Authors :
Samuel Oluwamakinde Oshikoya; Adekunle Olaoluwa Adeyeye; Olufisayo Andrew Obebe; Oluwatosin Elizabeth Adeyeye
Volume/Issue :
Volume 10 - 2025, Issue 4 - April
Google Scholar :
https://tinyurl.com/3dcxrmkk
Scribd :
https://tinyurl.com/mtevmppw
DOI :
https://doi.org/10.38124/ijisrt/25apr1024
Google Scholar
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 15 to 20 days to display the article.
Abstract :
The adoption of smart farming has altered food production by increasing efficiency, sustainability, and
productivity. However, there is a digital divide, with affluent countries such as the United States benefiting from advanced
agricultural technologies, nevertheless, many African countries face limited access to digital tools, inadequate
infrastructure, and financial restraints. This disparity has implications for food security, economic development, and
global agricultural sustainability, prompting an in-depth examination of the factors impacting smart farming adoption in
different regions. This review examines the benefits and impact of smart farming adoption on agricultural productivity, as
well as identifies the potential benefits of cross-regional knowledge sharing across the United States and Africa. The
findings indicate that smart farming technologies have considerably increased agricultural productivity and sustainability
in the United States, due to strong government initiatives, public-private collaborations, and widespread digital
infrastructure. In contrast, African farmers confront limited broadband connection, financial constraints, and insufficient
institutional support, which restricts the adoption of precision agriculture and data-driven farming. Therefore, bridging
the digital divide in agriculture necessitates a comprehensive approach that combines technology, policy, and capacity-
building efforts.
Keywords :
Agriculture, Technology, Innovation, Sustainable Farming, Agro-Transformation.
References :
- Abate, G. T., Abay, K. A., Chamberlin, J., Kassim, Y., Spielman, D. J., & Paul Jr Tabe-Ojong, M. (2023). Digital tools and agricultural market transformation in Africa: Why are they not at scale yet, and what will it take to get there? Food Policy, 116, 102439. https://doi.org/10.1016/j.foodpol.2023.102439
- Abdulai A., Quarshie P. T., Duncan, E., & Fraser, E. (2023). Is agricultural digitization a reality among smallholder farmers in Africa? Unpacking farmers’ lived realities of engagement with digital tools and services in rural Northern Ghana. Agriculture & Food Security, 12(1). https://doi.org/10.1186/s40066-023-00416-6
- Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., & Abdul-Hamid, H. (2023). Application of digital technologies for ensuring agricultural productivity. Heliyon, 9(12), e22601. https://doi.org/10.1016/j.heliyon.2023.e22601
- Addison, M., Bonuedi, I., Arhin, A., Wadei, B., Ebenezer Owusu-Addo, Fredua-Antoh, E., & Mensah-Odum, N. (2024). Exploring the impact of agricultural digitalization on smallholder farmers’ livelihoods in Ghana. Heliyon, e27541–e27541. https://doi.org/10.1016/j.heliyon.2024.e27541
- Agrawal, J., & Arafat, M. Y. (2024). Transforming Farming: A Review of AI-Powered UAV Technologies in Precision Agriculture. Drones, 8(11), 664–664. https://doi.org/10.3390/drones8110664
- Aijaz, N., Lan, H., Raza, T., Yaqub, M., Iqbal, R., & Pathan, M. S. (2025). Artificial Intelligence in Agriculture: Advancing Crop Productivity and Sustainability. Journal of Agriculture and Food Research, 101762. https://doi.org/10.1016/j.jafr.2025.101762
- Ayim, C., Kassahun, A., Addison, C., & Tekinerdogan, B. (2022). Adoption of ICT innovations in the agriculture sector in Africa: a review of the literature. Agriculture & Food Security, 11(1). https://doi.org/10.1186/s40066-022-00364-7
- Balana, B. B., & Oyeyemi, M. A. (2022). Agricultural credit constraints in a smallholder farming in developing countries: Evidence from Nigeria. World Development Sustainability, 1(100012), 100012. https://doi.org/10.1016/j.wds.2022.100012
- Bhooshan N., Raman, M. S., Gupta, S., Suyal G., Singh, A., & Sharma, A. (2024). Revolutionizing agriculture: role of agricultural mechanization and global trends in farming technology. Current Science, 126(10), 1209–1216. https://www.researchgate.net/publication/380911174_Revolutionizing_agriculture_role_of_agricultural_mechanization_and_global_trends_in_farming_technology
- Chen, H.-Y., Sharma, K., Sharma, C., & Sharma, S. (2023). Integrating explainable artificial intelligence and blockchain to smart agriculture: Research prospects for decision making and improved security. Smart Agricultural Technology, 6, 100350. https://doi.org/10.1016/j.atech.2023.100350
- Cheng, C., Gao, Q., Ju, K., & Ma, Y. (2024). How digital skills affect farmers’ agricultural entrepreneurship? An explanation from factor availability. Journal of Innovation & Knowledge, 9(2). https://doi.org/10.1016/j.jik.2024.100477
- Choruma D. J., Dirwai T. L., Mutenje M. J., Mustafa, M., Petrova, G., Jacobs-Mata, I., & Mabhaudhi T. (2024). Digitalisation in agriculture: a scoping review of technologies in practice, challenges, and opportunities for smallholder farmers in sub-Saharan Africa. Journal of Agriculture and Food Research, 18, 101286–101286. https://doi.org/10.1016/j.jafr.2024.101286
- Choudhary, V., Guha, P., Pau, G., & Mishra, S. (2025). An overview of smart agriculture using internet of things (IoT) and web services. Environmental and Sustainability Indicators, 26, 100607. https://doi.org/10.1016/j.indic.2025.100607
- Cui, L., & Wang, W. (2023). Factors Affecting the Adoption of Digital Technology by Farmers in China: A Systematic Literature Review. Sustainability, 15(20), 14824. https://doi.org/10.3390/su152014824
- Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture, 12(10), 1745. https://doi.org/10.3390/agriculture12101745
- Dibbern, T., Alvim, L., & Maria, S. (2024). Main drivers and barriers to the adoption of Digital Agriculture technologies. Smart Agricultural Technology, 8, 100459–100459. https://doi.org/10.1016/j.atech.2024.100459
- Dougill, A. J., Whitfield, S., Stringer, L. C., Vincent, K., Wood, B. T., Chinseu, E. L., Steward, P., & Mkwambisi, D. D. (2017). Mainstreaming conservation agriculture in Malawi: Knowledge gaps and institutional barriers. Journal of Environmental Management, 195(Pt 1), 25–34. https://doi.org/10.1016/j.jenvman.2016.09.076
- Ehimuan, B., Anyanwu, A., Olorunsogo, T., Akindote, O., Abrahams, T., & Reis, O. (2024). Digital inclusion initiatives: Bridging the connectivity gap in Africa and the USA – A review. Australia. International Journal of Science and Research Archive, 2024(01), 488–501. https://doi.org/10.30574/ijsra.2024.11.1.0061
- Eliazer Nelson, A. R. L., Ravichandran, K., & Antony, U. (2019). The impact of the Green Revolution on indigenous crops of India. Journal of Ethnic Foods, 6(1). https://doi.org/10.1186/s42779-019-0011-9
- Gamage, A., Gangahagedara, R., Subasinghe, S., Gamage, J., Guruge, C., Senaratne, S., Randika, T., Rathnayake, C., Hameed, Z., Madhujith, T., & Merah, O. (2024). Advancing sustainability: The impact of emerging technologies in agriculture. Current Plant Biology, 40, 100420. https://doi.org/10.1016/j.cpb.2024.100420
- Geng, W., Liu, L., Zhao, J., Kang, X., & Wang, W. (2024). Digital Technologies Adoption and Economic Benefits in Agriculture: A Mixed-Methods Approach. Sustainability, 16(11), 4431. https://doi.org/10.3390/su16114431
- Guebsi, R., Mami, S., & Chokmani, K. (2024). Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones, 8(11), 686. https://doi.org/10.3390/drones8110686
- Gumbi N., Gumbi, L., & Twinomurinzi H. (2023). Towards Sustainable Digital Agriculture for Smallholder Farmers: A Systematic Literature Review. Sustainability, 15(16), 12530–12530. https://doi.org/10.3390/su151612530
- Inoue, Y. (2020). Satellite- and drone-based remote sensing of crops and soils for smart farming – a review. Soil Science and Plant Nutrition, 66(6), 798–810. https://doi.org/10.1080/00380768.2020.1738899
- Izuogu C. U., Njoku L. C., Olaolu, Kadurumba P. C., Azuamairo G. C., & Agou G. D. (2023). A Review of the Digitalization of Agriculture in Nigeria. Journal of Agricultural Extension, 27(2), 47–64. https://doi.org/10.4314/jae.v27i2.5
- Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3(1), 150–164. https://doi.org/10.1016/j.ijin.2022.09.004
- Kamilaris, A., Fonts, A., & Prenafeta-Boldύ, F. X. (2019). The rise of blockchain technology in agriculture and food supply chains. Trends in Food Science & Technology, 91(1), 640–652. https://doi.org/10.1016/j.tifs.2019.07.034
- Khan, F. U., Nouman, M., Negrut, L., Abban, J., Cismas, L. M., & Siddiqi, M. F. (2024). Constraints to agricultural finance in underdeveloped and developing countries: a systematic literature review. International Journal of Agricultural Sustainability, 22(1). https://doi.org/10.1080/14735903.2024.2329388
- Khanal, S., Bhattarai, S., Adhikari, U., Sharma, D., & Pandey, M. (2021). Disparities between developed and emerging economies in digital divide and ICT gap to bring agricultural sustainability. Fundamental and Applied Agriculture, 0, 1. https://doi.org/10.5455/faa.78371
- Kieti, J., Waema, T. M., Baumüller, H., Ndemo, E. B., & Omwansa, T. K. (2022). What really impedes the scaling out of digital services for agriculture? A Kenyan users’ perspective. Smart Agricultural Technology, 2, 100034. https://doi.org/10.1016/j.atech.2022.100034
- Kolapo, A., & Didunyemi, A. J. (2024). Effects of exposure on adoption of agricultural smartphone apps among smallholder farmers in Southwest, Nigeria: implications on farm-level-efficiency. Agriculture & Food Security, 13(1). https://doi.org/10.1186/s40066-024-00485-1
- Kumar, V., Sharma, K. V., Kedam, N., Patel, A., Kate, T. R., & Rathnayake, U. (2024). A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agricultural Technology, 8, 100487. https://doi.org/10.1016/j.atech.2024.100487
- Kushwaha, M., Singh, S., Singh, V., & Dwivedi, S. (2024). Precision Farming: A Review of Methods, Technologies, and Future Prospects. International Journal of Environment, Agriculture and Biotechnology, 9(2), 242–253. https://doi.org/10.22161/ijeab.92.27
- Liang, C., & Shah, T. (2023). IoT in Agriculture: The Future of Precision Monitoring and Data-Driven Farming. 7(1), 85–104. https://www.researchgate.net/publication/380165857_IoT_in_Agriculture_The_Future_of_Precision_Monitoring_and_Data-Driven_Farming
- Lima, M. B. (2014). Policies and Practices for Climate-Smart Agriculture in Sub-Saharan Africa: A Comparative Assessment of Challenges and Opportunities across 15 countries (Synthesis Report). https://www.researchgate.net/publication/336104031_Policies_and_Practices_for_Climate-Smart_Agriculture_in_Sub-Saharan_Africa_A_Comparative_Assessment_of_Challenges_and_Opportunities_across_15_countries_Synthesis_Report
- Liu, Y. (2024). Analyzing the Impact of the Digital Divide on Individuals, Families, and Society: A Technological Perspective. Deleted Journal, 14(1), 44–51. https://doi.org/10.54254/2977-5701/2024.18281
- Magesa, M., Jonathan, J., & Urassa, J. (2023). Digital Literacy of Smallholder Farmers in Tanzania. Sustainability, 15(17), 13149. https://doi.org/10.3390/su151713149
- Mandal, S., Yadav, A., Panme, F. A., Kshetrimayum Monika Devi, & Shravan Kumar S.M. (2024). Adaption of Smart Applications in Agriculture to Enhance Production. Smart Agricultural Technology, 100431–100431. https://doi.org/10.1016/j.atech.2024.100431
- Mbanasor, J. A., Kalu, C. A., Okpokiri, C. I., Onwusiribe, C. N., Philip.O.O. Nto, Agwu, N. M., & Ndukwu, M. C. (2024). Climate Smart Agriculture Practices by Crop Farmers: Evidence from South East Nigeria. Smart Agricultural Technology, 100494–100494. https://doi.org/10.1016/j.atech.2024.100494
- McFadden, J., Njuki , E., & Griffin, T. (2023). Precision Agriculture in the Digital Era: Recent Adoption on U.S. Farms | Economic Research Service. Usda.gov. https://www.ers.usda.gov/publications/pub-details?pubid=105893
- Mhlanga, D. (2024). Digital Revolution in African Agriculture. Social Science Research Network. https://doi.org/10.2139/ssrn.4697324
- Mhlanga, D., & Ndhlovu, E. (2023). Digital Technology Adoption in the Agriculture Sector: Challenges and Complexities in Africa. Human Behavior and Emerging Technologies, 2023, e6951879. https://doi.org/10.1155/2023/6951879
- Muhie, S. H. (2022). Novel approaches and practices to sustainable agriculture. Journal of Agriculture and Food Research, 10(100446), 100446. https://doi.org/10.1016/j.jafr.2022.100446
- Musafiri, C. M., Kiboi, M., Macharia, J., Ng’etich, O. K., Kosgei, D. K., Mulianga, B., Okoti, M., & Ngetich, F. K. (2022). Adoption of climate-smart agricultural practices among smallholder farmers in Western Kenya: do socioeconomic, institutional, and biophysical factors matter? Heliyon, 8(1), e08677. https://doi.org/10.1016/j.heliyon.2021.e08677
- Mussa, F. (2024). Artificial Intelligence in Agriculture: Revolutionizing Crop Monitoring and Pest Control. https://www.researchgate.net/publication/382912446_Artificial_Intelligence_in_Agriculture_Revolutionizing_Crop_Monitoring_and_Pest_Control
- Nagaraja, G., Shoba, H., Sreedevi, M. S., & Krishnamma, P. N. (2024). The impact of robotics and drones on agricultural efficiency and productivity. International Journal of Research in Agronomy, 7(9S), 1001–1009. https://doi.org/10.33545/2618060x.2024.v7.i9sn.1650
- Negera, M., Alemu, T., Hagos, F., & Haileslassie, A. (2022). Determinants of adoption of climate smart agricultural practices among farmers in Bale-Eco region, Ethiopia. Heliyon, 8(7), e09824. https://doi.org/10.1016/j.heliyon.2022.e09824
- O’Shaughnessy, S. A., Kim, M., Lee, S., Kim, Y., Kim, H., & Shekailo, J. (2021). Towards smart farming solutions in the U.S. and South Korea: A comparison of the current status. Geography and Sustainability, 2(4), 312–327. https://doi.org/10.1016/j.geosus.2021.12.002
- Ogwu, M. C., Izah, S. C., Ntuli, N. R., & Odubo, T. C. (2024). Food Security Complexities in the Global South. Food Safety and Quality in the Global South, 3–33. https://doi.org/10.1007/978-981-97-2428-4_1
- Opitz, I., Berges, R., Piorr, A., & Krikser, T. (2015). Contributing to food security in urban areas: differences between urban agriculture and peri-urban agriculture in the Global North. Agriculture and Human Values, 33(2), 341–358. https://doi.org/10.1007/s10460-015-9610-2
- Oyebamiji O. (2023). The Impact of Cultural and Societal Factors on the Adoption and Use of Digital Technologies in African Agriculture: A Review. 9th INTERNATIONAL STUDENT SYMPOSIUM PROCEEDINGS BOOK - 4 FEN, ZİRAAT ve SAĞLIK BİLİMLERİ SCIENCE, AGRICULTURE & HEALTH SCIENCE. https://www.researchgate.net/publication/381433980_The_Impact_of_Cultural_and_Societal_Factors_on_the_Adoption_and_Use_of_Digital_Technologies_in_African_Agriculture_A_Review
- Padhiary, M., Saha, D., Kumar, R., Sethi, L. N., & Kumar, A. (2024). Enhancing precision agriculture: A comprehensive review of machine learning and AI vision applications in all-terrain vehicle for farm automation. Smart Agricultural Technology, 8, 100483. https://doi.org/10.1016/j.atech.2024.100483
- Prashar, D., Jha, N., Jha, S., Lee, Y., & Joshi, G. P. (2020). Blockchain-Based Traceability and Visibility for Agricultural Products: A Decentralized Way of Ensuring Food Safety in India. Sustainability, 12(8), 3497. https://doi.org/10.3390/su12083497
- Raja V., & Raja D. (2024). Digital Agri: Bridging the Gap for Equitable Access to Technology in Rural Communities. https://doi.org/10.13140/RG.2.2.11144.43521
- Rajak, P., Ganguly, A., Adhikary, S., & Bhattacharya, S. (2023). Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research, 14(14), 100776. https://doi.org/10.1016/j.jafr.2023.100776
- Rose, D. C., & Chilvers, J. (2018). Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Frontiers in Sustainable Food Systems, 2. https://doi.org/10.3389/fsufs.2018.00087
- Rotz, S., Gravely, E., Mosby, I., Duncan, E., Finnis, E., Horgan, M., LeBlanc, J., Martin, R., Neufeld, H. T., Nixon, A., Pant, L., Shalla, V., & Fraser, E. (2019). Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. Journal of Rural Studies, 68, 112–122. https://doi.org/10.1016/j.jrurstud.2019.01.023
- Sahoo, S., Singha, C., Govind, A., & Moghimi, A. (2024). Review of Climate-Resilient Agriculture for Ensuring Food Security: Sustainability Opportunities and Challenges of India. Environmental and Sustainability Indicators, 100544. https://doi.org/10.1016/j.indic.2024.100544
- Said Mohamed, E., Belal, AA., Kotb Abd-Elmabod, S., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 971–981. https://doi.org/10.1016/j.ejrs.2021.08.007
- Samadder S., Pandya, S. P., & Lal S. P. (2023). Bridging the Digital Divide in Agriculture: An Investigation to ICT Adoption for Sustainable Farming Practices in Banaskantha District of Gujarat, India. International Journal of Environment and Climate Change, 13(9), 1376–1384. https://doi.org/10.9734/ijecc/2023/v13i92367
- Smidt, H. J. (2021). Factors affecting digital technology adoption by small-scale farmers in agriculture value chains (AVCs) in South Africa. Information Technology for Development, 28(3), 1–27. https://doi.org/10.1080/02681102.2021.1975256
- Subeesh, A., & Mehta, C. R. (2021). Automation and Digitization of Agriculture Using Artificial Intelligence and Internet of Things. Artificial Intelligence in Agriculture, 5, 278–291. https://doi.org/10.1016/j.aiia.2021.11.004
- Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4(2589-7217). https://doi.org/10.1016/j.aiia.2020.04.002
- Tangorra, F. M., Buoio, E., Calcante, A., Bassi, A., & Costa, A. (2024). Internet of Things (IoT): Sensors Application in Dairy Cattle Farming. Animals, 14(21), 3071–3071. https://doi.org/10.3390/ani14213071
- Toromade, A. S., & Chiekezie, N. R. (2024). GIS-driven agriculture: Pioneering precision farming and promoting sustainable agricultural practices. World Journal of Advanced Science and Technology, 6(1), 057–072. https://doi.org/10.53346/wjast.2024.6.1.0047
- Trendov, N. M., Varas, S., & Zeng, M. (2019). DIGITAL TECHNOLOGIES IN AGRICULTURE AND RURAL AREAS. Food and Agriculture Organization of the United Nations . https://openknowledge.fao.org/server/api/core/bitstreams/885161de-dccf-4589-8376-07fe37b68799/content
- Tyagi, A. K., & Sreenath, N. (2021). Cyber physical systems: Analyses, challenges and possible solutions. Internet of Things and Cyber-Physical Systems, 1. https://doi.org/10.1016/j.iotcps.2021.12.002
- Wakweya, R. B. (2023). Challenges and prospects of adopting climate-smart agricultural practices and technologies: Implications for food security. Journal of Agriculture and Food Research, 14(100698), 100698. https://doi.org/10.1016/j.jafr.2023.100698
The adoption of smart farming has altered food production by increasing efficiency, sustainability, and
productivity. However, there is a digital divide, with affluent countries such as the United States benefiting from advanced
agricultural technologies, nevertheless, many African countries face limited access to digital tools, inadequate
infrastructure, and financial restraints. This disparity has implications for food security, economic development, and
global agricultural sustainability, prompting an in-depth examination of the factors impacting smart farming adoption in
different regions. This review examines the benefits and impact of smart farming adoption on agricultural productivity, as
well as identifies the potential benefits of cross-regional knowledge sharing across the United States and Africa. The
findings indicate that smart farming technologies have considerably increased agricultural productivity and sustainability
in the United States, due to strong government initiatives, public-private collaborations, and widespread digital
infrastructure. In contrast, African farmers confront limited broadband connection, financial constraints, and insufficient
institutional support, which restricts the adoption of precision agriculture and data-driven farming. Therefore, bridging
the digital divide in agriculture necessitates a comprehensive approach that combines technology, policy, and capacity-
building efforts.
Keywords :
Agriculture, Technology, Innovation, Sustainable Farming, Agro-Transformation.