Assessing the Vulnerability of Traditional and Post-Quantum Cryptographic Systems through Penetration Testing and Strengthening Cyber Defenses with Zero Trust Security in the Era of Quantum Computing


Authors : Nonso Okika; Gift Aruchi Nwatuzie; Hamed Salam Olarinoye; ugustine A. Nwaka; Emmanuel Igba; Roland Dunee

Volume/Issue : Volume 10 - 2025, Issue 2 - February


Google Scholar : https://tinyurl.com/mrunjuv5

Scribd : https://tinyurl.com/uhnzsx93

DOI : https://doi.org/10.5281/zenodo.14959440


Abstract : The rapid advancement of quantum computing poses a significant threat to traditional cryptographic systems, necessitating a comprehensive evaluation of their vulnerabilities and the transition toward quantum-resistant security models. This review explores the security implications of quantum computing on classical cryptographic algorithms, such as RSA and ECC, through penetration testing methodologies designed to assess their resilience against quantum attacks. Additionally, it examines the effectiveness of post-quantum cryptographic (PQC) solutions, including lattice-based, hash- based, and multivariate cryptographic schemes, in mitigating these emerging risks. Furthermore, the study highlights the role of Zero Trust Security (ZTS) as a robust cybersecurity framework for strengthening defenses in the quantum era. By integrating continuous authentication, least privilege access, and micro-segmentation, Zero Trust Security enhances resilience against both classical and quantum threats. Through an analysis of real-world case studies, industry standards, and regulatory developments, this review provides insights into best practices for organizations to proactively fortify their cryptographic infrastructures. The findings emphasize the urgency of adopting hybrid security approaches that combine PQC with Zero Trust principles to ensure long-term data protection and cyber resilience in the face of quantum-enabled adversaries.

Keywords : Quantum Cryptography, Photon Detection, Polarization, Key Exchange, Post-Quantum Security, Encryption.

References :

  1. Afrose, S., Xiao, Y., Rahaman, S., Miller, B. P., & Yao, D. (2021). Evaluation of Static Vulnerability Detection Tools with Java Cryptographic API Benchmarks. arXiv preprint arXiv:2112.04037. https://arxiv.org/abs/2112.04037
  2. Ajayi, A. A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Quantum Cryptography and Blockchain-Based Social Media Platforms as a Dual Approach to Securing Financial Transactions in CBDCs and Combating Misinformation in U.S. Elections. International Journal of Innovative Science and Research Technology, 9(10). https://doi.org/10.38124/ijisrt/IJISRT24OCT1697
  3. Ajayi, A. A., Igba, E., Soyele, A. D., & Enyejo, J. O. (2024). Quantum Cryptography and Blockchain-Based Social Media Platforms as a Dual Approach to Securing Financial Transactions in CBDCs and Combating Misinformation in U.S. Elections. International Journal of Innovative Science and Research Technology, 9(10). https://doi.org/10.38124/ijisrt/IJISRT24OCT1697
  4. Akindotei, O., Igba E., Awotiwon, B. O., & Otakwu, A (2024). Blockchain Integration in Critical Systems Enhancing Transparency, Efficiency, and Real-Time Data Security in Agile Project Management, Decentralized Finance (DeFi), and Cold Chain Management. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 3, Issue 11, 2024. DOI: 10.38124/ijsrmt.v3i11.107.
  5. Alvarado, M., Gayler, L., Seals, A., Wang, T., & Hou, T. (2023). A Survey on Post-Quantum Cryptography: State-of-the-Art and Challenges. arXiv preprint arXiv:2312.10430. https://arxiv.org/abs/2312.10430
  6. Alvarado, M., Gayler, L., Seals, A., Wang, T., & Hou, T. (2023). A Survey on Post-Quantum Cryptography: State-of-the-Art and Challenges. arXiv preprint arXiv:2312.10430. https://arxiv.org/abs/2312.10430
  7. Ayoola, V. B., Audu, B. A., Boms, J. C., Ifoga, S. M., Mbanugo, O. J., & Ugochukwu, U. N.  (2024). Integrating Industrial Hygiene in Hospice and Home Based Palliative Care to Enhance Quality of Life for Respiratory and Immunocompromised Patients. NOV 2024 | IRE Journals | Volume 8 Issue 5 | ISSN: 2456-8880.
  8. Ayoola, V. B., Idoko, P. I., Danquah, E. O., Ukpoju, E. A., Obasa, J., Otakwu, A. & Enyejo, J. O. (2024). Optimizing Construction Management and Workflow Integration through Autonomous Robotics for Enhanced Productivity Safety and Precision on Modern Construction Sites. International Journal of Scientific Research and Modern Technology (IJSRMT). Vol 3, Issue 10, 2024. https://www.ijsrmt.com/index.php/ijsrmt/article/view/56
  9. Ayoola, V. B., Ugochukwu, U. N.,  Adeleke, I., Michael, C. I. Adewoye, M. B., & Adeyeye, Y. (2024). Generative AI-Driven Fraud Detection in Health Care Enhancing Data Loss Prevention and Cybersecurity Analytics for Real-Time Protection of Patient Records. International Journal of Scientific Research and Modern Technology (IJSRMT), Volume 3, Issue 11, 2024.https://www.ijsrmt.com/index.php/ijsrmt/article/view/112
  10. Bavdekar, R., Chopde, E. J., Bhatia, A., Tiwari, K., Daniel, S. J., & Atul. (2022). Post quantum cryptography: Techniques, challenges, standardization, and directions for future research. arXiv preprint arXiv:2202.02826.
  11. Bernstein, D. J., Buchmann, J., & Dahmen, E. (2008). Post-Quantum Cryptography. Springer.
  12. Bernstein, D. J., Buchmann, J., & Dahmen, E. (2008). Post-Quantum Cryptography. Springer.
  13. Bernstein, E., Vazirani, U., & Bennett, C. H. (1997). The strengths and weaknesses of quantum computation. SIAM Journal on Computing, 26(5), 1510-1523.
  14. Cem Dilmegani (2025) Quantum Cryptography/Encryption https://research.aimultiple.com/quantum-cryptography/
  15. Cintas Canto, A., Kaur, J., Mozaffari Kermani, M., & Azarderakhsh, R. (2023). Algorithmic Security is Insufficient: A Comprehensive Survey on Implementation Attacks Haunting Post-Quantum Security. arXiv preprint arXiv:2305.13544. https://arxiv.org/abs/2305.13544
  16. Cintas Canto, A., Kaur, J., Mozaffari Kermani, M., & Azarderakhsh, R. (2023). Algorithmic Security is Insufficient: A Comprehensive Survey on Implementation Attacks Haunting Post-Quantum Security. arXiv preprint arXiv:2305.13544. https://arxiv.org/abs/2305.13544
  17. CrowdStrike. (2024). What is Zero Trust Security? Principles of the Zero Trust Model. Retrieved from https://www.crowdstrike.com/en-us/cybersecurity-101/zero-trust-security/
  18. Ding, J., & Petzoldt, A. (2017). Current state of multivariate cryptography. IEEE Security & Privacy, 15(4), 28-36.
  19. Dziechciarz, D., & Niemiec, M. (2024). Efficiency Analysis of NIST-Standardized Post-Quantum Cryptographic Algorithms for Digital Signatures in Various Environments. Electronics14(1), 70.
  20. Dziechciarz, D., & Niemiec, M. (2024). Efficiency Analysis of NIST-Standardized Post-Quantum Cryptographic Algorithms for Digital Signatures in Various Environments. Electronics14(1), 70.
  21. Dziechciarz, D., & Niemiec, M. (2024). Efficiency Analysis of NIST-Standardized Post-Quantum Cryptographic Algorithms for Digital Signatures in Various Environments. Electronics14(1), 70.
  22. Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika, C. J.,  Awotiwon,  B. O., & Olola, T. M. (2024). Digital Twin Technology, Predictive Analytics, and Sustainable Project Management in Global Supply Chains for Risk Mitigation, Optimization, and Carbon Footprint Reduction through Green Initiatives. International Journal of Innovative Science and Research Technology, Volume 9, Issue 11, November– 2024.  ISSN No:-2456-2165.   https://doi.org/10.38124/ijisrt/IJISRT24NOV1344
  23. Enyejo, J. O., Fajana, O. P., Jok, I. S., Ihejirika, C. J.,  Awotiwon,  B. O., & Olola, T. M. (2024). Digital Twin Technology, Predictive Analytics, and Sustainable Project Management in Global Supply Chains for Risk Mitigation, Optimization, and Carbon Footprint Reduction through Green Initiatives. International Journal of Innovative Science and Research Technology, Volume 9, Issue 11, November– 2024.  ISSN No:-2456-2165.   https://doi.org/10.38124/ijisrt/IJISRT24NOV1344
  24. Enyejo, J. O., Obani, O. Q., Afolabi, O., Igba, E., & Ibokette, A. I. (2021). Redefining zero trust architecture in cloud networks: A conceptual shift towards granular and dynamic security models. Magna Scientia Advanced Research and Reviews, 2021, 11(02), 132–150. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2021-0032.pdf
  25. Enyejo, L. A., Adewoye, M. B. & Ugochukwu, U. N. (2024). Interpreting Federated Learning (FL) Models on Edge Devices by Enhancing Model Explainability with Computational Geometry and Advanced Database Architectures. International Journal of Scientific Research in Computer Science, Engineering and Information Technology. Vol. 10 No. 6 (2024): November-December doi : https://doi.org/10.32628/CSEIT24106185
  26. Ezeh, N. V., Batur, D. S., Oluhaiyero, S. Y., Kehinde, A., Chukwunweike, C. N., Ali, O. E., & Igba, E. (2024). Blockchain Driven Cold Chain Logistics and Decentralized Inventory Systems for Managing Post-Harvest Losses and Improving Financial Sustainability in Regional Food Hubs. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 3, Issue 9, 2024 DOI:https://doi.org/10.5281/zenodo.14874303 
  27. Ezeh,  N. V.,  Batur, S. D., Oluhaiyero, Shade. Y.,  Abiodun, K., Nwobi, C. C., Ali, O.  E., & Igba, E. (2024). Blockchain Driven Cold Chain Logistics and Decentralized Inventory Systems for Managing Post-Harvest Losses and Improving Financial Sustainability in Regional Food Hubs. International Journal of Scientific Research and Modern Technology (IJSRMT). Volume 3, Issue 9, 2024. DOI: https://doi.org/10.5281/zenodo.14874303 
  28. Gaudry, P., & Golovnev, A. (2019). Breaking the encryption scheme of the Moscow Internet voting system. arXiv preprint arXiv:1908.05127. https://arxiv.org/abs/1908.05127
  29. Igba E., Ihimoyan, M. K.,  Awotinwo, B., & Apampa, A. K. (2024). Integrating BERT, GPT, Prophet Algorithm, and Finance Investment Strategies for Enhanced Predictive Modeling and Trend Analysis in Blockchain Technology. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 1620-1645.https://doi.org/10.32628/CSEIT241061214
  30. Igba, E., Abiodun, K. &  Ali, E. O. (2025). Building the Backbone of the Digital Economy and Financial Innovation through Strategic Investments in Data Centers. International Journal of Innovative Science and Research Technology, ISSN No:-2456-2165. https://doi.org/10.5281/zenodo.14651210
  31. Igba, E., Danquah, E. O.,  Ukpoju, E. A.,   Obasa, J.,  Olola, T. M., & Enyejo, J. O. (2024). Use of Building Information Modeling (BIM) to Improve Construction Management in the USA. World Journal of Advanced Research and Reviews, 2024, 23(03), 1799–1813. https://wjarr.com/content/use-building-information-modeling-bim-improve-construction-management-usa
  32. Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I., Olajide, F. I. & Enyejo, L. A. (2024). Precision healthcare analytics: Integrating ML for automated image interpretation, disease detection, and prognosis prediction. World Journal of Biology Pharmacy and Health Sciences, 2024, 18(01), 336–354. https://wjbphs.com/sites/default/files/WJBPHS-2024-0214.pdf
  33. Ijiga. A. C., Eguagie, M. O. & Tokowa, A. (2025). Mineralization Potential of the Lithium-Bearing Micas in the St Austell Granite, SW England. International Journal of Innovative Science and Research Technology. ISSN No:-2456-2165, https://doi.org/10.5281/zenodo.14709730
  34. Joshi, H. (2024). Emerging Technologies Driving Zero Trust Maturity Across Industries. IEEE Open Journal of the Computer Society.
  35. Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., & Schimmler, M. (2006). Breaking ciphers with COPACOBANA–a cost-optimized parallel code breaker. In Cryptographic Hardware and Embedded Systems-CHES 2006: 8th International Workshop, Yokohama, Japan, October 10-13, 2006. Proceedings 8 (pp. 101-118). Springer Berlin Heidelberg.
  36. Kunde, V., Nold, J. M., & Hielscher, J. (2024, September). " Everything We Encrypt Today Could Be Cracked"—Exploring (Post) Quantum Cryptography Misconceptions. In Proceedings of the 2024 European Symposium on Usable Security (pp. 125-136).
  37. M. JarjarAbid Abdellah  (2024) Multiple image encryption acting at the RNA level https://www.semanticscholar.org/paper/Multiple-image-encryption-acting-at-the-RNA-level-Jarjar-Abdellah/21f689ed2100e1898bf28f25691790e2fb30c594
  38. Mavroeidis, V., Vishi, K., Zych, M. D., & Jøsang, A. (2018). The Impact of Quantum Computing on Present Cryptography. arXiv preprint arXiv:1804.00200. https://arxiv.org/abs/1804.00200
  39. Mosca, M. (2018). Cybersecurity in an era with quantum computers: Will we be ready? IEEE Security & Privacy, 16(5), 38–41. https://doi.org/10.1109/MSP.2018.3761723
  40. National Institute of Standards and Technology (NIST). (2016). Post-Quantum Cryptography: NIST's Plan for the Future. Retrieved from https://csrc.nist.gov/publications/detail/nistir/8105/final
  41. Rahaman, S., Xiao, Y., Afrose, S., Shaon, F., Tian, K., Frantz, M., Yao, D., & Kantarcioglu, M. (2018). CryptoGuard: High Precision Detection of Cryptographic Vulnerabilities in Massive-sized Java Projects. arXiv preprint arXiv:1806.06881. https://arxiv.org/abs/1806.06881
  42. Regev, O. (2009). On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM, 56(6), 1-40.
  43. Saxena, A., Mancilla, J., Montalban, I., & Pere, C. (2023). Financial Modeling Using Quantum Computing: Design and manage quantum machine learning solutions for financial analysis and decision making. Packt Publishing Ltd.
  44. Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science (pp. 124-134). IEEE.
  45. Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science, 124-134.
  46. Shor, P. W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26(5), 1484–1509. https://doi.org/10.1137/S0097539795293172
  47. Shor's algorithm. (2023, October 1). In Wikipedia. https://en.wikipedia.org/wiki/Shor%27s_algorithm
  48. Tiamiyu, D., Aremu, S. O., Igba, E., Ihejirika, C. J., Adewoye, M. B., & Ajayi, A. A. (2024). Interpretable Data Analytics in Blockchain Networks Using Variational Autoencoders and Model-Agnostic Explanation Techniques for Enhanced Anomaly Detection. International Journal of Scientific Research in Science and Technology, 11(6), 152–183. https://doi.org/10.32628/IJSRST24116170
  49. Tiamiyu, D., Aremu, S. O., Igba, E., Ihejirika, C. J., Adewoye, M. B. & Ajayi, A. A. (2024). Interpretable Data Analytics in Blockchain Networks Using Variational Autoencoders and Model-Agnostic Explanation Techniques for Enhanced Anomaly Detection. International Journal of Scientific Research in Science and Technology.  Volume 11, Issue 6 November-December-2024. 152-183. https://doi.org/10.32628/IJSRST24116170

The rapid advancement of quantum computing poses a significant threat to traditional cryptographic systems, necessitating a comprehensive evaluation of their vulnerabilities and the transition toward quantum-resistant security models. This review explores the security implications of quantum computing on classical cryptographic algorithms, such as RSA and ECC, through penetration testing methodologies designed to assess their resilience against quantum attacks. Additionally, it examines the effectiveness of post-quantum cryptographic (PQC) solutions, including lattice-based, hash- based, and multivariate cryptographic schemes, in mitigating these emerging risks. Furthermore, the study highlights the role of Zero Trust Security (ZTS) as a robust cybersecurity framework for strengthening defenses in the quantum era. By integrating continuous authentication, least privilege access, and micro-segmentation, Zero Trust Security enhances resilience against both classical and quantum threats. Through an analysis of real-world case studies, industry standards, and regulatory developments, this review provides insights into best practices for organizations to proactively fortify their cryptographic infrastructures. The findings emphasize the urgency of adopting hybrid security approaches that combine PQC with Zero Trust principles to ensure long-term data protection and cyber resilience in the face of quantum-enabled adversaries.

Keywords : Quantum Cryptography, Photon Detection, Polarization, Key Exchange, Post-Quantum Security, Encryption.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe