Criminal Face Recognition Using GAN


Authors : Anitta George; Krishnendu K A; Anusree K; Adira Suresh Nair; Hari Shree

Volume/Issue : Volume 5 - 2020, Issue 6 - June

Google Scholar : http://bitly.ws/9nMw

Scribd : https://bit.ly/2ClGISQ

DOI : 10.38124/IJISRT20JUN1116

Abstract : Forensics and security at present often use low technological resources. Security measures often fail to update with the upcoming technology. This project is based on implementing an automatic face recognition of criminals or specific targets using machine-learning approach. Given a set of features to a Generative Adversarial Network(GAN), the algorithm generates an image of the target with the specified feature set. The input to the machine can either be a given set of features or a set of portraits varying from frontals to side profiles from which these features can be extracted. The accuracy of the system is directly proportional to the number of epochs trained in the network. The generated output image can vary from primitive, low resolution images to high quality images where features are more recognizable. This is then compared with a predefined database of existing people. Thus, the target can immediately be recognized with the generation of an artificial image with the given biometric feature set, which will be again compared by a discriminator network to check the true identity of the target.

Forensics and security at present often use low technological resources. Security measures often fail to update with the upcoming technology. This project is based on implementing an automatic face recognition of criminals or specific targets using machine-learning approach. Given a set of features to a Generative Adversarial Network(GAN), the algorithm generates an image of the target with the specified feature set. The input to the machine can either be a given set of features or a set of portraits varying from frontals to side profiles from which these features can be extracted. The accuracy of the system is directly proportional to the number of epochs trained in the network. The generated output image can vary from primitive, low resolution images to high quality images where features are more recognizable. This is then compared with a predefined database of existing people. Thus, the target can immediately be recognized with the generation of an artificial image with the given biometric feature set, which will be again compared by a discriminator network to check the true identity of the target.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe