Diagnosing Breast Cancer Using AI: A Comparison of Deep Learning and Traditional Machine Learning Methods


Authors : Abisola Mercy Olowofeso; Stanley T Akpunonu; Olamide Shakirat Oni; Caleb Ayooluwa Sawe

Volume/Issue : Volume 9 - 2024, Issue 5 - May


Google Scholar : https://tinyurl.com/yjd272n6

Scribd : https://tinyurl.com/2axad7mv

DOI : https://doi.org/10.38124/ijisrt/IJISRT24MAY2174

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Breast cancer remains a significant health concern globally, with early detection being crucial for effective treatment. In this study, we explore the predictive power of various diagnostic features in breast cancer using machine learning techniques. We analyzed a dataset comprising clinical measurements of mammograms from 569 patients, including mean radius, texture, perimeter, area, and smoothness, alongside the diagnosis outcome. Our methodology involves preprocessing steps such as handling missing values and removing duplicates, followed by a correlation analysis to identify and eliminate highly correlated features. Subsequently, we train eight machine learning models, including Logistic Regression (LR), K-Nearest Neighbors (K-NN), Linear Support Vector Machine (SVM), Kernel SVM, Naïve Bayes, Decision Trees Classifier (DTC), Random Forest Classifier (RFC), and Artificial Neural Networks (ANN), to predict the diagnosis based on the selected features. Through comprehensive evaluation metrics such as accuracy and confusion matrices, we assess the performance of each model. Our findings reveal promising results, with 6 out of 8 models achieving high accuracy (>90%), with ANN having the highest accuracy in diagnosing breast cancer based on the selected features. These results underscore the potential of machine learning algorithms in aiding early breast cancer diagnosis and highlight the importance of feature selection in improving predictive performance.

Keywords : Cancer, Breast Cancer, Machine Learning, Artificial Intelligence.

References :

  1. Ahmad, A. (2019). Breast Cancer Statistics: Recent Trends. In A. Ahmad (Ed.), Breast Cancer Metastasis and Drug Resistance: Challenges and Progress (pp. 1–7). Springer International Publishing. https://doi.org/10.1007/978-3-030-20301-6_1
  2. Anand, P., Kunnumakara, A. B., Sundaram, C., Harikumar, K. B., Tharakan, S. T., Lai, O. S., Sung, B., & Aggarwal, B. B. (2008). Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharmaceutical Research, 25(9), 2097–2116. https://doi.org/10.1007/s11095-008-9661-9
  3. Arnetz, B. B., Goetz, C. M., Arnetz, J. E., Sudan, S., vanSchagen, J., Piersma, K., & Reyelts, F. (2020). Enhancing healthcare efficiency to achieve the Quadruple Aim: An exploratory study. BMC Research Notes, 13(1), 362. https://doi.org/10.1186/s13104-020-05199-8
  4. Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., Vignat, J., Gralow, J. R., Cardoso, F., Siesling, S., & Soerjomataram, I. (2022). Current and future burden of breast cancer: Global statistics for 2020 and 2040. The Breast, 66, 15–23. https://doi.org/10.1016/j.breast.2022.08.010
  5. Asgari, S., Scalzo, F., & Kasprowicz, M. (2019). Pattern Recognition in Medical Decision Support. BioMed Research International, 2019, 6048748. https://doi.org/10.1155/2019/6048748
  6. Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial intelligence in healthcare: Transforming the practice of medicine. Future Healthcare Journal, 8(2), e188–e194. https://doi.org/10.7861/fhj.2021-0095
  7. Bolboacă, S. D. (2019). Medical Diagnostic Tests: A Review of Test Anatomy, Phases, and Statistical Treatment of Data. Computational and Mathematical Methods in Medicine, 2019(1), 1891569. https://doi.org/10.1155/2019/1891569
  8. Britt, K. L., Cuzick, J., & Phillips, K.-A. (2020). Key steps for effective breast cancer prevention. Nature Reviews Cancer, 20(8), 417–436. https://doi.org/10.1038/s41568-020-0266-x
  9. Brown, J. S., Amend, S. R., Austin, R. H., Gatenby, R. A., Hammarlund, E. U., & Pienta, K. J. (2023). Updating the Definition of Cancer. Molecular Cancer Research, 21(11), 1142–1147. https://doi.org/10.1158/1541-7786.MCR-23-0411
  10. Burt, J. R., Torosdagli, N., Khosravan, N., RaviPrakash, H., Mortazi, A., Tissavirasingham, F., Hussein, S., & Bagci, U. (2018). Deep learning beyond cats and dogs: Recent advances in diagnosing breast cancer with deep neural networks. British Journal of Radiology, 91(1089), 20170545. https://doi.org/10.1259/bjr.20170545
  11. Calderaro, J., Žigutytė, L., Truhn, D., Jaffe, A., & Kather, J. N. (2024). Artificial intelligence in liver cancer—New tools for research and patient management. Nature Reviews Gastroenterology & Hepatology, 1–15. https://doi.org/10.1038/s41575-024-00919-y
  12. Carriero, A., Groenhoff, L., Vologina, E., Basile, P., & Albera, M. (2024). Deep Learning in Breast Cancer Imaging: State of the Art and Recent Advancements in Early 2024. Diagnostics, 14(8), Article 8. https://doi.org/10.3390/diagnostics14080848
  13. Cook, C. E., & Décary, S. (2020). Higher order thinking about differential diagnosis. Brazilian Journal of Physical Therapy, 24(1), 1–7. https://doi.org/10.1016/j.bjpt.2019.01.010
  14. Das, B. K., Biswal, B. M., & Bhavaraju, M. (2006). Role of Scintimammography in the Diagnosis of Breast Cancer. The Malaysian Journal of Medical Sciences : MJMS, 13(1), 52–57.
  15. Díaz, O., Rodríguez-Ruíz, A., & Sechopoulos, I. (2024). Artificial Intelligence for breast cancer detection: Technology, challenges, and prospects. European Journal of Radiology, 175, 111457. https://doi.org/10.1016/j.ejrad.2024.111457
  16. Dileep, G., Gyani, S. G. G., Dileep, G., & Gyani, S. G. G. (2022). Artificial Intelligence in Breast Cancer Screening and Diagnosis. Cureus, 14(10). https://doi.org/10.7759/cureus.30318
  17. Giaquinto, A. N., Sung, H., Miller, K. D., Kramer, J. L., Newman, L. A., Minihan, A., Jemal, A., & Siegel, R. L. (2022). Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72(6), 524–541. https://doi.org/10.3322/caac.21754
  18. Goyal, S., & Shrivastava, B. (2021). Review of Artificial Intelligence Applicability of Various Diagnostic Modalities, their Advantages, Limitations, and Overcoming the Challenges in Breast Imaging. International Journal of Scientific Research, 9, 16–21.
  19. Herranz, M., & Ruibal, A. (2012). Optical imaging in breast cancer diagnosis: The next evolution. Journal of Oncology, 2012, 863747. https://doi.org/10.1155/2012/863747
  20. Islam, Md. M., Haque, Md. R., Iqbal, H., Hasan, Md. M., Hasan, M., & Kabir, M. N. (2020). Breast Cancer Prediction: A Comparative Study Using Machine Learning Techniques. SN Computer Science, 1(5), 290. https://doi.org/10.1007/s42979-020-00305-w
  21. Iyengar, K., Mabrouk, A., Jain, V. K., Venkatesan, A., & Vaishya, R. (2020). Learning opportunities from COVID-19 and future effects on health care system. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 14(5), 943–946. https://doi.org/10.1016/j.dsx.2020.06.036
  22. Langlois, J. P. (2002). Making a Diagnosis. In M. B. Mengel, W. L. Holleman, & S. A. Fields (Eds.), Fundamentals of Clinical Practice (pp. 197–217). Springer US. https://doi.org/10.1007/0-306-47565-0_10
  23. Lehman, C. D., Wellman, R. D., Buist, D. S. M., Kerlikowske, K., Tosteson, A. N. A., Miglioretti, D. L., & for the Breast Cancer Surveillance Consortium. (2015). Diagnostic Accuracy of Digital Screening Mammography With and Without Computer-Aided Detection. JAMA Internal Medicine, 175(11), 1828–1837. https://doi.org/10.1001/jamainternmed.2015.5231
  24. Leong, S. P., Naxerova, K., Keller, L., Pantel, K., & Witte, M. (2022). Molecular mechanisms of cancer metastasis via the lymphatic versus the blood vessels. Clinical & Experimental Metastasis, 39(1), 159–179. https://doi.org/10.1007/s10585-021-10120-z
  25. Liu, H., Cui, G., Luo, Y., Guo, Y., Zhao, L., Wang, Y., Subasi, A., Dogan, S., & Tuncer, T. (2022). Artificial Intelligence-Based Breast Cancer Diagnosis Using Ultrasound Images and Grid-Based Deep Feature Generator

     

    . International Journal of General Medicine, 15, 2271–2282. https://doi.org/10.2147/IJGM.S347491
  26. Liu, L., Kurgan, L., Wu, F.-X., & Wang, J. (2020). Attention convolutional neural network for accurate segmentation and quantification of lesions in ischemic stroke disease. Medical Image Analysis, 65, 101791. https://doi.org/10.1016/j.media.2020.101791
  27. Malara, N., Coluccio, M. L., Grillo, F., Ferrazzo, T., Garo, N. C., Donato, G., Lavecchia, A., Fulciniti, F., Sapino, A., Cascardi, E., Pellegrini, A., Foxi, P., Furlanello, C., Negri, G., Fadda, G., Capitanio, A., Pullano, S., Garo, V. M., Ferrazzo, F., … Gentile, F. (2024). Multicancer screening test based on the detection of circulating non haematological proliferating atypical cells. Molecular Cancer, 23(1), 32. https://doi.org/10.1186/s12943-024-01951-x
  28. Marinovich, M. L., Wylie, E., Lotter, W., Pearce, A., Carter, S. M., Lund, H., Waddell, A., Kim, J. G., Pereira, G. F., Lee, C. I., Zackrisson, S., Brennan, M., & Houssami, N. (2022). Artificial intelligence (AI) to enhance breast cancer screening: Protocol for population-based cohort study of cancer detection. BMJ Open, 12(1), e054005. https://doi.org/10.1136/bmjopen-2021-054005
  29. Mat-Isa, N. A., Mashor, M. Y., & Othman, N. H. (2008). An automated cervical pre-cancerous diagnostic system. Artificial Intelligence in Medicine, 42(1), 1–11. https://doi.org/10.1016/j.artmed.2007.09.002
  30. Moore, S. K. (2001). Better breast cancer detection. IEEE Spectrum, 38(5), 50–54. https://doi.org/10.1109/6.920031
  31. Mudgal, S. K., Agarwal, R., Chaturvedi, J., Gaur, R., & Ranjan, N. (2022). Real-world application, challenges and implication of artificial intelligence in healthcare: An essay. Pan African Medical Journal, 43(1), Article 1. https://www.ajol.info/index.php/pamj/article/view/245268
  32. Ng, A. Y., Oberije, C. J. G., Ambrózay, É., Szabó, E., Serfőző, O., Karpati, E., Fox, G., Glocker, B., Morris, E. A., Forrai, G., & Kecskemethy, P. D. (2023). Prospective implementation of AI-assisted screen reading to improve early detection of breast cancer. Nature Medicine, 29(12), 3044–3049. https://doi.org/10.1038/s41591-023-02625-9
  33. Ozcan, I., Aydin, H., & Cetinkaya, A. (2022). Comparison of Classification Success Rates of Different Machine Learning Algorithms in the Diagnosis of Breast Cancer. Asian Pacific Journal of Cancer Prevention, 23(10), 3287–3297. https://doi.org/10.31557/APJCP.2022.23.10.3287
  34. Parvathavarthini, S., Visalakshi, K. N., & Shanthi, S. (2019). Breast Cancer Detection using Crow Search Optimization based Intuitionistic Fuzzy Clustering with Neighborhood Attraction. Asian Pacific Journal of Cancer Prevention : APJCP, 20(1), 157–165. https://doi.org/10.31557/APJCP.2019.20.1.157
  35. Prevedello, L. M., Halabi, S. S., Shih, G., Wu, C. C., Kohli, M. D., Chokshi, F. H., Erickson, B. J., Kalpathy-Cramer, J., Andriole, K. P., & Flanders, A. E. (2019). Challenges Related to Artificial Intelligence Research in Medical Imaging and the Importance of Image Analysis Competitions | Radiology: Artificial Intelligence. https://pubs.rsna.org/doi/10.1148/ryai.2019180031
  36. Rajaguru, H., & S R, S. C. (2019). Analysis of Decision Tree and K-Nearest Neighbor Algorithm in the Classification of Breast Cancer. Asian Pacific Journal of Cancer Prevention : APJCP, 20(12), 3777–3781. https://doi.org/10.31557/APJCP.2019.20.12.3777
  37. Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E. J. (2022). AI in health and medicine. Nature Medicine, 28(1), 31–38. https://doi.org/10.1038/s41591-021-01614-0
  38. Richens, J. G., Lee, C. M., & Johri, S. (2020). Improving the accuracy of medical diagnosis with causal machine learning. Nature Communications, 11(1), 3923. https://doi.org/10.1038/s41467-020-17419-7
  39. Rodriguez-Ruiz, A., Lång, K., Gubern-Merida, A., Teuwen, J., Broeders, M., Gennaro, G., Clauser, P., Helbich, T. H., Chevalier, M., Mertelmeier, T., Wallis, M. G., Andersson, I., Zackrisson, S., Sechopoulos, I., & Mann, R. M. (2019). Can we reduce the workload of mammographic screening by automatic identification of normal exams with artificial intelligence? A feasibility study. European Radiology, 29(9), 4825–4832. https://doi.org/10.1007/s00330-019-06186-9
  40. Shah, S. M., Khan, R. A., Arif, S., & Sajid, U. (2022). Artificial Intelligence For Breast Cancer Detection: Trends & Directions. Computers in Biology and Medicine, 142, 105221. https://doi.org/10.1016/j.compbiomed.2022.105221
  41. Sharma, S., & Mehra, R. (2020). Conventional Machine Learning and Deep Learning Approach for Multi-Classification of Breast Cancer Histopathology Images—A Comparative Insight. Journal of Digital Imaging, 33(3), 632–654. https://doi.org/10.1007/s10278-019-00307-y
  42. Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763
  43. Smolarz, B., Nowak, A. Z., & Romanowicz, H. (2022). Breast Cancer—Epidemiology, Classification, Pathogenesis and Treatment (Review of Literature). Cancers, 14(10), Article 10. https://doi.org/10.3390/cancers14102569
  44. Sokouti, B., Haghipour, S., & Tabrizi, A. D. (2014). A framework for diagnosing cervical cancer disease based on feedforward MLP neural network and ThinPrep histopathological cell image features. Neural Computing and Applications, 24(1), 221–232. https://doi.org/10.1007/s00521-012-1220-y
  45. Sun, P., Feng, Y., Chen, C., Dekker, A., Qian, L., Wang, Z., & Guo, J. (2022). An AI model of sonographer’s evaluation+ S-Detect + elastography + clinical information improves the preoperative identification of benign and malignant breast masses. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.1022441
  46. Sutton, R. T., Pincock, D., Baumgart, D. C., Sadowski, D. C., Fedorak, R. N., & Kroeker, K. I. (2020, February 6). An overview of clinical decision support systems: Benefits, risks, and strategies for success | npj Digital Medicine. https://www.nature.com/articles/s41746-020-0221-y
  47. van Kooten, M. J., Tan, C. O., Hofmeijer, E. I. S., van Ooijen, P. M. A., Noordzij, W., Lamers, M. J., Kwee, T. C., Vliegenthart, R., & Yakar, D. (2024). A framework to integrate artificial intelligence training into radiology residency programs: Preparing the future radiologist. Insights into Imaging, 15(1), 15. https://doi.org/10.1186/s13244-023-01595-3
  48. Varghese, J. (2020). Artificial Intelligence in Medicine: Chances and Challenges for Wide Clinical Adoption. Visceral Medicine, 36(6), 443–449. https://doi.org/10.1159/000511930
  49. Waks, A. G. (MD), & Winer, E. P. (MD). (n.d.). Breast Cancer Treatment: A Review | Breast Cancer | JAMA | JAMA Network. Retrieved June 12, 2024, from doi:10.1001/jama.2018.19323
  50. Zhang, Y., Xia, K., Li, C., Wei, B., & Zhang, B. (2021). Review of Breast Cancer Pathologigcal Image Processing. BioMed Research International, 2021(1), 1994764. https://doi.org/10.1155/2021/1994764

Breast cancer remains a significant health concern globally, with early detection being crucial for effective treatment. In this study, we explore the predictive power of various diagnostic features in breast cancer using machine learning techniques. We analyzed a dataset comprising clinical measurements of mammograms from 569 patients, including mean radius, texture, perimeter, area, and smoothness, alongside the diagnosis outcome. Our methodology involves preprocessing steps such as handling missing values and removing duplicates, followed by a correlation analysis to identify and eliminate highly correlated features. Subsequently, we train eight machine learning models, including Logistic Regression (LR), K-Nearest Neighbors (K-NN), Linear Support Vector Machine (SVM), Kernel SVM, Naïve Bayes, Decision Trees Classifier (DTC), Random Forest Classifier (RFC), and Artificial Neural Networks (ANN), to predict the diagnosis based on the selected features. Through comprehensive evaluation metrics such as accuracy and confusion matrices, we assess the performance of each model. Our findings reveal promising results, with 6 out of 8 models achieving high accuracy (>90%), with ANN having the highest accuracy in diagnosing breast cancer based on the selected features. These results underscore the potential of machine learning algorithms in aiding early breast cancer diagnosis and highlight the importance of feature selection in improving predictive performance.

Keywords : Cancer, Breast Cancer, Machine Learning, Artificial Intelligence.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe