Bridging the Digital Divide in Agriculture: Lessons from the United States and Africa in Smart Farming Adoption


Authors : Samuel Oluwamakinde Oshikoya; Adekunle Olaoluwa Adeyeye; Olufisayo Andrew Obebe; Oluwatosin Elizabeth Adeyeye

Volume/Issue : Volume 10 - 2025, Issue 4 - April


Google Scholar : https://tinyurl.com/3dcxrmkk

Scribd : https://tinyurl.com/mtevmppw

DOI : https://doi.org/10.38124/ijisrt/25apr1024

Google Scholar

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 15 to 20 days to display the article.


Abstract : The adoption of smart farming has altered food production by increasing efficiency, sustainability, and productivity. However, there is a digital divide, with affluent countries such as the United States benefiting from advanced agricultural technologies, nevertheless, many African countries face limited access to digital tools, inadequate infrastructure, and financial restraints. This disparity has implications for food security, economic development, and global agricultural sustainability, prompting an in-depth examination of the factors impacting smart farming adoption in different regions. This review examines the benefits and impact of smart farming adoption on agricultural productivity, as well as identifies the potential benefits of cross-regional knowledge sharing across the United States and Africa. The findings indicate that smart farming technologies have considerably increased agricultural productivity and sustainability in the United States, due to strong government initiatives, public-private collaborations, and widespread digital infrastructure. In contrast, African farmers confront limited broadband connection, financial constraints, and insufficient institutional support, which restricts the adoption of precision agriculture and data-driven farming. Therefore, bridging the digital divide in agriculture necessitates a comprehensive approach that combines technology, policy, and capacity- building efforts.

Keywords : Agriculture, Technology, Innovation, Sustainable Farming, Agro-Transformation.

References :

  1. Abate, G. T., Abay, K. A., Chamberlin, J., Kassim, Y., Spielman, D. J., & Paul Jr Tabe-Ojong, M. (2023). Digital tools and agricultural market transformation in Africa: Why are they not at scale yet, and what will it take to get there? Food Policy, 116, 102439. https://doi.org/10.1016/j.foodpol.2023.102439
  2. Abdulai A., Quarshie P. T., Duncan, E., & Fraser, E. (2023). Is agricultural digitization a reality among smallholder farmers in Africa? Unpacking farmers’ lived realities of engagement with digital tools and services in rural Northern Ghana. Agriculture & Food Security, 12(1). https://doi.org/10.1186/s40066-023-00416-6
  3. Abiri, R., Rizan, N., Balasundram, S. K., Shahbazi, A. B., & Abdul-Hamid, H. (2023). Application of digital technologies for ensuring agricultural productivity. Heliyon, 9(12), e22601. https://doi.org/10.1016/j.heliyon.2023.e22601
  4. Addison, M., Bonuedi, I., Arhin, A., Wadei, B., Ebenezer Owusu-Addo, Fredua-Antoh, E., & Mensah-Odum, N. (2024). Exploring the impact of agricultural digitalization on smallholder farmers’ livelihoods in Ghana. Heliyon, e27541–e27541. https://doi.org/10.1016/j.heliyon.2024.e27541
  5. Agrawal, J., & Arafat, M. Y. (2024). Transforming Farming: A Review of AI-Powered UAV Technologies in Precision Agriculture. Drones, 8(11), 664–664. https://doi.org/10.3390/drones8110664
  6. Aijaz, N., Lan, H., Raza, T., Yaqub, M., Iqbal, R., & Pathan, M. S. (2025). Artificial Intelligence in Agriculture: Advancing Crop Productivity and Sustainability. Journal of Agriculture and Food Research, 101762. https://doi.org/10.1016/j.jafr.2025.101762
  7. Ayim, C., Kassahun, A., Addison, C., & Tekinerdogan, B. (2022). Adoption of ICT innovations in the agriculture sector in Africa: a review of the literature. Agriculture & Food Security, 11(1). https://doi.org/10.1186/s40066-022-00364-7
  8. Balana, B. B., & Oyeyemi, M. A. (2022). Agricultural credit constraints in a smallholder farming in developing countries: Evidence from Nigeria. World Development Sustainability, 1(100012), 100012. https://doi.org/10.1016/j.wds.2022.100012
  9. Bhooshan N., Raman, M. S., Gupta, S., Suyal G., Singh, A., & Sharma, A. (2024). Revolutionizing agriculture: role of agricultural mechanization and global trends in farming technology. Current Science, 126(10), 1209–1216. https://www.researchgate.net/publication/380911174_Revolutionizing_agriculture_role_of_agricultural_mechanization_and_global_trends_in_farming_technology
  10. Chen, H.-Y., Sharma, K., Sharma, C., & Sharma, S. (2023). Integrating explainable artificial intelligence and blockchain to smart agriculture: Research prospects for decision making and improved security. Smart Agricultural Technology, 6, 100350. https://doi.org/10.1016/j.atech.2023.100350
  11. Cheng, C., Gao, Q., Ju, K., & Ma, Y. (2024). How digital skills affect farmers’ agricultural entrepreneurship? An explanation from factor availability. Journal of Innovation & Knowledge, 9(2). https://doi.org/10.1016/j.jik.2024.100477
  12. Choruma D. J., Dirwai T. L., Mutenje M. J., Mustafa, M., Petrova, G., Jacobs-Mata, I., & Mabhaudhi T. (2024). Digitalisation in agriculture: a scoping review of technologies in practice, challenges, and opportunities for smallholder farmers in sub-Saharan Africa. Journal of Agriculture and Food Research, 18, 101286–101286. https://doi.org/10.1016/j.jafr.2024.101286
  13. Choudhary, V., Guha, P., Pau, G., & Mishra, S. (2025). An overview of smart agriculture using internet of things (IoT) and web services. Environmental and Sustainability Indicators, 26, 100607. https://doi.org/10.1016/j.indic.2025.100607
  14. Cui, L., & Wang, W. (2023). Factors Affecting the Adoption of Digital Technology by Farmers in China: A Systematic Literature Review. Sustainability, 15(20), 14824. https://doi.org/10.3390/su152014824
  15. Dhanaraju, M., Chenniappan, P., Ramalingam, K., Pazhanivelan, S., & Kaliaperumal, R. (2022). Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture, 12(10), 1745. https://doi.org/10.3390/agriculture12101745
  16. Dibbern, T., Alvim, L., & Maria, S. (2024). Main drivers and barriers to the adoption of Digital Agriculture technologies. Smart Agricultural Technology, 8, 100459–100459. https://doi.org/10.1016/j.atech.2024.100459
  17. Dougill, A. J., Whitfield, S., Stringer, L. C., Vincent, K., Wood, B. T., Chinseu, E. L., Steward, P., & Mkwambisi, D. D. (2017). Mainstreaming conservation agriculture in Malawi: Knowledge gaps and institutional barriers. Journal of Environmental Management, 195(Pt 1), 25–34. https://doi.org/10.1016/j.jenvman.2016.09.076
  18. Ehimuan, B., Anyanwu, A., Olorunsogo, T., Akindote, O., Abrahams, T., & Reis, O. (2024). Digital inclusion initiatives: Bridging the connectivity gap in Africa and the USA – A review. Australia. International Journal of Science and Research Archive, 2024(01), 488–501. https://doi.org/10.30574/ijsra.2024.11.1.0061
  19. Eliazer Nelson, A. R. L., Ravichandran, K., & Antony, U. (2019). The impact of the Green Revolution on indigenous crops of India. Journal of Ethnic Foods, 6(1). https://doi.org/10.1186/s42779-019-0011-9
  20. Gamage, A., Gangahagedara, R., Subasinghe, S., Gamage, J., Guruge, C., Senaratne, S., Randika, T., Rathnayake, C., Hameed, Z., Madhujith, T., & Merah, O. (2024). Advancing sustainability: The impact of emerging technologies in agriculture. Current Plant Biology, 40, 100420. https://doi.org/10.1016/j.cpb.2024.100420
  21. Geng, W., Liu, L., Zhao, J., Kang, X., & Wang, W. (2024). Digital Technologies Adoption and Economic Benefits in Agriculture: A Mixed-Methods Approach. Sustainability, 16(11), 4431. https://doi.org/10.3390/su16114431
  22. Guebsi, R., Mami, S., & Chokmani, K. (2024). Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones, 8(11), 686. https://doi.org/10.3390/drones8110686
  23. Gumbi N., Gumbi, L., & Twinomurinzi H. (2023). Towards Sustainable Digital Agriculture for Smallholder Farmers: A Systematic Literature Review. Sustainability, 15(16), 12530–12530. https://doi.org/10.3390/su151612530
  24. Inoue, Y. (2020). Satellite- and drone-based remote sensing of crops and soils for smart farming – a review. Soil Science and Plant Nutrition, 66(6), 798–810. https://doi.org/10.1080/00380768.2020.1738899
  25. Izuogu C. U., Njoku L. C., Olaolu, Kadurumba P. C., Azuamairo G. C., & Agou G. D. (2023). A Review of the Digitalization of Agriculture in Nigeria. Journal of Agricultural Extension, 27(2), 47–64. https://doi.org/10.4314/jae.v27i2.5
  26. Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Enhancing smart farming through the applications of Agriculture 4.0 technologies. International Journal of Intelligent Networks, 3(1), 150–164. https://doi.org/10.1016/j.ijin.2022.09.004
  27. Kamilaris, A., Fonts, A., & Prenafeta-Boldύ, F. X. (2019). The rise of blockchain technology in agriculture and food supply chains. Trends in Food Science & Technology, 91(1), 640–652. https://doi.org/10.1016/j.tifs.2019.07.034
  28. Khan, F. U., Nouman, M., Negrut, L., Abban, J., Cismas, L. M., & Siddiqi, M. F. (2024). Constraints to agricultural finance in underdeveloped and developing countries: a systematic literature review. International Journal of Agricultural Sustainability, 22(1). https://doi.org/10.1080/14735903.2024.2329388
  29. Khanal, S., Bhattarai, S., Adhikari, U., Sharma, D., & Pandey, M. (2021). Disparities between developed and emerging economies in digital divide and ICT gap to bring agricultural sustainability. Fundamental and Applied Agriculture, 0, 1. https://doi.org/10.5455/faa.78371
  30. Kieti, J., Waema, T. M., Baumüller, H., Ndemo, E. B., & Omwansa, T. K. (2022). What really impedes the scaling out of digital services for agriculture? A Kenyan users’ perspective. Smart Agricultural Technology, 2, 100034. https://doi.org/10.1016/j.atech.2022.100034
  31. Kolapo, A., & Didunyemi, A. J. (2024). Effects of exposure on adoption of agricultural smartphone apps among smallholder farmers in Southwest, Nigeria: implications on farm-level-efficiency. Agriculture & Food Security, 13(1). https://doi.org/10.1186/s40066-024-00485-1
  32. Kumar, V., Sharma, K. V., Kedam, N., Patel, A., Kate, T. R., & Rathnayake, U. (2024). A comprehensive review on smart and sustainable agriculture using IoT technologies. Smart Agricultural Technology, 8, 100487. https://doi.org/10.1016/j.atech.2024.100487
  33. Kushwaha, M., Singh, S., Singh, V., & Dwivedi, S. (2024). Precision Farming: A Review of Methods, Technologies, and Future Prospects. International Journal of Environment, Agriculture and Biotechnology, 9(2), 242–253. https://doi.org/10.22161/ijeab.92.27
  34. Liang, C., & Shah, T. (2023). IoT in Agriculture: The Future of Precision Monitoring and Data-Driven Farming. 7(1), 85–104. https://www.researchgate.net/publication/380165857_IoT_in_Agriculture_The_Future_of_Precision_Monitoring_and_Data-Driven_Farming
  35. Lima, M. B. (2014). Policies and Practices for Climate-Smart Agriculture in Sub-Saharan Africa: A Comparative Assessment of Challenges and Opportunities across 15 countries (Synthesis Report). https://www.researchgate.net/publication/336104031_Policies_and_Practices_for_Climate-Smart_Agriculture_in_Sub-Saharan_Africa_A_Comparative_Assessment_of_Challenges_and_Opportunities_across_15_countries_Synthesis_Report
  36. Liu, Y. (2024). Analyzing the Impact of the Digital Divide on Individuals, Families, and Society: A Technological Perspective. Deleted Journal, 14(1), 44–51. https://doi.org/10.54254/2977-5701/2024.18281
  37. Magesa, M., Jonathan, J., & Urassa, J. (2023). Digital Literacy of Smallholder Farmers in Tanzania. Sustainability, 15(17), 13149. https://doi.org/10.3390/su151713149
  38. Mandal, S., Yadav, A., Panme, F. A., Kshetrimayum Monika Devi, & Shravan Kumar S.M. (2024). Adaption of Smart Applications in Agriculture to Enhance Production. Smart Agricultural Technology, 100431–100431. https://doi.org/10.1016/j.atech.2024.100431
  39. Mbanasor, J. A., Kalu, C. A., Okpokiri, C. I., Onwusiribe, C. N., Philip.O.O. Nto, Agwu, N. M., & Ndukwu, M. C. (2024). Climate Smart Agriculture Practices by Crop Farmers: Evidence from South East Nigeria. Smart Agricultural Technology, 100494–100494. https://doi.org/10.1016/j.atech.2024.100494
  40. McFadden, J., Njuki , E., & Griffin, T. (2023). Precision Agriculture in the Digital Era: Recent Adoption on U.S. Farms | Economic Research Service. Usda.gov. https://www.ers.usda.gov/publications/pub-details?pubid=105893
  41. Mhlanga, D. (2024). Digital Revolution in African Agriculture. Social Science Research Network. https://doi.org/10.2139/ssrn.4697324
  42. Mhlanga, D., & Ndhlovu, E. (2023). Digital Technology Adoption in the Agriculture Sector: Challenges and Complexities in Africa. Human Behavior and Emerging Technologies, 2023, e6951879. https://doi.org/10.1155/2023/6951879
  43. Muhie, S. H. (2022). Novel approaches and practices to sustainable agriculture. Journal of Agriculture and Food Research, 10(100446), 100446. https://doi.org/10.1016/j.jafr.2022.100446
  44. Musafiri, C. M., Kiboi, M., Macharia, J., Ng’etich, O. K., Kosgei, D. K., Mulianga, B., Okoti, M., & Ngetich, F. K. (2022). Adoption of climate-smart agricultural practices among smallholder farmers in Western Kenya: do socioeconomic, institutional, and biophysical factors matter? Heliyon, 8(1), e08677. https://doi.org/10.1016/j.heliyon.2021.e08677
  45. Mussa, F. (2024). Artificial Intelligence in Agriculture: Revolutionizing Crop Monitoring and Pest Control. https://www.researchgate.net/publication/382912446_Artificial_Intelligence_in_Agriculture_Revolutionizing_Crop_Monitoring_and_Pest_Control
  46. Nagaraja, G., Shoba, H., Sreedevi, M. S., & Krishnamma, P. N. (2024). The impact of robotics and drones on agricultural efficiency and productivity. International Journal of Research in Agronomy, 7(9S), 1001–1009. https://doi.org/10.33545/2618060x.2024.v7.i9sn.1650
  47. Negera, M., Alemu, T., Hagos, F., & Haileslassie, A. (2022). Determinants of adoption of climate smart agricultural practices among farmers in Bale-Eco region, Ethiopia. Heliyon, 8(7), e09824. https://doi.org/10.1016/j.heliyon.2022.e09824
  48. O’Shaughnessy, S. A., Kim, M., Lee, S., Kim, Y., Kim, H., & Shekailo, J. (2021). Towards smart farming solutions in the U.S. and South Korea: A comparison of the current status. Geography and Sustainability, 2(4), 312–327. https://doi.org/10.1016/j.geosus.2021.12.002
  49. Ogwu, M. C., Izah, S. C., Ntuli, N. R., & Odubo, T. C. (2024). Food Security Complexities in the Global South. Food Safety and Quality in the Global South, 3–33. https://doi.org/10.1007/978-981-97-2428-4_1
  50. Opitz, I., Berges, R., Piorr, A., & Krikser, T. (2015). Contributing to food security in urban areas: differences between urban agriculture and peri-urban agriculture in the Global North. Agriculture and Human Values, 33(2), 341–358. https://doi.org/10.1007/s10460-015-9610-2
  51. Oyebamiji O. (2023). The Impact of Cultural and Societal Factors on the Adoption and Use of Digital Technologies in African Agriculture: A Review. 9th INTERNATIONAL STUDENT SYMPOSIUM PROCEEDINGS BOOK - 4 FEN, ZİRAAT ve SAĞLIK BİLİMLERİ SCIENCE, AGRICULTURE & HEALTH SCIENCE. https://www.researchgate.net/publication/381433980_The_Impact_of_Cultural_and_Societal_Factors_on_the_Adoption_and_Use_of_Digital_Technologies_in_African_Agriculture_A_Review
  52. Padhiary, M., Saha, D., Kumar, R., Sethi, L. N., & Kumar, A. (2024). Enhancing precision agriculture: A comprehensive review of machine learning and AI vision applications in all-terrain vehicle for farm automation. Smart Agricultural Technology, 8, 100483. https://doi.org/10.1016/j.atech.2024.100483
  53. Prashar, D., Jha, N., Jha, S., Lee, Y., & Joshi, G. P. (2020). Blockchain-Based Traceability and Visibility for Agricultural Products: A Decentralized Way of Ensuring Food Safety in India. Sustainability, 12(8), 3497. https://doi.org/10.3390/su12083497
  54. Raja V., & Raja D. (2024). Digital Agri: Bridging the Gap for Equitable Access to Technology in Rural Communities. https://doi.org/10.13140/RG.2.2.11144.43521
  55. Rajak, P., Ganguly, A., Adhikary, S., & Bhattacharya, S. (2023). Internet of Things and smart sensors in agriculture: Scopes and challenges. Journal of Agriculture and Food Research, 14(14), 100776. https://doi.org/10.1016/j.jafr.2023.100776
  56. Rose, D. C., & Chilvers, J. (2018). Agriculture 4.0: Broadening Responsible Innovation in an Era of Smart Farming. Frontiers in Sustainable Food Systems, 2. https://doi.org/10.3389/fsufs.2018.00087
  57. Rotz, S., Gravely, E., Mosby, I., Duncan, E., Finnis, E., Horgan, M., LeBlanc, J., Martin, R., Neufeld, H. T., Nixon, A., Pant, L., Shalla, V., & Fraser, E. (2019). Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. Journal of Rural Studies, 68, 112–122. https://doi.org/10.1016/j.jrurstud.2019.01.023
  58. Sahoo, S., Singha, C., Govind, A., & Moghimi, A. (2024). Review of Climate-Resilient Agriculture for Ensuring Food Security: Sustainability Opportunities and Challenges of India. Environmental and Sustainability Indicators, 100544. https://doi.org/10.1016/j.indic.2024.100544
  59. Said Mohamed, E., Belal, AA., Kotb Abd-Elmabod, S., El-Shirbeny, M. A., Gad, A., & Zahran, M. B. (2021). Smart farming for improving agricultural management. The Egyptian Journal of Remote Sensing and Space Science, 24(3), 971–981. https://doi.org/10.1016/j.ejrs.2021.08.007
  60. Samadder S., Pandya, S. P., & Lal S. P. (2023). Bridging the Digital Divide in Agriculture: An Investigation to ICT Adoption for Sustainable Farming Practices in Banaskantha District of Gujarat, India. International Journal of Environment and Climate Change, 13(9), 1376–1384. https://doi.org/10.9734/ijecc/2023/v13i92367
  61. Smidt, H. J. (2021). Factors affecting digital technology adoption by small-scale farmers in agriculture value chains (AVCs) in South Africa. Information Technology for Development, 28(3), 1–27. https://doi.org/10.1080/02681102.2021.1975256
  62. Subeesh, A., & Mehta, C. R. (2021). Automation and Digitization of Agriculture Using Artificial Intelligence and Internet of Things. Artificial Intelligence in Agriculture, 5, 278–291. https://doi.org/10.1016/j.aiia.2021.11.004
  63. Talaviya, T., Shah, D., Patel, N., Yagnik, H., & Shah, M. (2020). Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artificial Intelligence in Agriculture, 4(2589-7217). https://doi.org/10.1016/j.aiia.2020.04.002
  64. Tangorra, F. M., Buoio, E., Calcante, A., Bassi, A., & Costa, A. (2024). Internet of Things (IoT): Sensors Application in Dairy Cattle Farming. Animals, 14(21), 3071–3071. https://doi.org/10.3390/ani14213071
  65. Toromade, A. S., & Chiekezie, N. R. (2024). GIS-driven agriculture: Pioneering precision farming and promoting sustainable agricultural practices. World Journal of Advanced Science and Technology, 6(1), 057–072. https://doi.org/10.53346/wjast.2024.6.1.0047
  66. Trendov, N. M., Varas, S., & Zeng, M. (2019). DIGITAL TECHNOLOGIES IN AGRICULTURE AND RURAL AREAS. Food and Agriculture Organization of the United Nations . https://openknowledge.fao.org/server/api/core/bitstreams/885161de-dccf-4589-8376-07fe37b68799/content
  67. Tyagi, A. K., & Sreenath, N. (2021). Cyber physical systems: Analyses, challenges and possible solutions. Internet of Things and Cyber-Physical Systems, 1. https://doi.org/10.1016/j.iotcps.2021.12.002
  68. Wakweya, R. B. (2023). Challenges and prospects of adopting climate-smart agricultural practices and technologies: Implications for food security. Journal of Agriculture and Food Research, 14(100698), 100698. https://doi.org/10.1016/j.jafr.2023.100698

The adoption of smart farming has altered food production by increasing efficiency, sustainability, and productivity. However, there is a digital divide, with affluent countries such as the United States benefiting from advanced agricultural technologies, nevertheless, many African countries face limited access to digital tools, inadequate infrastructure, and financial restraints. This disparity has implications for food security, economic development, and global agricultural sustainability, prompting an in-depth examination of the factors impacting smart farming adoption in different regions. This review examines the benefits and impact of smart farming adoption on agricultural productivity, as well as identifies the potential benefits of cross-regional knowledge sharing across the United States and Africa. The findings indicate that smart farming technologies have considerably increased agricultural productivity and sustainability in the United States, due to strong government initiatives, public-private collaborations, and widespread digital infrastructure. In contrast, African farmers confront limited broadband connection, financial constraints, and insufficient institutional support, which restricts the adoption of precision agriculture and data-driven farming. Therefore, bridging the digital divide in agriculture necessitates a comprehensive approach that combines technology, policy, and capacity- building efforts.

Keywords : Agriculture, Technology, Innovation, Sustainable Farming, Agro-Transformation.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe