]
  59.  Jiménez-Brenes, F.M.; López-Granados, F.; Torres-Sánchez, J.; Peña, J.M.; Ramírez, P.; Castillejo-González, I.L.; de Castro, A.I. Automatic UAV-based detection of Cynodon dactylon for site-specific vineyard management. PLoS ONE 2019, 14, e0218132. [CrossRef]
  60. Jurado-Expósito, M.; López-Granados, F.; Jiménez-Brenes, F.M.; Torres-Sánchez, J. Monitoring the spatial variability of knapweed (Centaurea diluta aiton) in wheat crops using geostatistics and UAV imagery: Probability maps for risk assessment in site-specific control. Agronomy 2021, 11, 880. [CrossRef]
  61.  Ahmad, F.; Qiu, B.; Dong, X.; Ma, J.; Huang, X.; Ahmed, S.; Chandio, F.A. Effect of operational parameters of UAV sprayer on spray deposition pattern in target and off-target zones during outer field weed control application. Comput. Electron. Agric. 2020, 172, 105350. [CrossRef]
  62. Nevavuori, P.; Narra, N.; Lipping, T. Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric. 2019, 163, 104859. [CrossRef]
  63. Reis, B.P.; Martins, S.V.; Fernandes Filho, E.I.; Sarcinelli, T.S.; Gleriani, J.M.; Marcatti, G.E.; Leite, H.G.; Halassy, M. Management recommendation generation for areas under forest restoration process through images obtained by UAV and LiDAR. Remote Sens. 2019, 11, 1508. [CrossRef]
  64. Zou, K.; Chen, X.; Zhang, F.; Zhou, H.; Zhang, C. A Field Weed Density Evaluation Method Based on UAV Imaging and Modified U-Net. Remote Sens. 2021, 13, 310. [CrossRef]
  65.  Yan, Y.; Deng, L.; Liu, X.; Zhu, L. Application of UAV-based multi-angle hyperspectral remote sensing in fine vegetation classification. Remote Sens. 2019, 11, 2753. [CrossRef]
  66. Veeranampalayam Sivakumar, A.N.; Li, J.; Scott, S.; Psota, E.; Jhala, A.J.; Luck, J.D.; Shi, Y. Comparison of object detection and patch-based classification deep learning models on mid-to late-season weed detection in UAV imagery. Remote Sens. 2020, 12, 2136. [CrossRef]
  67.  Deng, J.; Zhong, Z.; Huang, H.; Lan, Y.; Han, Y.; Zhang, Y. Lightweight semantic segmentation network for real-time weed mapping using unmanned aerial vehicles. Appl. Sci. 2020, 10, 7132. [CrossRef]
  68.  Xavier, S.S.; Coffin, A.W.; Olson, D.M.; Schmidt, J.M. Remotely estimating beneficial arthropod populations: Implications of a low-cost small unmanned aerial system. Remote Sens. 2018, 10, 1485. [CrossRef]
  69.  David, L.C.G.; Ballado, A.H. Vegetation indices and textures in object-based weed detection from UAV imagery. In Proceedings of the 2016 6th IEEE International Conference on Control System, Computing and Engineering (ICCSCE), Penang, Malaysia, 25–27 November 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 273–278.
  70.  Huang, H.; Deng, J.; Lan, Y.; Yang, A.; Deng, X.; Wen, S.; Zhang, H.; Zhang, Y. Accurate weed mapping and prescription map generation based on fully convolutional networks using UAV imagery. Sensors 2018, 18, 3299. [CrossRef] [PubMed]
  71. Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Iqbal, J.; Alam, M. A novel semi-supervised framework for UAV based crop/weed classification. PLoS ONE 2021, 16, e0251008. [CrossRef]
  72. Lake, E.C.; David, A.S.; Spencer, T.M.; Wilhelm, V.L., Jr.; Barnett, T.W.; Abdel-Kader, A.A.; Cortes, A.C.; Acuna, A.; Mattison, E.D.; Minteer, C.R. First drone releases of the biological control agent Neomusotima conspurcatalis on Old World climbing fern. Biocontrol. Sci. Technol. 2021, 31, 97–106. [CrossRef]
  73.  Huang, H.; Lan, Y.; Yang, A.; Zhang, Y.; Wen, S.; Deng, J. Deep learning versus Object-based Image Analysis (OBIA) in weed mapping of UAV imagery. Int. J. Remote Sens. 2020, 41, 3446–3479. [CrossRef]
  74. [74] Rydberg, A.; Söderström, M.; Hagner, O.; Börjesson, T. Field specific overview of crops using UAV. In Proceedings of the 6th European Conference in Precision Agriculture, Skiathos, Greece, 3–6 June 2007; pp. 357–364.
  75. Mattivi, P.; Pappalardo, S.E.; Nikoli´c, N.; Mandolesi, L.; Persichetti, A.; De Marchi, M.; Masin, R. Can commercial low-cost drones and open-source GIS technologies be suitable for semi-automatic weed mapping for smart farming? A case study in NE Italy. Remote Sens. 2021, 13, 1869. [CrossRef]
  76.  De Camargo, T.; Schirrmann, M.; Landwehr, N.; Dammer, K.H.; Pflanz, M. Optimized deep learning model as a basis for fast UAV mapping of weed species in winter wheat crops. Remote Sens. 2021, 13, 1704. [CrossRef]
  77.  Tanut, B.; Riyamongkol, P. The development of a defect detection model from the high-resolution images of a sugarcane plantation using an unmanned aerial vehicle. Information 2020, 11, 136. [CrossRef]
  78.  Islam, N.; Rashid, M.M.; Wibowo, S.; Xu, C.Y.; Morshed, A.; Wasimi, S.A.; Moore, S.; Rahman, S.M. Early weed detection using image processing and machine learning techniques in an Australian chilli farm. Agriculture 2021, 11, 387. [CrossRef]
  79. Rozenberg, G.; Kent, R.; Blank, L. Consumer-grade UAV utilized for detecting and analyzing late-season weed spatial distribution patterns in commercial onion fields. Precis. Agric. 2021, 22, 1–16. [CrossRef]
  80.  Belcore, E.; Angeli, S.; Colucci, E.; Musci, M.A.; Aicardi, I. Precision agriculture workflow, from data collection to data management using FOSS tools: An application in northern Italy vineyard. ISPRS Int. J. Geo-Inf. 2021, 10, 236. [CrossRef]
  81.  Pallottino, F.; Pane, C.; Figorilli, S.; Pentangelo, A.; Antonucci, F.; Costa, C. Greenhouse application of light-drone imaging technology for assessing weeds severity occurring on baby-leaf red lettuce beds approaching fresh-cutting. Span. J. Agric. Res. 2020, 18, 7. [CrossRef]
  82.  Khan, S.; Tufail, M.; Khan, M.T.; Khan, Z.A.; Anwar, S. (in press) Deep learning-based identification system of weeds and crops in strawberry and pea fields for a precision agriculture sprayer. Precis. Agric. 2021, 1–17.
  83.  Zisi, T.; Alexandridis, T.K.; Kaplanis, S.; Navrozidis, I.; Tamouridou, A.A.; Lagopodi, A.; Polychronos, V. Incorporating surface elevation information in UAV multispectral images for mapping weed patches. J. Imaging 2018, 4, 132. [CrossRef]
  84.  Barrero, O.; Perdomo, S.A. RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields. Precis. Agric. 2018, 19, 809–822. [CrossRef]
  85.  Tamouridou, A.A.; Alexandridis, T.K.; Pantazi, X.E.; Lagopodi, A.L.; Kashefi, J.; Moshou, D. Evaluation of UAV imagery for mapping Silybum marianum weed patches. Int. J. Remote Sens. 2017, 38, 2246–2259. [CrossRef] 65. Mateen, A.; Zhu, Q. Legion based weed extraction from UAV imagery. Pak. J. Agric. Sci. 2019, 56, 1045–1052
  86.  S. P. Adhikari et al. 2020. An autonomous navigation system for paddy fields based on deep neural networks. Access, IEEE, 8: 71272–71278. 10.1109/ACCESS.2020.2987642 https://doi.org (retrieved November 10, 2023).
  87.  J. G. Balchen et al. (1980). Kalman filtering and optimum control form the basis of this dynamic positioning system. Identification, control, and modeling. 1 (3): 135–163. (Accessed Nov. 10, 2023) https://doi.org/10.4173/mic.1980.3.1.
  88.  Chen, B., and others (2003). A microweeding robot on a paddy field using machine vision. 393–404 in Biosystems Engineering, 85 (4). 10.1016/S1537-5110(03)00078-3 has been published. (retrieved November 10, 2023).
  89.  K. H. Choi and colleagues, 2015. Guidance line extraction for an autonomous weeding robot in rice fields based on morphology. Agriculture and Computers & Electronics, 113:266–274. (Accessed Nov. 10, 2023) https://doi.org/10.1016/ j.compag.2015.02.014
  90.  Fukushima, K., and associates (2003). impact of agitating flooded water on paddy weed growth. Weed Society Technology Journal, 48: 224–225. 10.3719/weed.48.Supplement_224 https://doi.org (retrieved November 10, 2023). (In Japanese).
  91. X. Han and colleagues, 2021. A polygonal paddy infield path planner for unmanned tillage operations is designed and tested in the field. Agriculture Computers and Electronics 191: 106567. (Accessed Nov. 10, 2023) https://doi.org/10.1016/ j.compag.2021.106567.
  92.  M. Iida and colleagues (2013). Head-feeding Combine Robot with path-following control. Agriculture, Environment, and Food Engineering. 6 (2): 61–67. 10 November 2023 (https://doi.org/10.11165/eaef.6.61). [4] Y. Kaizu and colleagues, 2011. creation of an unmanned airboat for mapping the quality of the water. 338–347 in Biosystems Engineering, 109 (4). (Accessed Nov. 10, 2023) https://doi.org/10.1016/j.biosystemseng.2011.04.013
  93. Anynomous. Season-wise Area, Production and Productivity of Rice in India. Indiastat, 2017.
  94.  Biswas HS, Ojha TP, Ingle GS. Development of animal drawn weeders in India. Agricultural Mechanization in Asia, Africa & Latin America. 1999; 30(4):57-62. 
  95. Deshmukh G, Tiwari RK. Impact of weeders for weed management in systems of rice intensification (SRI). Indian J. Weed Sci. 2011; 43(3&4):243-244.
  96. Din M, Mehta CR, Annamalia SJK, Singh M, Behera D, Pailkray PK. Road Map of mechanization of Rice cultivation, CRRI, Cuttack, India, 2014, 52.
  97.  Diwan P Design, Development and Evaluation of Power Operated Weeder for Rice. M.Tech Thesis, Indira Gandhi Krishi Vishwavidyalaya, Raipur, 2018.
  98.  Fagade SO. Performance of some herbicides in the control of  upland rice weed  in Nigaria.  WARDA Technical News Letter. 1980; 2(2):9-10.
  99.  Melander B, Rasmussen IA, Barberi P. Integrating physical and cultural methods of weed control- examples from European research. Weed Science. 2005; 53:369- 381.
  100.   Padole YB. Performance evaluation of rotary power weeder. Agricultural Engineering Today. 2007; 31(3 and 4):30-33.  9.  Raut VD, Deshmukh BD, Dekate D.  Review paper on various aspects of weeders for economical cultivation. International Journal of Modern Engineering Research. 2013; 3(5):3296-3299. 
  101.  Singh KK, Verma AK, Komra J. Modification of power operated single row rice weeder for dry field condition. Journal of Pharmacognosy and Phytochemistry. 2018; 7(1):1264-1266.
  102.  Fawakherji, M.; Potena, C.; Bloisi, D.D.; Imperoli, M.; Pretto, A.; Nardi, D. Uav image based crop and weed distribution estimation on embedded gpu boards. In Proceedings of the International Conference on Computer Analysis of Images and Patterns, Salerno, Italy, 3–5 September 2019; Springer: Cham, Switzerland, 2019; pp. 100–108.
  103.  Hamylton, S.M.; Morris, R.H.; Carvalho, R.C.; Roder, N.; Barlow, P.; Mills, K.; Wang, L. Evaluating techniques for mapping island vegetation from unmanned aerial vehicle (UAV) images: Pixel classification, visual interpretation and machine learning approaches. Int. J. Appl. Earth. Obs. Geo-Inf. 2020, 89, 102085. [CrossRef]
  104. Chen, Y.; Hou, C.; Tang, Y.; Zhuang, J.; Lin, J.; He, Y.; Guo, Q.; Zhong, Z.; Lei, H.; Luo, S.; et al. Citrus tree segmentation from UAV images based on monocular machine vision in a natural orchard environment. Sensors 2019, 19, 5558. [CrossRef]
  105.  Gašparovi´c, M.; Zrinjski, M.; Barkovi´c, Ð.; Radoˇcaj, D. An automatic method for weed mapping in oat fields based on UAV imagery. Comput. Electron. Agric. 2020, 173, 105385. [CrossRef]
  106.  Kawamura, K.; Asai, H.; Yasuda, T.; Soisouvanh, P.; Phongchanmixay, S. Discriminating crops/weeds in an upland rice field from UAV images with the SLIC-RF algorithm. Plant Prod. Sci. 2021, 24, 198–215. [CrossRef]
  107.  Yuba, N.; Kawamura, K.; Yasuda, T.; Lim, J.; Yoshitoshi, R.; Watanabe, N.; Maeda, T. Discriminating Pennisetum alopecuoides plants in a grazed pasture from unmanned aerial vehicles using object-based image analysis and random forest classifier. Grassl. Sci. 2021, 67, 73–82. [CrossRef]
  108.  Albani, D.; Nardi, D.; Trianni, V. Field coverage and weed mapping by UAV swarms. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 4319–4325.
  109. Hassanein, M.; El-Sheimy, N. An efficient weed detection procedure using low-cost UAV imagery system for precision agriculture applications. In Proceedings of the The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Karlsruhe, Germany, 10–12 October 2018; pp. 181–187.
  110. Fehr, D.; Beksi, W.J.; Zermas, D.; Papanikolopoulos, N. Covariance based point cloud descriptors for object detection and recognition. Comput. Vis. Image Underst. 2016, 142, 80–93. [CrossRef]
  111.  Pflanz, M.; Nordmeyer, H.; Schirrmann, M. Weed mapping with UAS imagery and a Bag of Visual Words based image classifier. Remote Sens. 2018, 10, 1530. [CrossRef]
  112.  Hassanein, M.; Lari, Z.; El-Sheimy, N. A new vegetation segmentation approach for cropped fields based on threshold detection from hue histograms. Sensors 2018, 18, 1253. [CrossRef]
  113.  Kganyago, M.; Odindi, J.; Adjorlolo, C.; Mhangara, P. Evaluating the capability of Landsat 8 OLI and SPOT 6 for discriminating invasive alien species in the African Savanna landscape. Int. J. Appl. Earth Obs. Geo-Inf. 2018, 67, 10–19. [CrossRef]
  114.  Kaivosoja, J.; Hautsalo, J.; Heikkinen, J.; Hiltunen, L.; Ruuttunen, P.; Näsi, R.; Salonen, J. Reference measurements in developing UAV Systems for detecting pests, weeds, and diseases. Remote Sens. 2021, 13, 1238. [CrossRef]
  115.  Hassler, S.C.; Baysal-Gurel, F. Unmanned aircraft system (UAS) technology and applications in agriculture. Agronomy 2019, 9, 618. [CrossRef]
  116.  Su, W.H. Advanced Machine Learning in Point Spectroscopy, RGB-and hyperspectral-imaging for automatic discriminations of crops and weeds: A review. Smart Cities 2020, 3, 767–792. [CrossRef]
  117.  Liu, D.; Xia, F. Assessing object-based classification: Advantages and limitations. Remote Sens. Lett. 2010, 1, 187–194. [CrossRef]
  118. Liakos, K.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [CrossRef]
  119.  Cervantes, J.; Garcia-Lamont, F.; Rodríguez-Mazahua, L.; Lopez, A. A comprehensive survey on support vector machine classification: Applications, challenges and trends. Neurocomputing 2020, 408, 189–215. [CrossRef]
  120.  Olatunji, O.O.; Akinlabi, S.; Madushele, N.; Adedeji, P.A. Property-based biomass feedstock grading using k-nearest neighbour technique. Energy 2020, 190, 116346. [CrossRef]
  121. Zhang, Y.; Cao, G.; Wang, B.; Li, X. A novel ensemble method for k-nearest neighbor. Pattern Recognit. 2019, 85, 13–25. [CrossRef]
  122. Zhang, M.; Qu, H.; Xie, X.; Kurths, J. Supervised learning in spiking neural networks with noise-threshold. Neurocomputing 2017, 219, 333–349. [CrossRef]
  123.  Le, T.M.; Shimizu, N.; Miyazaki, T.; Shinoda, K. Deep learning based multi-modal addressee recognition in visual scenes with utterances. arXiv 2018, arXiv:1809.04288.
  124. [124] Ndikumana, E.; Ho Tong Minh, D.; Baghdadi, N.; Courault, D.; Hossard, L. Deep recurrent neural network for agricultural classification using multitemporal SAR Sentinel-1 for Camargue, France. Remote Sens. 2018, 10, 1217. [CrossRef]
  125.  Prabakaran, G.; Vaithiyanathan, D.; Ganesan, M. FPGA based effective agriculture productivity prediction system using fuzzy support vector machine. Math. Comput. Simul. 2021, 185, 1–16. [CrossRef]
  126. Fortuna-Cervantes, J.M.; Ramírez-Torres, M.T.; Martínez-Carranza, J.; Murguía-Ibarra, J.S.; Mejía-Carlos, M. Object detection in aerial navigation using wavelet transform and convolutional neural networks: A first approach. Program. Comput. Softw. 2020, 46, 536–547. [CrossRef]
  127. Dasgupta, I.; Saha, J.; Venkatasubbu, P.; Ramasubramanian, P. AI Crop predictor and weed detector using wireless technologies: A smart application for farmers. Arab. J. Sci. Eng. 2020, 45, 11115–11127. [CrossRef]
  128. Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [CrossRef]
  129. Dos Santos Ferreira, A.; Freitas, D.M.; da Silva, G.G.; Pistori, H.; Folhes, M.T. Weed detection is soybean crops using ConvNets, Comput. Electron. Agric. 2017, 143, 314–324. [CrossRef].
  130. Biswas HS, Ojha TP, Ingle GS. Development of animal drawn weeders in India.Agricultural Mechanization in Asia, Africa & Latin America. 2020; 30(4):57- 62.

Agriculture plays a vital role in sustaining human life, yet challenges such as environmental stress, pest infestations, and inefficient weed management often lead to significant crop losses. To address these issues, the agricultural sector is increasingly adopting digital technologies, particularly IoT-enabled smart sensors and robotic weeding systems. These innovations enhance productivity, optimize resource use, and reduce environmental impact.Robotic weeding, a key advancement in digital agriculture, operates through sensing, thinking, and acting. Sophisticated sensing technologies, including RGB, NIR, spectral, and thermal cameras, as well as non-imaging methods like LIDAR, ToF, and ultrasonic systems, play a crucial role in precise weed detection and elimination. Meanwhile, IoT-integrated sensors monitor critical environmental parameters such as moisture, humidity, temperature, soil composition, and greenhouse gases. These technologies also facilitate precision fertilization and real-time pest surveillance through unmanned aerial vehicles (UAVs). Despite their benefits—such as cost reduction, increased efficiency, and reduced soil and water pollution—smart farming and robotic weeding face significant challenges. High implementation costs, data security concerns, and a lack of digital literacy among farmers hinder widespread adoption. Addressing these barriers through economic policies, data encryption, and targeted digital education will be crucial in advancing sustainable and technology-driven agriculture.

Keywords : EEWS, HSE Protocol, IoT

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe