Authors :
Joy Onma Enyejo; Ololade Peter Fajana; Irene Sele Jok; Chidimma Judith Ihejirika; Babatunde Olusola Awotiwon; Toyosi Motilola Olola
Volume/Issue :
Volume 9 - 2024, Issue 11 - November
Google Scholar :
https://tinyurl.com/4b742e8d
Scribd :
https://tinyurl.com/4n3cdt3z
DOI :
https://doi.org/10.38124/ijisrt/IJISRT24NOV1344
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
This review explores the integration of digital
twin technology, predictive analytics, and sustainable
project management to enhance global supply chain
efficiency, resilience, and environmental sustainability.
Digital twins provide real-time virtual representations of
physical supply chain systems, enabling predictive
analytics to identify potential disruptions and optimize
decision-making processes. By combining these advanced
technologies with sustainable project management
practices, such as circular supply chains and green
logistics, organizations can proactively address risks
while reducing their carbon footprint. The focus on data-
driven insights and scenario analysis facilitates informed
risk mitigation and resource optimization. The
integration of frameworks like the Triple Bottom Line
emphasizes the importance of balancing economic, social,
and environmental objectives in project management.
This approach aims to improve supply chain
performance, drive sustainability efforts, and create a
resilient logistics network that adapts effectively to
market uncertainties and environmental challenges.
Keywords :
Digital Twin Technology; Predictive Analytics; Sustainable Supply Chains; Green Logistics; Supply Chain Optimization; Global Sustainability Goals.
References :
- Ajayi, A. A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Enhancing Digital Identity and Financial Security in Decentralized Finance (Defi) through Zero-Knowledge Proofs (ZKPs) and Blockchain Solutions for Regulatory Compliance and Privacy. OCT 2024 |IRE Journals | Volume 8 Issue 4 | ISSN: 2456-8880
- Ajayi, A. A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Quantum Cryptography and Blockchain-Based Social Media Platforms as a Dual Approach to Securing Financial Transactions in CBDCs and Combating Misinformation in U.S. Elections. International Journal of Innovative Science and Research Technology. Volume 9, Issue 10, Oct.– 2024 ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/IJISRT24OCT1697.
- Akindote, O., Enyejo, J. O., Awotiwon, B. O. & Ajayi, A. A. (2024). Integrating Blockchain and Homomorphic Encryption to Enhance Security and Privacy in Project Management and Combat Counterfeit Goods in Global Supply Chain Operations. International Journal of Innovative Science and Research Technology Volume 9, Issue 11, NOV. 2024, ISSN No:-2456-2165. https://doi.org/10.38124/ijisrt/IJISRT24NOV149.
- Akindote, O., Igba E., Awotiwon, B. O., & Otakwu, A (2024). Blockchain Integration in Critical Systems Enhancing Transparency, Efficiency, and Real-Time Data Security in Agile Project Management, Decentralized Finance (DeFi), and Cold Chain Management. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 3, Issue 11, 2024. DOI: 10.38124/ijsrmt.v3i11.107.
- Awotiwon, B. O., Enyejo, J. O., Owolabi, F. R. A., Babalola, I. N. O., & Olola, T. M. (2024). Addressing Supply Chain Inefficiencies to Enhance Competitive Advantage in Low-Cost Carriers (LCCs) through Risk Identification and Benchmarking Applied to Air Australasia’s Operational Model. World Journal of Advanced Research and Reviews, 2024, 23(03), 355–370. https://wjarr.com/content/addressing-supply-chain-inefficiencies-enhance-competitive-advantage-low-cost-carriers-lccs
- Ayoola, V. B., Idoko, P. I., Danquah, E. O., Ukpoju, E. A., Obasa, J., Otakwu, A. & Enyejo, J. O. (2024). Optimizing Construction Management and Workflow Integration through Autonomous Robotics for Enhanced Productivity Safety and Precision on Modern Construction Sites. International Journal of Scientific Research and Modern Technology (IJSRMT). Vol 3, Issue 10, 2024. https://www.ijsrmt.com/index.php/ijsrmt/article/view/56
- Balogun, T. K., Enyejo, J. O., Ahmadu, E. O., Akpovino, C. U., Olola, T. M., & Oloba, B. L. (2024). The Psychological Toll of Nuclear Proliferation and Mass Shootings in the U.S. and How Mental Health Advocacy Can Balance National Security with Civil Liberties. IRE Journals, Volume 8 Issue 4, ISSN: 2456-8880.
- Bashiru, O., Ochem, C., Enyejo, L. A., Manuel, H. N. N., & Adeoye, T. O. (2024). The crucial role of renewable energy in achieving the sustainable development goals for cleaner energy. *Global Journal of Engineering and Technology Advances*, 19(03), 011-036. https://doi.org/10.30574/gjeta.2024.19.3.0099
- Birkel, H. S., & Hartmann, E. (2020). Impact of IoT challenges and risks for supply chain integration: A multi-level perspective. International Journal of Production Research, 58(8), 2453–2470. https://doi.org/10.1080/00207543.2019.1676315
- Blackhurst, J., Scheibe, K. P., & Johnson, D. J. (2008). Supplier risk assessment and monitoring for the automotive industry. International Journal of Physical Distribution & Logistics Management, 38(2), 143–165. https://doi.org/10.1108/09600030810861215
- Boschert, S., & Rosen, R. (2016). Digital twin—the simulation aspect. In Mechatronic Futures (pp. 59–74). Springer. https://doi.org/10.1007/978-3-319-32156-1_5
- Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 36(4), 1165–1188. https://doi.org/10.2307/41703503
- Choi, T. M., & Guo, S. (2020). Innovative “bring-service-near-your-home” operations under coronavirus (COVID-19)/pandemic outbreak: Can logistics become the messiah? Transportation Research Part E: Logistics and Transportation Review, 140, 101961. https://doi.org/10.1016/j.tre.2020.101961
- Choi, T. M., Wallace, S. W., & Wang, Y. (2018). Big data analytics in operations management. Production and Operations Management, 27(10), 1868–1881. https://doi.org/10.1111/poms.12838
- Chopra, S., & Sodhi, M. S. (2021). Revisiting supply chain risk management: From theory to practice. Transportation Research Part E: Logistics and Transportation Review, 145, 102176. https://doi.org/10.1016/j.tre.2020.102176
- Christopher, M., & Holweg, M. (2011). "Supply chain 2.0": Managing supply chains in the era of turbulence. International Journal of Physical Distribution & Logistics Management, 41(1), 63–82. https://doi.org/10.1108/09600031111101439
- Consafe logistics, (2022). How to Win with the Digital Twin. https://www.consafelogistics.com/about-us/newsroom/how-to-win-with-the-digital-twin-logimat-visitors-can-test-consafe-logistics-solution
- Davenport, T. H., & Harris, J. G. (2007). Competing on analytics: The new science of winning. Harvard Business Review Press.
- Dubey, R., Gunasekaran, A., & Childe, S. J. (2019). Big data analytics capability in supply chain resilience: The moderating effect of organizational flexibility. Management Decision, 57(8), 2092–2124. https://doi.org/10.1108/MD-01-2018-0119
- Dyllick, T., & Hockerts, K. (2002). Beyond the business case for corporate sustainability. Business Strategy and the Environment, 11(2), 130–141. https://doi.org/10.1002/bse.323
- Ebenibo, L., Enyejo, J. O., Addo, G., & Olola, T. M. (2024). Evaluating the Sufficiency of the data protection act 2023 in the age of Artificial Intelligence (AI): A comparative case study of Nigeria and the USA. International Journal of Scholarly Research and Reviews, 2024, 05(01), 088–107. https://srrjournals.com/ijsrr/content/evaluating-sufficiency-data-protection-act-2023-age-artificial-intelligence-ai-comparative
- Elkington, J. (1998). Partnerships from cannibals with forks: The triple bottom line of 21st-century business. Environmental Quality Management, 8(1), 37–51. https://doi.org/10.1002/tqem.3310080106
- Enyejo, J. O., Adeyemi, A. F., Olola, T. M., Igba, E & Obani, O. Q. (2024). Resilience in supply chains: How technology is helping USA companies navigate disruptions. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 261–277. https://doi.org/10.30574/msarr.2024.11.2.0129
- Enyejo, J. O., Babalola, I. N. O., Owolabi, F. R. A. Adeyemi, A. F., Osam-Nunoo, G., & Ogwuche, A. O. (2024). Data-driven digital marketing and battery supply chain optimization in the battery powered aircraft industry through case studies of Rolls-Royce’s ACCEL and Airbus's E-Fan X Projects. International Journal of Scholarly Research and Reviews, 2024, 05(02), 001–020. https://doi.org/10.56781/ijsrr.2024.5.2.0045
- Enyejo, J. O., Balogun, T. K., Klu, E. Ahmadu, E. O., & Olola, T. M. (2024). The Intersection of Traumatic Brain Injury, Substance Abuse, and Mental Health Disorders in Incarcerated Women Addressing Intergenerational Trauma through Neuropsychological Rehabilitation. American Journal of Human Psychology (AJHP). Volume 2 Issue 1, Year 2024 ISSN: 2994-8878 (Online). https://journals.e-palli.com/home/index.php/ajhp/article/view/383
- Enyejo, L. A., Adewoye, M. B. & Ugochukwu, U. N. (2024). Interpreting Federated Learning (FL) Models on Edge Devices by Enhancing Model Explainability with Computational Geometry and Advanced Database Architectures. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. Vol. 10 No. 6 (2024): November-December doi : https://doi.org/10.32628/CSEIT24106185
- Enyejo, J. O., Obani, O. Q, Afolabi, O. Igba, E. & Ibokette, A. I., (2024). Effect of Augmented Reality (AR) and Virtual Reality (VR) experiences on customer engagement and purchase behavior in retail stores. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 132–150. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0116.pdf
- Fahimnia, B., Sarkis, J., & Davarzani, H. (2015). Green supply chain management: A review and bibliometric analysis. International Journal of Production Economics, 162, 101–114. https://doi.org/10.1016/j.ijpe.2015.01.003
- Fuller, A., Fan, Z., Day, C., & Barlow, C. (2020). Digital twin: Enabling technologies, challenges and open research. IEEE Access, 8, 108952–108971. https://doi.org/10.1109/ACCESS.2020.2998358
- Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The circular economy–A new sustainability paradigm? Journal of Cleaner Production, 143, 757–768. https://doi.org/10.1016/j.jclepro.2016.12.048
- Geng, Y., Sarkis, J., & Ulgiati, S. (2016). Sustainability, well-being, and the circular economy in China and worldwide. Science, 35(3), 347–356. https://doi.org/10.1016/j.resconrec.2016.07.005
- Genovese, A., Acquaye, A. A., Figueroa, A., & Koh, S. C. L. (2017). Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications. Omega, 66, 344–357. https://doi.org/10.1016/j.omega.2015.05.015
- Ghobakhloo, M., Iranmanesh, M., Foroughi, B., Tseng, M. L., Nikbin, D., & Khanfar, A. A. (2023). Industry 4.0 digital transformation and opportunities for supply chain resilience: a comprehensive review and a strategic roadmap. Production Planning & Control, 1-31.
- Gold, S., Seuring, S., & Beske, P. (2010). Sustainable supply chain management and inter-organizational resources: A literature review. Corporate Social Responsibility and Environmental Management, 17(4), 230–245. https://doi.org/10.1002/csr.207
- Govindan, K., & Bouzon, M. (2018). From a literature review to a multi-perspective framework for circular supply chains. Journal of Cleaner Production, 197, 972–989. https://doi.org/10.1016/j.jclepro.2018.06.320
- Grieves, M., & Vickers, J. (2017). Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. Transdisciplinary Perspectives on Complex Systems, 85–113. https://doi.org/10.1007/978-3-319-38756-7_4
- Gupta, M., & George, J. F. (2016). Toward the development of a big data analytics capability. Information & Management, 53(8), 1049–1064. https://doi.org/10.1016/j.im.2016.07.004
- Heizer, J., Render, B., & Munson, C. (2019). Sustainability in supply chain management: Innovating with the Triple Bottom Line. International Journal of Production Economics, 219, 204–216. https://doi.org/10.1016/j.ijpe.2019.06.001
- Honghai Wu, Pengwei Ji, Huahong Ma and Ling Xing (2023). A Comprehensive Review of Digital Twin from the Perspective of Total Process: Data, Models, Networks and Applications. https://www.mdpi.com/1424-8220/23/19/8306
- Idoko, I. P., Ijiga, O. M., Agbo, D. O., Abutu, E. P., Ezebuka, C. I., & Umama, E. E. (2024). Comparative analysis of Internet of Things (IOT) implementation: A case study of Ghana and the USA-vision, architectural elements, and future directions. *World Journal of Advanced Engineering Technology and Sciences*, 11(1), 180-199.
- Idoko, I. P., Ijiga, O. M., Akoh, O., Agbo, D. O., Ugbane, S. I., & Umama, E. E. (2024). Empowering sustainable power generation: The vital role of power electronics in California's renewable energy transformation. *World Journal of Advanced Engineering Technology and Sciences*, 11(1), 274-293.
- Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Ileanaju, S. (2024). Harmonizing the voices of AI: Exploring generative music models, voice cloning, and voice transfer for creative expression.
- Idoko, I. P., Ijiga, O. M., Enyejo, L. A., Akoh, O., & Isenyo, G. (2024). Integrating superhumans and synthetic humans into the Internet of Things (IoT) and ubiquitous computing: Emerging AI applications and their relevance in the US context. *Global Journal of Engineering and Technology Advances*, 19(01), 006-036.
- Idoko, J. E., Bashiru, O., Olola, T. M., Enyejo, L. A., & Manuel, H. N. (2024). Mechanical properties and biodegradability of crab shell-derived exoskeletons in orthopedic implant design. *World Journal of Biology Pharmacy and Health Sciences*, 18(03), 116-131. https://doi.org/10.30574/wjbphs.2024.18.3.0339
- Igba, E., Adeyemi, A. F., Enyejo, J. O., Ijiga, A. C., Amidu, G., & Addo, G. (2024). Optimizing Business loan and Credit Experiences through AI powered ChatBot Integration in financial services. Finance & Accounting Research Journal, P-ISSN: 2708-633X, E-ISSN: 2708, Volume 6, Issue 8, P.No. 1436-1458, August 2024. DOI:10.51594/farj.v6i8.1406
- Igba, E., Danquah, E. O., Ukpoju, E. A., Obasa, J., Olola, T. M., & Enyejo, J. O. (2024). Use of Building Information Modeling (BIM) to Improve Construction Management in the USA. World Journal of Advanced Research and Reviews, 2024, 23(03), 1799–1813. https://wjarr.com/content/use-building-information-modeling-bim-improve-construction-management-usa
- Ijiga, A. C., Aboi, E. J., Idoko, P. I., Enyejo, L. A., & Odeyemi, M. O. (2024). Collaborative innovations in Artificial Intelligence (AI): Partnering with leading U.S. tech firms to combat human trafficking. Global Journal of Engineering and Technology Advances, 2024,18(03), 106-123. https://gjeta.com/sites/default/files/GJETA-2024-0046.pdf
- Ijiga, A. C., Abutu E. P., Idoko, P. I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 2024, 11(01), 535–551.· https://ijsra.net/sites/default/ files/IJSRA-2024-0078.pdf
- Ijiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Umama, E. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 07(01), 048–063. https://ijbpsa.com/sites/default/files/IJBPSA-2024-0015.pdf
- Ijiga, A. C., Balogun, T. K., Ahmadu, E. O., Klu, E., Olola, T. M., & Addo, G. (2024). The role of the United States in shaping youth mental health advocacy and suicide prevention through foreign policy and media in conflict zones. Magna Scientia Advanced Research and Reviews, 2024, 12(01), 202–218. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0174.pdf
- Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I & Daniel, D. O. (2024). Integrating community-based partnerships for enhanced health outcomes: A collaborative model with healthcare providers, clinics, and pharmacies across the USA. Open Access Research Journal of Biology and Pharmacy, 2024, 10(02), 081–104. https://oarjbp.com/content/integrating-community-based-partnerships-enhanced-health-outcomes-collaborative-model
- Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf.
- Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf.
- Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention.
- Iñigo, E. A., & Albareda, L. (2016). Understanding sustainable innovation as a driver of sustainability practices: A dynamic capabilities approach. Business Strategy and the Environment, 25(7), 515–533. https://doi.org/10.1002/bse.1893
- Ivanov, D., & Dolgui, A. (2020). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Transportation Research Part E: Logistics and Transportation Review, 145, 102017. https://doi.org/10.1016/j.tre.2020.102017
- Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Transportation Research Part E: Logistics and Transportation Review, 145, 102017. https://doi.org/10.1016/j.tre.2020.102017
- Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 32(9), 775-788.
- Jabbour, C. J. C., Jabbour, A. B. L. D. S., Sarkis, J., & Godinho Filho, M. (2019). Unlocking the circular economy through sustainable supply chains: A research agenda. International Journal of Production Economics, 217, 164–177. https://doi.org/10.1016/j.ijpe.2019.01.003
- Jones, D., Snider, C., Nassehi, A., Yon, J., & Hicks, B. (2020). Characterising the digital twin: A systematic literature review. CIRP Journal of Manufacturing Science and Technology, 29, 36–52. https://doi.org/10.1016/j.cirpj.2020.02.002
- Kamble, S. S., Gunasekaran, A., & Dhone, N. C. (2020). Industry 4.0 and lean manufacturing practices for sustainable organizational performance in Indian manufacturing companies. International Journal of Production Research, 58(5), 1319–1337. https://doi.org/10.1080/00207543.2019.1630772
- Ketchen, D. J., & Hult, G. T. M. (2007). Bridging organization theory and supply chain management: The case of best value supply chains. Journal of Operations Management, 25(2), 573–580. https://doi.org/10.1016/j.jom.2006.05.009
- Khan, M., Wu, X., Xu, X., & Dou, W. (2020). Big data challenges and opportunities in the hype of Industry 4.0: A comprehensive survey. IEEE Access, 8, 30271–30302. https://doi.org/10.1109/ACCESS.2020. 2965080
- Kritzinger, W., Karner, M., Traar, G., Henjes, J., & Sihn, W. (2018). Digital twin in manufacturing: A categorical literature review and classification. IFAC-PapersOnLine, 51(11), 1016–1022. https://doi.org/10.1016/j.ifacol.2018.08.474
- Liu, Y., Chen, X., & Li, Z. (2021). Integrating digital twins with artificial intelligence for real-time logistics management. Journal of Manufacturing Systems, 61, 58–69. https://doi.org/10.1016/j.jmsy.2021.05.009
- Lu, Y., Liu, C., Wang, K. I., Huang, H., & Xu, X. (2020). Digital twin-driven smart manufacturing: Connotation, reference model, applications, and research issues. Robotics and Computer-Integrated Manufacturing, 61, 101837. https://doi.org/10.1016/j.rcim.2019.101837
- Lüdeke-Freund, F., Carroux, S., Joyce, A., Massa, L., & Breuer, H. (2018). The sustainable business model pattern taxonomy—45 patterns to support sustainability-oriented business model innovation. Sustainable Production and Consumption, 15, 145–162. https://doi.org/10.1016/j.spc.2018.06.004
- Luthra, S., & Mangla, S. K. (2018). Evaluating challenges to Industry 4.0 initiatives for supply chain sustainability in emerging economies. Process Safety and Environmental Protection, 117, 168–179. https://doi.org/10.1016/j.psep.2018.04.018
- Negri, E., Fumagalli, L., & Macchi, M. (2017). A review of the roles of digital twin in connected systems. Procedia Manufacturing, 11, 939–948. https://doi.org/10.1016/j.promfg.2017.07.198
- Okeke, R. O., Ibokette, A. I., Ijiga, O. M., Enyejo, L. A., Ebiega, G. I., & Olumubo, O. M. (2024). The reliability assessment of power transformers. *Engineering Science & Technology Journal*, 5(4), 1149-1172.
- Owolabi, F. R. A., Enyejo, J. O., Babalola, I. N. O., & Olola, T. M. (2024). Overcoming engagement shortfalls and financial constraints in Small and Medium Enterprises (SMES) social media advertising through cost-effective Instagram strategies in Lagos and New York City. International Journal of Management & Entrepreneurship Research P-ISSN: 2664-3588, E-ISSN: 2664-3596. DOI: 10.51594/ijmer.v6i8.1462
- Pandey, S., Agrawal, S., & Sharma, V. (2011). Carbon footprint: Current methods of estimation. Environmental Monitoring and Assessment, 178(1–4), 135–160. https://doi.org/10.1007/s10661-010-1678-y
- Provost, F., & Fawcett, T. (2013). Data science for business: What you need to know about data mining and data-analytic thinking. O'Reilly Media.
- Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and Industry 4.0: 360-degree comparison. IEEE Access, 6, 3585–3593. https://doi.org/10.1109/ACCESS.2018.2793265
- Qi, Q., & Tao, F. (2019). Digital twin and big data towards smart manufacturing and Industry 4.0: 360-degree comparison. Journal of Manufacturing Systems, 58, 46–57. https://doi.org/10.1016/j.jmsy.2019.01.001
- Raj. A. (2023). Supply Chain Predictive Analytics: Benefits, Use Cases and Growth Potentials. https://throughput.world/blog/predictive-analytics-in-supply-chain/
- Salkin, C., Oner, M., Ustundag, A., & Cevikcan, E. (2020). A conceptual framework for Industry 4.0. Industry 4.0: Managing the Digital Transformation, 3–23. https://doi.org/10.1007/978-3-319-57870-5_1
- Sarkis, J., Zhu, Q., & Lai, K. H. (2011). An organizational theoretic review of green supply chain management literature. International Journal of Production Economics, 130(1), 1–15. https://doi.org/10.1016/j.ijpe.2010.11.010
- Shmueli, G., & Koppius, O. R. (2011). Predictive analytics in information systems research. MIS Quarterly, 35(3), 553–572. https://doi.org/10.2307/23042796
- Silva, S., de Guimarães, J. C. F., & de Carvalho, V. D. H. (2019). Sustainability and innovation in the supply chain: A study of sustainability-driven organizations. Sustainable Development, 27(5), 692–701. https://doi.org/10.1002/sd.1944
- Slaper, T. F., & Hall, T. J. (2011). The triple bottom line: What is it and how does it work? Indiana Business Review, 86(1), 4–8.
- Tang, C. S. (2006). Perspectives in supply chain risk management. International Journal of Production Economics, 103(2), 451–488. https://doi.org/10.1016/j.ijpe.2005.12.006
- Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., & Sui, F. (2018). Digital twin-driven product design, manufacturing and service with big data. The International Journal of Advanced Manufacturing Technology, 94(9-12), 3563–3576. https://doi.org/10.1007/s00170-017-0233-1
- Tao, F., Zhang, H., Liu, A., & Nee, A. Y. C. (2019). Digital twin in industry: State-of-the-art. IEEE Transactions on Industrial Informatics, 15(4), 2405–2415. https://doi.org/10.1109/TII.2018.2873186
- Tao, F., Zhang, M., Nee, A. Y. C., & Liu, Y. (2019). Digital twin driven smart manufacturing. Academic Press. https://doi.org/10.1016/B978-0-12-817630-6.00006-0
- Tavasszy, L. A. (2020). Predictive analytics in freight transportation: Reviewing the past, exploring the future. Transportation Research Part A: Policy and Practice, 133, 380–398. https://doi.org/10.1016/j.tra.2020.02.014
- Ugbane, S. I., Umeaku, C., Idoko, I. P., Enyejo, L. A., Michael, C. I. & Efe, F. (2024). Optimization of Quadcopter Propeller Aerodynamics Using Blade Element and Vortex Theory. International Journal of Innovative Science and Research Technology.Volume 9, Issue 10, October– 2024 ISSN No:-2456-2165. https://doi.org/10.38124/ijisrt/IJISRT24OCT1820
- Waller, M. A., & Fawcett, S. E. (2013). Data science, predictive analytics, and big data: A revolution that will transform supply chain design and management. Journal of Business Logistics, 34(2), 77–84. https://doi.org/10.1111/jbl.12010
- Zheng, P., Lin, T. J., Chen, C. H., & Xu, X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137–150. https://doi.org/10.1007/s11465-018-0499-8
This review explores the integration of digital
twin technology, predictive analytics, and sustainable
project management to enhance global supply chain
efficiency, resilience, and environmental sustainability.
Digital twins provide real-time virtual representations of
physical supply chain systems, enabling predictive
analytics to identify potential disruptions and optimize
decision-making processes. By combining these advanced
technologies with sustainable project management
practices, such as circular supply chains and green
logistics, organizations can proactively address risks
while reducing their carbon footprint. The focus on data-
driven insights and scenario analysis facilitates informed
risk mitigation and resource optimization. The
integration of frameworks like the Triple Bottom Line
emphasizes the importance of balancing economic, social,
and environmental objectives in project management.
This approach aims to improve supply chain
performance, drive sustainability efforts, and create a
resilient logistics network that adapts effectively to
market uncertainties and environmental challenges.
Keywords :
Digital Twin Technology; Predictive Analytics; Sustainable Supply Chains; Green Logistics; Supply Chain Optimization; Global Sustainability Goals.