Exploring the Role of Human Behavior Analytics in Strengthening Privacy-Preserving Systems for Sensitive Data Protection


Authors : David Oche Idoko; Hamed Salam Olarinoye; Olugbenga Ademola Adepoju;Taiwo Adeoye Folayan; Lawrence Anebi Enyejo

Volume/Issue : Volume 9 - 2024, Issue 12 - December

Google Scholar : https://tinyurl.com/37z3xwuf

Scribd : https://tinyurl.com/3efpkwxt

DOI : https://doi.org/10.5281/zenodo.14557642

Abstract : This study explores the complex interaction between human behavior and privacy within digital environments, emphasizing the behavioral patterns that influence privacy perceptions and risks. It examines how situational contexts and user preferences shape information-sharing behaviors, highlighting the importance of adaptive and context-aware systems. While innovative privacy features such as transparency mechanisms and real-time notifications empower user agency, the study underscores the necessity of reflective tools to promote long-term privacy awareness. By integrating ethical considerations and privacy-conscious design principles, the findings advocate for harmonizing technological advancements with user-centric safeguards to foster trust and ensure data protection in an increasingly interconnected digital ecosystem.

References :

  1. Abie, H., & Balasingham, I. (2012). Risk-based adaptive security for smart IoT in eHealth. Proceedings of the 7th International Conference on Body Area Networks, 269-275.
  2. Acquisti, A., Brandimarte, L., & Loewenstein, G. (2015). Privacy and human behavior in the age of information. Science, 347(6221), 509-514.
  3. Adeniyi, M.  Ayoola, V. B., Samuel, T. E., & Awosan, W. (2024). Artificial Intelligence-Driven Wearable Electronics and Smart Nanodevices for Continuous Cancer Monitoring and Enhanced Diagnostic Accuracy. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 3, Issue 11, 2024.
  4. Ajiga, D., Folorunsho, S. O., & Okeleke, P. A. (2024). Predictive analytics for market trends using AI: A study in consumer behavior. International Journal of Behavioral Analytics, 14(3), 45-62.
  5. Alkhabbas, F., Alsadi, M., & Awaysheh, F. M. (2022). Assert: A blockchain-based architectural approach for engineering secure self-adaptive IoT systems. Sensors, 22(18), 6842.
  6. Anyebe, A. P., Yeboah, O. K. K., Bakinson, O. I., Adeyinka, T. Y., & Okafor, F. C. (2024). Optimizing Carbon Capture Efficiency through AI-Driven Process Automation for Enhancing Predictive Maintenance and CO2 Sequestration in Oil and Gas Facilities. American Journal of Environment and Climate, 3(3), 44–58.
  7. Ayoola, V. B., Audu, B. A., Boms, J. C., Ifoga, S. M., Mbanugo, O. J., & Ugochukwu, U. N.  (2024). Integrating Industrial Hygiene in Hospice and Home Based Palliative Care to Enhance Quality of Life for Respiratory and Immunocompromised Patients. NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880.
  8. Ayoola, V. B., Audu, B. A., Boms, J. C., Ifoga, S. M., Mbanugo, O. J., & Ugochukwu, U. N.  (2024). Integrating Industrial Hygiene in Hospice and Home Based Palliative Care to Enhance Quality of Life for Respiratory and Immunocompromised Patients. NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880.
  9. Ayoola, V. B., Ugochukwu, U. N.,  Adeleke, I., Michael, C. I. Adewoye, M. B., & Adeyeye, Y. (2024). Generative AI-Driven Fraud Detection in Health Care Enhancing Data Loss Prevention and Cybersecurity Analytics for Real-Time Protection of Patient Records. International Journal of Scientific Research and Modern Technology (IJSRMT), Volume 3, Issue 11, 2024.
  10. Ayoola, V. B., Ugochukwu, U. N.,  Adeleke, I., Michael, C. I. Adewoye, M. B., & Adeyeye, Y. (2024). Generative AI-Driven Fraud Detection in Health Care Enhancing Data Loss Prevention and Cybersecurity Analytics for Real-Time Protection of Patient Records. International Journal of Scientific Research and Modern Technology (IJSRMT), Volume 3, Issue 11, 2024.
  11. Babuta, A., & Oswald, M. (2019). Data analytics and algorithmic bias in policing. CORE.
  12. Bal, G. (2014). Designing privacy indicators for smartphone app markets: A new perspective on the nature of privacy risks of apps. Proceedings of the Americas Conference on Information Systems (AMCIS), 1-10.
  13. Baltrušaitis, T., Robinson, P., & Morency, L. P. (2016). OpenFace: An open source facial behavior analysis toolkit. 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), 1-10.
  14. Botella, C., Díaz-Garcia, A., Baños, R. M., & Quero, S. (2009). Ethical implications of verbal disinhibition with conversational agents. Psychnology Journal, 7(2), 77-85.
  15. Boulemtafes, A., Derhab, A., & Challal, Y. (2020). A review of privacy-preserving techniques for deep learning. Neurocomputing, 384, 40-62.
  16. Boulemtafes, A., Derhab, A., & Challal, Y. (2020). A review of privacy-preserving techniques for deep learning. Neurocomputing, 384, 40-62.
  17. Brown, V. M., Chen, J., Gillan, C. M., & Price, R. B. (2020). Improving the reliability of computational analyses: Model-based planning and its relationship with compulsivity. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 5(6), 604-614.
  18. Cahyadi, A., Razak, A., Abdillah, H., & Junaedi, F. (2019). Machine learning-based behavioral modification. International Journal of Engineering and Advanced Technology, 8(4), 12-18.
  19. Cao, L. (2010). In-depth behavior understanding and use: The behavior informatics approach. Information Sciences, 180(17), 3067-3085.
  20. Chen, J., Ooi, L. Q. R., Tan, T. W. K., Zhang, S., Li, J., & Asplund, C. L. (2023). Relationship between prediction accuracy and feature importance reliability: An empirical and theoretical study. NeuroImage, 253, 119086.
  21. Dinu, V. E., Papuc, D., & Gheorghiu, A. (2017). Biometric data in learning analytics: A survey on existing applications. Applied Cybersecurity and Digital Forensics, 13(2), 71-85.
  22. Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends in Theoretical Computer Science, 9(3-4), 211-407.
  23. Enyejo,  J. O.,  Obani, O. Q,  Afolabi, O.  Igba, E. &  Ibokette, A. I., (2024). Effect of Augmented Reality (AR) and Virtual Reality (VR) experiences on customer engagement and purchase behavior in retail stores. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 132–150.
  24. Enyejo, L. A., Adewoye, M. B. & Ugochukwu, U. N. (2024). Interpreting Federated Learning (FL) Models on Edge Devices by Enhancing Model Explainability with Computational Geometry and Advanced Database Architectures. International Journal of Scientific Research in Computer Science, Engineering and Information Technology.
  25. Enyejo, L. A., Adewoye, M. B. & Ugochukwu, U. N. (2024). Interpreting Federated Learning (FL) Models on Edge Devices by Enhancing Model Explainability with Computational Geometry and Advanced Database Architectures. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. Vol. 10 No. 6 (2024): November-December
  26. Fernández-Alemán, J. L., Señor, I. C., Lozoya, P. Á. O., & Toval, A. (2013). Security and privacy in electronic health records: A systematic literature review. Journal of Biomedical Informatics, 46(3), 541-562.
  27. Gholami, A., & Laure, E. (2016). Security and privacy of sensitive data in cloud computing: A survey of recent developments. arXiv preprint arXiv:1601.01498.
  28. Here are the citations rewritten in standard APA format without links, asterisks, or DOIs:
  29. Hofmann, B., Haustein, D., & Landeweerd, L. (2017). Ethical issues in behavioral analysis: Exposing and elucidating the risks. Science and Engineering Ethics, 23(4), 1023-1036.
  30. Idoko, D. O. Adegbaju, M. M.,  Nduka, I., Okereke, E. K., Agaba, J. A., & Ijiga, A. C . (2024).  Enhancing early detection of pancreatic cancer by integrating AI with advanced imaging techniques. Magna Scientia Advanced Biology and Pharmacy, 2024, 12(02), 051–083.
  31. Idoko, D. O. Ugoaghalam, U. J., Babalola, A., & Oyebanji, S. O. (2024). A comprehensive review of combating EDoS attacks in cloud services with deep learning and advanced network security technologies including DDoS protection and intrusion prevention systems. Global Journal of Engineering and Technology Advances, 2024, 20(03), 006–033.
  32. Idoko, D. O.,  Mbachu, O. E.,  Babalola, I. N. O.,  Erondu, O. F., Okereke, E. K., & P Alemoh, P. O. (2024). Exploring the impact of obesity and community health programs on enhancing endometrial cancer detection among low-income and native American women through a public health lens. International Journal of Frontiers in Medicine and Surgery Research, 2024, 06(02), 001–018.
  33. Idoko, D. O.,  Mbachu, O. E., Ijiga, A. C.,  Okereke, E. K., Erondu, O. F., & Nduka,  I. (2024).  Assessing the influence of dietary patterns on preeclampsia and obesity among pregnant women in the United States. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 08(01), 085–103.
  34. Idoko, D. O., Adenyi, M., Senejani, M. N., Erondu, O. F., & Adeyeye, Y. (2024). Nanoparticle-Assisted Cancer Imaging and Targeted Drug Delivery for Early-Stage Tumor Detection and Combined Diagnosis-Therapy Systems for Improved Cancer Management. International Journal of Innovative Science and Research Technology. Volume 9, Issue 11, November-2024. ISSN No:- 2456-2165.
  35. Idoko, D. O., Agaba, J. A.,  Nduka, I.,  Badu, S. G.,  Ijiga, A. C. & Okereke, E. K, (2024). The role of HSE risk assessments in mitigating occupational hazards and infectious disease spread: A public health review. Open Access Research Journal of Biology and Pharmacy, 2024, 11(02), 011–030.
  36. Idoko, D. O., Agaba, J. A.,  Nduka, I.,  Badu, S. G.,  Ijiga, A. C. & Okereke, E. K, (2024). The role of HSE risk assessments in mitigating occupational hazards and infectious disease spread: A public health review. Open Access Research Journal of Biology and Pharmacy, 2024, 11(02), 011–030.
  37. Idoko, D. O., Mbachu, O. E., Babalola, I. N. O., Erondu, O. F. Dada-Abidakun, O., Adeyeye, Y. (2024). Biostatistics for Predicting Health Disparities in Infectious Disease Outcomes, Using Real-world Evidence and Public Health Intervention Data.  OCT 2024 | IRE Journals | Volume 8 Issue 4 | ISSN: 2456-8880.
  38. Idoko, D. O., Mbachu, O. E., Ololade, I. N., Erondu, O. F., Dada-Abdakun,  O. & Alemoh, P. O. (2024). The Influence of Prenatal Vitamin Use and Community Health Programs on Reducing Teratogenic Medications Exposure and Improving Perinatal Nutrition among African American Adolescents with Limited Access to Healthcare. International Journal of Scientific Research and Modern Technology (IJSRMT)
  39. Ijiga, A. C., Abutu E. P., Idoko, P.  I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 2024, 11(01), 535–551.·
  40. Ijiga, A. C., Balogun, T. K., Ahmadu, E. O., Klu, E., Olola, T. M., & Addo, G. (2024). The role of the United States in shaping youth mental health advocacy and suicide prevention through foreign policy and media in conflict zones. Magna Scientia Advanced Research and Reviews, 2024, 12(01), 202–218.
  41. Jahan, S., Riley, I., & Gamble, R. F. (2020). MAPE-K/MAPE-SAC: An interaction framework for adaptive systems with security assurance cases. Future Generation Computer Systems, 112, 543-558.
  42. Jayaraman, P. P., Yang, X., & Yavari, A. (2017). Privacy-preserving Internet of Things: From privacy techniques to a blueprint architecture and efficient implementation. Future Generation Computer Systems, 76, 540-549.
  43. jiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Umama, E. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 07(01), 048–063.
  44. Khalil, H., & Peters, M. (2016). An evidence-based approach to scoping reviews. Worldviews on Evidence-Based Nursing, 13(2), 118-123.
  45. Khan, M. (2023). Exploring the dynamic landscape: Applications of AI in cybersecurity. EasyChair Preprints.
  46. Kimmel, A. J., Smith, N. C., & Klein, J. G. (2011). Ethical decision making and research deception in the behavioral sciences: An application of social contract theory. Ethics & Behavior, 21(3), 222-251.
  47. Klymenko, O., Meisenbacher, S., & Matthes, F. (2023). Identifying practical challenges in the implementation of technical measures for data privacy compliance. arXiv preprint arXiv:2306.15497.
  48. Kokolakis, S. (2017). Privacy attitudes and privacy behavior: A review of current research on the privacy paradox phenomenon. Computers & Security, 64, 122-134.
  49. Li, Y. (2012). Theories in online information privacy research: A critical review and an integrated framework. Decision Support Systems, 54(1), 471-481.
  50. Li, Z. S., Werner, C., Ernst, N., & Damian, D. (2022). Towards privacy compliance: A design science study in a small organization. Information and Software Technology, 141, 106717.
  51. Madan, S., Sofat, S., & Bansal, D. (2022). Tools and techniques for collection and analysis of Internet-of-Things malware: A systematic state-of-art review. Journal of King Saud University-Computer and Information Sciences, 34(2), 1167-1182.
  52. Marengo, A. (2024). Navigating the nexus of AI and IoT: A comprehensive review of data analytics and privacy paradigms. Internet of Things, 14, 100368.
  53. Martin, A. G., Fernández-Isabel, A., & Martin de Diego, I. (2021). A survey for user behavior analysis based on machine learning techniques: Current models and applications. Applied Intelligence, 51(6), 1218-1240.
  54. Moallem, A. (2024). Human behavior in cybersecurity privacy and trust. In Human-Computer Interaction in Intelligent Systems. Taylor & Francis.
  55. Nimmagadda, V. S. P. (2022). AI-Based Fraud Detection and Prevention Mechanisms in Digital Banking: A Real-World Case Study Analysis. Journal of AI in Healthcare and Medicine, 2(1), 304-341.
  56. Pan, X., Lin, Y., & He, C. (2017). A review of cognitive models in human reliability analysis. Quality and Reliability Engineering International, 33(6), 1371-1384.
  57. Pussewalage, H. S. G., & Oleshchuk, V. A. (2016). Privacy preserving mechanisms for enforcing security and privacy requirements in e-health solutions. International Journal of Information Management, 36(6), 1161-1173.
  58. Rahmes, M., Fox, K., & Delay, J. (2014). Matching social network biometrics using geo-analytical behavioral modeling. Proceedings of the IEEE International Conference on Computational Intelligence and Data Mining, 68-73.
  59. Rauthan, J. S., & Vaisla, K. S. (2017). Privacy and security of user's sensitive data: A viable analysis. RICE.
  60. Redress Compliance. (2024). AI for Behavioral Analysis.
  61. Rodrigues, A., Knauss, E., & Ali, R. (2019). Enhancing context specifications for dependable adaptive systems: A data mining approach. Information and Software Technology, 112, 54-72.
  62. Sahu, M. K. (2022). AI-Driven Customer Journey Analytics in Omnichannel Retail: Improving Personalization and Conversion Rates. Journal of AI in Healthcare and Medicine, 2(1), 341-382.
  63. Saura, J. R., & Ribeiro-Soriano, D. (2022). Assessing behavioral data science privacy issues in government artificial intelligence deployment. Government Information Quarterly, 39(3), 101740.
  64. Saura, J. R., & Ribeiro-Soriano, D. (2022). Assessing behavioral data science privacy issues in government artificial intelligence deployment. Government Information Quarterly, 39(3), 101740.
  65. Sharma, S., & Ramkumar, K. R. (2020). A comparative analysis on applications, tools, and techniques of deep learning. Journal of Critical Reviews, 7(11), 1583-1592.
  66. Shmueli, G. (2017). Analyzing behavioral big data: Methodological, practical, ethical, and moral issues. Quality Engineering, 29(1), 17-28.
  67. Stragapede, G., Vera-Rodriguez, R., & Tolosana, R. (2022). BehavePassDB: Benchmarking mobile behavioral biometrics. Pattern Recognition Journal, 120(4), 102355.
  68. Tayan, O. (2017). Concepts and tools for protecting sensitive data in the IT industry: A review of trends, challenges, and mechanisms for data-protection. International Journal of Advanced Computer Science.
  69. Trepte, S., Dienlin, T., & Reinecke, L. (2014). Risky behaviors: How online experiences influence privacy behaviors. Von Der Gutenberg-Galaxis Zur Google-Galaxis, 40-58.
  70. Tumpa, S. N. (2022). Online user recognition using social behavioral biometric systems. Journal of Cybersecurity and Analytics, 7(1), 10-20.
  71. Tursunbayeva, A., Di Lauro, S., & Pagliari, C. (2018). People analytics—A scoping review of conceptual boundaries and value propositions. International Journal of Information Management, 43, 224-234.
  72. Voss, W. G. (2016). Internal compliance mechanisms for firms in the EU General Data Protection Regulation. Rev. Jur. Technology & Policy.
  73. Voss, W. G. (2019). Obstacles to transatlantic harmonization of data privacy law in context. U. Ill. JL Tech. & Pol'y, 2019(1), 69-96.
  74. Wang, C., Zheng, Y., Jiang, J., & Ren, K. (2018). Toward privacy-preserving personalized recommendation services. Engineering, 4(1), 21-29.
  75. Waoo, A. A., & Sharma, S. (2023). Customer behavior analysis in e-commerce using machine learning approach: A survey. IJSRCSEIT, 8(2), 79-92.
  76. Webber, K. L., Morn, J., & Webber, K. (2019). Limitations in data analytics: Considerations related to ethics, security, and possible misrepresentation in data reports and visualizations. IHE Research Projects Series.
  77. Wolniak, R., & Grebski, W. (2023). The concept of diagnostic analytics. Silesian University of Technology.
  78. Yan, X., & Zhang, J. Y. (2013). Early detection of cyber security threats using structured behavior modeling. ACM Transactions on Information and System Security, 16(4), Article 18.
  79. Zeng, Z., Kang, R., & Chen, Y. (2016). Using PoF models to predict system reliability considering failure collaboration. Chinese Journal of Aeronautics, 29(4), 911-919.

This study explores the complex interaction between human behavior and privacy within digital environments, emphasizing the behavioral patterns that influence privacy perceptions and risks. It examines how situational contexts and user preferences shape information-sharing behaviors, highlighting the importance of adaptive and context-aware systems. While innovative privacy features such as transparency mechanisms and real-time notifications empower user agency, the study underscores the necessity of reflective tools to promote long-term privacy awareness. By integrating ethical considerations and privacy-conscious design principles, the findings advocate for harmonizing technological advancements with user-centric safeguards to foster trust and ensure data protection in an increasingly interconnected digital ecosystem.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe