Demystifying Edge AI: Unlocking the Potential of Artificial Intelligence at the Edge of the Network
Authors : Ashrafur Rahman Nabil; Reaz Uddin Rayhan; MD Nazim Akther; MD Tusher
Volume/Issue : Volume 9 - 2024, Issue 12 - December
Google Scholar : https://tinyurl.com/3nv4syk2
Scribd : https://tinyurl.com/4zzpdtyc
DOI : https://doi.org/10.69142/IJISRT24DEC1476
Abstract : One of the most exciting but almost invisible technologies underpinning a world of autonomous devices is edge AI that is designed to process data locally thus eliminating centralized cloud computing. This change of paradigm improves the efficiency, the privacy and does not need to suit onto the cloud, what make a notable diminution of the cost of clouds. Edge AI is designed to place AI capabilities as close to the source of data as possible and will lead to widespread efficiency and innovation across multiple industries. In the IoT scenario, it enables smart device communications and shortens the decision-making process. In delivering healthcare services, Edge AI enables rapid diagnosing of a patient’s conditions and provides action on the same since time is critical in these practices. Likewise in the financial business, it helps identify fraud and evaluate risks with a small amount of latency. This article defines Edge AI, brings out its innovative use cases, and analyses the advantages it provides, including low latency, optimizing performance, and scalability. Edge AI is promising to provide industries with more fulfilling operations that revolutionize secure, real-time and economical intelligent solutions that define the future platforms for intelligent systems.
Keywords : Edge AI, Artificial Intelligence, Real-time Processing, Latency Reduction, IoT (Internet of Things).
References :
Reference number 1
Unstructured Citation
Singh, R., & Gill, S. S. (2023). Edge AI: a survey. Internet of Things and Cyber-Physical Systems, 3, 71-92.
https://doi.org/10.1016/j.iotcps.2023.02.004
Reference number 2
Unstructured Citation
Himeur, Y., Sayed, A. N., Alsalemi, A., Bensaali, F., & Amira, A. (2024). Edge AI for Internet of Energy: Challenges and perspectives. Internet of Things, 25, 101035.
https://doi.org/10.1016/j.iot.2023.101035
Reference number 3
Unstructured Citation
Li, E., Zeng, L., Zhou, Z., & Chen, X. (2019). Edge AI: On-demand accelerating deep neural network inference via edge computing. IEEE Transactions on Wireless Communications, 19(1), 447-457.
https://doi.org/10.1145/3523230.3523235
Reference number 4
Unstructured Citation
Gill, S. S., Golec, M., Hu, J., Xu, M., Du, J., Wu, H., ... &Uhlig, S. (2025). Edge AI: A taxonomy, systematic review and future directions. Cluster Computing, 28(1), 1-53.
https://doi.org/10.1007/s10586-024-04686-y
Reference number 5
Unstructured Citation
Surianarayanan, C., Lawrence, J. J., Chelliah, P. R., Prakash, E., &Hewage, C. (2023). A survey on optimization techniques for edge artificial intelligence (ai). Sensors, 23(3), 1279.
https://doi.org/10.3390/s23031279
Reference number 6
Unstructured Citation
Holmes, J., Sacchi, L., &Bellazzi, R. (2004). Artificial intelligence in medicine. Ann R CollSurgEngl, 86, 334-8.
https://doi.org/10.1007/978-3-319-19551-3
Reference number 7
Unstructured Citation
Fetzer, J. H., &Fetzer, J. H. (1990). What is artificial intelligence? (pp. 3-27). Springer Netherlands.
https://doi.org/10.1007/978-94-009-1900-6_1
Reference number 8
Unstructured Citation
Winston, P. H. (1992). Artificial intelligence. Addison-Wesley Longman Publishing Co., Inc..https://dl.acm.org/doi/10.1016/j.jnca.2023.103675
Reference number 9
Unstructured Citation
Jiang, Y., Li, X., Luo, H., Yin, S., &Kaynak, O. (2022). Quo vadis artificial intelligence?. Discover Artificial Intelligence, 2(1), 4.
https://doi.org/10.1007/s44163-021-00009-x
Reference number 10
Unstructured Citation
Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Müller, H. (2019). Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4), e1312.
https://doi.org/10.1002/widm.1312
Reference number 11
Unstructured Citation
Liu, X., Iftikhar, N., &Xie, X. (2014, July). Survey of real-time processing systems for big data. In Proceedings of the 18th International Database Engineering & Applications Symposium (pp. 356-361).
https://doi.org/10.1145/2628194.2628251
Reference number 12
Unstructured Citation
Yasumoto, K., Yamaguchi, H., &Shigeno, H. (2016). Survey of real-time processing technologies of iot data streams. Journal of Information Processing, 24(2), 195-202.
https://doi.org/10.2197/ipsjjip.24.195
Reference number 13
Unstructured Citation
Wang, Y. (2002). The real-time process algebra (RTPA). Annals of Software Engineering, 14, 235-274.
https://doi.org/10.1023/A:1020561826073
Reference number 14
Unstructured Citation
Stonebraker, M., Çetintemel, U., &Zdonik, S. (2005). The 8 requirements of real-time stream processing. ACM Sigmod Record, 34(4), 42-47.
https://doi.org/10.1145/1107499.1107504
Reference number 15
Unstructured Citation
Goodman, E. B. J. C. (1997). On the inseparability of grammar and the lexicon: Evidence from acquisition, aphasia and real-time processing. Language and cognitive Processes, 12(5-6), 507-584.
https://doi.org/10.1080/016909697386628
Reference number 16
Unstructured Citation
Joshi, G., Soljanin, E., &Wornell, G. (2017). Efficient redundancy techniques for latency reduction in cloud systems. ACM Transactions on Modeling and Performance Evaluation of Computing Systems (TOMPECS), 2(2), 1-30.
https://doi.org/10.1145/3055281
Reference number 17
Unstructured Citation
La, Q. D., Ngo, M. V., Dinh, T. Q., Quek, T. Q., & Shin, H. (2019). Enabling intelligence in fog computing to achieve energy and latency reduction. Digital Communications and Networks, 5(1), 3-9.
https://doi.org/10.1016/j.dcan.2018.10.008
Reference number 18
Unstructured Citation
Velasquez, K., Abreu, D. P., Curado, M., & Monteiro, E. (2017). Service placement for latency reduction in the internet of things. Annals of Telecommunications, 72, 105-115.
https://doi.org/10.1007/s12243-016-0524-9
Reference number 19
Unstructured Citation
Lee, D., Khan, S., Subramanian, L., Ghose, S., Ausavarungnirun, R., Pekhimenko, G., ... &Mutlu, O. (2017). Design-induced latency variation in modern DRAM chips: Characterization, analysis, and latency reduction mechanisms. Proceedings of the ACM on Measurement and Analysis of Computing Systems, 1(1), 1-36.
https://doi.org/10.1145/3084464
Reference number 20
Unstructured Citation
Hu, Y., Wang, Y., Liu, B., Niu, D., & Huang, C. (2017, September). Latency reduction and load balancing in coded storage systems. In Proceedings of the 2017 Symposium on Cloud Computing (pp. 365-377).
https://doi.org/10.1145/3127479.3131623
Reference number 21
Unstructured Citation
Gubbi, J., Buyya, R., Marusic, S., &Palaniswami, M. (2013). Internet of Things (IoT): A vision, architectural elements, and future directions. Future generation computer systems, 29(7), 1645-1660.
https://doi.org/10.1016/j.future.2013.01.010
Reference number 22
Unstructured Citation
Li, S., Xu, L. D., & Zhao, S. (2015). The internet of things: a survey. Information systems frontiers, 17, 243-259.
https://doi.org/10.1007/s10796-014-9492-7
Reference number 23
Unstructured Citation
Hassan, W. H. (2019). Current research on Internet of Things (IoT) security: A survey. Computer networks, 148, 283-294.
https://doi.org/10.1016/j.comnet.2018.11.025
Reference number 24
Unstructured Citation
Weber, R. H., & Weber, R. (2010). Internet of things (Vol. 12). Heidelberg: Springer.
https://doi.org/10.1007/978-3-642-11710-7
Reference number 25
Unstructured Citation
Zikria, Y. B., Ali, R., Afzal, M. K., & Kim, S. W. (2021). Next-generation internet of things (iot): Opportunities, challenges, and solutions. Sensors, 21(4), 1174.
https://doi.org/10.3390/s21041174
Keywords : Edge AI, Artificial Intelligence, Real-time Processing, Latency Reduction, IoT (Internet of Things).