Authors :
Kella.Devika; E. Varshitha; Ch. Bhargavi; Dr. P. Bhanuji Rao
Volume/Issue :
Volume 10 - 2025, Issue 3 - March
Google Scholar :
https://tinyurl.com/mvkjvpj2
Scribd :
https://tinyurl.com/4x2vtxs5
DOI :
https://doi.org/10.38124/ijisrt/25mar997
Google Scholar
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 15 to 20 days to display the article.
Abstract :
Minimally Modern invasive medicine is developing remarkably; robotic surgery uses computer-operated robotic
technology to increase accuracy, vision, and surgical efficiency. By enabling real-time analysis, decision-making, and
automatic support throughout operations, artificial intelligence (AI) magnifies these benefits even more. Al-driven robotic
systems are increasingly embraced offering improved patient outcomes including reduced recovery times, minimal
complications, and enhanced precision in many different medical disciplines including neurosurgery, cardiothoracic,
gynaecological, gastrointestinal, urological, orthopaedic, and oncology operations. Among artificial intelligence's
contributions to robotic surgery are motion control, haptic feedback, and picture identification, thereby optimizing
surgical precision and results. Still, problems including cybersecurity risks, integration challenges, and regulatory
obstacles call for innovation and adaptation. Future advancements include increased robotic autonomy, customized
surgical solutions, and AI-powered training simulations---which open the road for safer, more patient-specific surgical
treatment-based on Emphasizing its potential to totally disrupt existing healthcare procedures, this paper explores the
transforming impact of AI-enhanced robotic surgery, its clinical applications, advantages, challenges, and shifting scene of
medical robotics.
Keywords :
Artificial Intelligence, Surgical Procedures, Challenges, Future Prospects.
References :
- Mehta A, Cheng Ng J, Andrew Awuah W, Huang H, Kalmanovich J, Agrawal A, Abdul-Rahman T, Hasan MM, Sikora V, Isik A (2022) Embracing robotic surgery in low- and middle-income countries: potential benefits, challenges, and scope in the future. Ann Med Surg (Lond) 84:104803. https:// doi.org/10.1016/j.amsu.2022.104803
- George EI, Brand TC, LaPorta A, Marceaux J, Satava RM (2018) Origins of Robotic Surgery: From Skepticism to Standard of Care. JSLS 22(4): e2018.00039. https:// Doi. org/ 10. 4293/ JSLS. 2018.00039
- Davies B (2000) A review of robotics in surgery. Proc Inst Mech Eng H 214(1):129–140. https:// Doi. org/ 10. 1243/ 09544 11001 535309
- Paul HA, Bargar WL, Mittlestadt B, Musits B, Taylor RH, Kazanzides P, Zuhars J, Williamson B, Hanson W (1992) Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop Relat Res 285:57–66
- Harris S, Arambula-Cosio F, Mei Q et al (1997) The Robot—an active robot for prostate resection. Proceedings of the Institution of Mechanical Engineers, Part H. N Engl J Med 211:317–325. https://doi.org/10.1243/0954411971534449
- Satava RM (2002) Surgical robotics: the early chronicles: a personal historical perspective. Surg Laparosc Endosc Percu tan Tech 12(1):6–16. https:// Doi. org/ 10. 1097/ 00129 689- 20020 2000-00002
- Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery: a current perspective. Ann Surg 239(1):14–21. https://doi.org/10.1097/01.sla.0000103020.19595.7d
- Ryan Yimeng L, Alyssa Imperatore Z, Lauryn U, et al. Artificial Intelligence in Surgery, Surgical Subspecialties, and Related Disciplines In: Stanislaw PS, editor. Artificial Intelligence in Medicine and Surgery. Rijeka: IntechOpen; 2023.
- Pierson HA. Deep Learning in Robotics: A Review of Recent Research [Internet]. [Available from: https://arxiv.org/pdf/1707.07217
- Liu J, Dong X, Yang Y, et al. Trajectory tracking control for uncertain robot manipulators with repetitive motions in task space. Math Problems Eng 2021; 2021:8838927.
- Mehta A, Cheng Ng J, Andrew Awuah W, Huang H, Kalmanovich J, Agrawal A, Abdul-Rahman T, Hasan MM, Sikora V, Isik A (2022) Embracing robotic surgery in low- and middle-income countries: potential benefits, challenges, and scope in the future. Ann Me Surg (Lond) 84:104803. https:// doi.org/10.1016/j.amsu.2022.104803
- George EI, Brand TC, LaPorta A, Marceaux J, Satava RM (2018) Origins of Robotic Surgery: From Skepticism to Standard of Care. JSLS 22(4): e2018.00039. https:// Doi. org/ 10. 4293/ JSLS. 2018.00039
- Davies B (2000) A review of robotics in surgery. Proc Inst Mech Eng H 214(1):129–140. https:// Doi. org/ 10. 1243/ 09544 11001 535309
- Paul HA, Bargar WL, Mittlestadt B, Musits B, Taylor RH, Kazanzides P, Zuhars J, Williamson B, Hanson W (1992) Development of a surgical robot for cementless total hip arthroplasty. Clin Orthop Relat Res 285:57–66
- Harris S, Arambula-Cosio F, Mei Q et al (1997) The Robot—an active robot for prostate resection. Proceedings of the Institution of Mechanical Engineers, Part H. N Engl J Med 211:317–325. https://doi.org/10.1243/0954411971534449
- Satava RM (2002) Surgical robotics: the early chronicles: a personal historical perspective. Surg Laparosc Endosc Percu tan Tech 12(1):6–16. https:// Doi. org/ 10. 1097/ 00129 689- 20020 2000-00002
- Lanfranco AR, Castellanos AE, Desai JP, Meyers WC (2004) Robotic surgery: a current perspective. Ann Surg 239(1):14–21. https://doi.org/10.1097/01.sla.0000103020.19595.7d
- Ryan Yimeng L, Alyssa Imperatore Z, Lauryn U, et al. Artificial Intelligence in Surgery, Surgical Subspecialties, and Related Disciplines In: Stanislaw PS, editor. Artificial Intelligence in Medicine and Surgery. Rijeka: IntechOpen; 2023.
- Pierson HA. Deep Learning in Robotics: A Review of Recent Research [Internet]. [Available from: https://arxiv.org/pdf/1707.07217
- Liu J, Dong X, Yang Y, et al. Trajectory tracking control for uncertain robot manipulators with repetitive motions in task space. Math Problems Eng 2021; 2021:8838927.
- Okamura AM. Haptic feedback in robot-assisted minimally invasive surgery. Curr Opin Urol 2009; 19:102–7.
- Bergholz M, Ferle M, Weber BM. The benefits of haptic feedback in robot assisted surgery and their moderators: a meta-analysis. Sci Rep 2023; 13:19215.
- Shademan A, Decker RS, Opfermann JD, et al. Supervised autonomous robotic soft tissue surgery. Sci Transl Med 2016; 8:337ra64.
- Rivero-Moreno Y, Rodriguez M, Losada-Muñoz P, et al. Autonomous robotic surgery: has the future arrived? Cureus 2024;16: e52243.
- GumbsAA, Frigerio I, Spolverato G, etal. Artificial intelligence surgery: how do we get to autonomous actions in surgery? Sensors 2021;21: 5526.
- Qureshi YA, Mohammadi B (2018) Robotic esophago-gastric cancer surgery. Ann R Coll Surg Engl 100(6_sup):23–30. https:// doi.org/10.1308/rcsann.supp1.23
- Singh R, Wang K, Qureshi MB, Rangel IC, Brown NJ, Shah Restani S et al (2022) Robotics in neurosurgery: Current prevalence and future directions. Surg Neurol Int 13:373. https://doi. org/10.25259/SNI_522_2022
- . Harky A, Hussain SMA (2019) Robotic cardiac surgery: the future gold standard or an unnecessary extravagance? Braz J Cardiovasc Surg 34(4): XII–XIII. https:// Doi. org/ 10. 21470/ 1678-9741-2019-0194.
- Onnasch JF, Schneider F, Falk V, Mierzwa M, Bucerias J, Mohr FW (2002) Five years of less invasive mitral valve surgery : from experimental to routine approach. Heart Surg Forum 5(2):132–135
- Cosgrove DM 3rd, Sabik JF, Navia JL (1998) Minimally invasive valve operations. AnnThorac Surg 65(6):1535–1539. https:// Doi. org/10.1016/s0003-4975(98)00300-2
- Navia JL, Cosgrove DM 3rd (1996) Minimally invasive mitral valve operations. Ann Thorac Surg 62(5):1542–1544. https:// Doi. org/10.1016/0003-4975(96)00779-5
- Mihaljevic T, Jarrett CM, Gillinov AM, Williams SJ, DeVilliers PA, Stewart WJ et al (2011) Robotic repair of posterior mitral valve prolapse versus conventional approaches: potential realized. J Thorac Cardiovasc Surg 141(1):72–80. https:// Doi. org/ 10.1016/j.jtcvs.2010.09.008
- Xiao C, Gao C, Yang M, Wang G, Wu Y, Wang J et al (2014) Totally robotic atrial septal defect closure: 7-year single institution experience and follow-up. Interact Cardiovasc Thorac Surg 19(6):933–937. https://doi.org/10.1093/icvts/ivu263
- Li S, Gao Ch (2017) Surgical Experience of Primary Cardiac Tumour: Single-Institution 23-Year Report. Med Sci Monit 23:2111–2117. https://doi.org/10.12659/MSM.903324
- Amraoui S, Labrousse L, Sohal M, Jansens JL, Berte B, Derval N et al (2017) Alternative to left ventricular lead implantation through the coronary sinus: 1-year experience with a minimally invasive and robotically guided approach. Europace 19(1):88 95. https://doi.org/10.1093/europace/euv430
- Digioia AM (2002) Comparison of a mechanical acetabular alignment guide with computer placement of the socket. J Arthroplasty 17(3):359–364. https:// Doi. org/ 10. 1054/ Arth. 2002.30411
- Diaz-Arrastia C, Jurnalov C, Gomez G, Townsend C (2002) Laparoscopic hysterectomy using a computer-enhanced surgical robot. Surg Endosc Other Interv Tech 16(9):1271–1273. https:// doi.org/10.1007/s00464-002-8523-5
- Advincula AP, Song A, Burke W, Reynolds RK (2004) Preliminary experience with robot-assisted laparoscopic myomectomy. J Am Assoc Gynecol Laparosc 11(4):511–518. https:// Doi. org/ 10.1016/s1074-3804(05)60085-0
- Barakat EE, Bedaiwy MA, Zimberg S, Nutter B, Nosseir M, Falcone T (2011) Robotic-assisted, laparoscopic, and abdominal myomectomy: a comparison of surgical outcomes. Obstet Gynecol 117:256–265. https:// Doi. org/ 10. 1097/ AOG. 0b013 e318207854f
- Lonnerfors C, Persson J (2009) Robot-assisted laparoscopic myomectomy; a feasible technique for removal of unfavourably localized myomas. Acta Obstet Gynecol Scand 88:994–999. https://doi.org/10.1080/00016340903118026
- Shah J, Vyas A, Vyas D (2014) The history of robotics in surgical specialties. Am J Robot Surg 1(1):12–20. https:// Doi. org/ 10. 1166/ ajrs.2014.1006
- Visco AG, Advincula AP (2008) Robotic gynaecologic surgery. Obstet Gynecol 112:1369–1384. https:// Doi. org/ 10. 1097/ AOG. 0b013e31818f3c17
- Ramavath KK, Murthy PS (2011) Robotic Sacro colpopexy: An observational experience at Mayo clinic, USA. J Gynecol Endosc Surg 2:53–57. https://doi.org/10.4103/0974-1216.85285
- Akl MN, Long JB, Giles DL, Cornella JL, Pettit PD, Chen AH et al (2009) Robotic-assisted sacrocolpopexy: Technique and learning curve. Surg Endosc 23:2390–2394. https:// Doi. org/ 10. 1007/s00464-008-0311-4
- Rodgers AK, Goldberg JM, Hammel JP, Falcone T (2007) Tubal anastomosis by robotic compared with outpatient Mini laparotomy. Obstet Gynecol 109:1375–1380. https:// Doi. org/ 10. 1097/ 01.AOG.0000264591.43544.0f
- Göçmen A, Sanlýkan F (2013) Two live births following robotic assisted abdominal cerclage in nonpregnant women. Case Rep Obstet Gynecol 2013:256972. https:// Doi. org/ 10. 1155/ 2013/ 256972
- Schimpf MO, Morgenstern JH, Tulikangas PK, Wagner JR (2007) Vesicovaginal fistula repair without intentional cystostomy using the laparoscopic robotic approach: a case report. JSLS 11:378–380
- Pietersma CS, Schreuder HW, Kooistra A, Koops SE (2014) Robotic-assisted laparoscopic repair of a vesicovaginal fistula: A time-consuming novelty or an effective tool? BMJ Case Rep. https://doi.org/10.1136/bcr-2014-204119
- Draaisma WA, Nieuwenhuis DH, Janssen LW, Broeders IA (2008) Robot-assisted laparoscopic rectovaginopexy for rectal prolapse: A prospective cohort study on feasibility and safety. J Robotic Surg 1:273–277. https:// Doi. org/ 10. 1007/ s11701-007-0053-7
- Francis SL, Agrawal A, Azadi A, Ostergard DR, Deveneau NE (2015) Robotic Burch colposuspension: a surgical case and instructional video. Int Urogynaecology J 26(1):147–148. https:// Doi. org/10.1007/s00192-014-2471-1
- . Shah J, Vyas A, Vyas D (2014) The history of robotics in surgical specialties. Am J Robot Surg 1(1):12–20. https:// Doi. org/ 10. 1166/ ajrs.2014.1006
- Cadiere GB, Himpens J, Vertruyen M, Favretti F (1999) The world’s first obesity surgery performed by a surgeon at a distance. Obes Surg 9(2):206–209. https:// Doi. org/ 10. 1381/ 09608 9299765553539
- Hanly EJ, Talamini MA (2004) Robotic abdominal surgery. Am J Surg 188(4A Suppl):19–26. https://doi.org/10.1016/j.amjsurg. 2004.08.020
- Coratti A, Annecchiarico M, Di Marino M, Gentile E, Coratti F, Giulianotti PC (2013) Robot-assisted gastrectomy for gastric cancer: current status and technical considerations. World J Surg 37(12):2771–2781. https://doi.org/10.1007/s00268-013-2100-z
- . Yu HY, Hevelone ND, Lipsitz SR, Kowalczyk KJ, Hu JC (2012) Use, costs and comparative effectiveness of robotic assisted, lap acroscopic and open urological surgery. J Urol 187(4):1392–1398. https://doi.org/10.1016/j.juro.2011.11.089
- Rassweiler J, Rassweiler MC, Kenngott H, Frede T, Michel MS, Alken P et al (2013) The past, present and future of minimally invasive therapy in urology: a review and speculative outlook. Minim Invasive Ther Allied Technol 22(4):200–209. https:// Doi. org/10.3109/13645706.2013.816323
- Uberoi J, Disick GI, Munver R (2009) Minimally invasive surgical management of pelvic-ureteric junction obstruction: update on the current status of robotic-assisted pyeloplasty. BJU Int 104(11):1722–1729. https:// Doi. org/ 10. 1111/j. 1464- 410X. 2009. 08682.x
- Menon M, Hemal AK, Tewari A, Shrivastava A, Shoma AM, El Tabey NA et al (2003) Nerve-sparing robot-assisted radical cyst prostatectomy and urinary diversion. BJU Int 92(3):232–236. https://doi.org/10.1046/j.1464-410x.2003.04329.x
- Parekattil SK, Moran ME (2010) Robotic instrumentation: Evolution and microsurgical applications. Indian Journal of Urology 26(3):395–403. https://doi.org/10.4103/0970-1591.70580
- Digioia AM (2002) Comparison of a mechanical acetabular alignment guide with computer placement of the socket. J Arthroplasty 17(3):359–364. https:// Doi. org/ 10. 1054/ Arth. 2002.30411.
- Khlopas A, Chughtai M, Hampp EL, Scholl LY, Prieto M, Chang TC et al (2017) Robotic-arm assisted total knee arthro plasty demonstrated soft tissue protection. Surg Technol Int 30:441–446.
- Solomiichuk V, Fleisch hammer J, Molliqaj G, Warda J, Alaid A, von Eckard stein K et al (2017) Robotic vs fluoroscopy-guided pedicle screw insertion for metastatic spinal disease: a matched cohort comparison. Neurosurg Focus 42(5): E13. https:// Doi. org/ 10.3171/2017.3. FOCUS1710
- Schröder ML, Staartjes VE (2017) Revisions for screw malposition and clinical outcomes after robot-guided lumbar fusion for spondylolisthesis. Neurosurg Focus 42(5): E12. https:// Doi. org/ 10.3171/2017.3. FOCUS16534
- Bozkurt M, Apaydin N, Işik C, Bilgetekin YG, Acar HI, Elhan A (2011) Robotic arthroscopic surgery: a new challenge in arthro scopic surgery Part-I: robotic shoulder arthroscopy; a cadaveric feasibility study. Int J Med Robot 7(4):496–500. https://doi.org/ 10.1002/rcs.436
- Dagnino G, Georgilas I, Kohler P, Morad S, Atkins R, Dograma dzi S (2016) Navigation system for robot-assisted intraarticular lower-limb fracture surgery. Int J CARS 11:1831–1843. https:// doi.org/10.1007/s11548-016-1418-z
- Oszwald M, Westphal R, Klepzig D, Khalafi A, Gaulke R, Müller CW et al (2010) Robotized access to the medullary cavity for intramedullary nailing of the femur. Technol Health Care 18(3):173–180. https://doi.org/10.3233/THC-2010-0580
- Lei H, Sheng L, Manyi W, Junqiang W, Wenyong L (2010) A biplanar robot navigation system for the distal locking of intramedullary nails. Int J Med Robot 6(1):61–65. https:// Doi. org/10.1002/rcs. 289
- Mantovani G, Liverneaux P, Garcia JC Jr, Berner SH, Bednar MS, Mohr CJ (2011) Endoscopic exploration and repair of brachial plexus with telerobotic manipulation: a cadaver trial. J Neurosurg 115(3):659–664. https:// Doi. org/ 10. 3171/ 2011.3. JNS10931
- Garcia JC Jr, Lebailly F, Mantovani G, Mendonca LA, Garcia J, Liverneaux P (2012) Telerobotic manipulation of the brachial plexus. J Reconstr Microsurg 28(7):491–494. https:// Doi. org/ 10. 1055/s-0032-1313761
- Kowalewski KF, Seifert L, Ali S, Schmidt MW, Seide S, Haney C et al (2021) Functional outcomes after laparoscopic versus robotic-assisted rectal resection: a systematic review and meta-analysis. Surg Endosc 35(1):81–95. https:// Doi. org/ 10. 1007/ s00464-019-07361-1
- Bongiolatti S, Farronato A, Di Marino M, Annecchiarico M, Coratti F, Cianchi F et al (2020) Robot-assisted minimally invasive esophagectomy: systematic review on surgical and oncological outcomes. Mini-invasive Surg 4:41. https:// Doi. org/10.20517/2574-1225.2020.28
- Ramirez PT, Frumovitz M, Pareja R, Lopez A, Vieira M, Ribeiro R et al (2018) Minimally invasive versus abdominal radical hysterectomy for cervical cancer. N Engl J Med 379(20):1895–1904. https:// Doi. org/ 10. 1056/ NEJMo a1806 395
- Audenet F, Sfakianos JP (2017) Evidence of atypical recurrences after robot-assisted radical cystectomy: a comprehensive review of the literature. Bladder Cancer 3(4):231–236. https://doi.org/10.3233/BLC-170127
- O’Sullivan KE, Kreaden US, Hebert AE, Eaton D, Red Mond KC (2019) A systematic review and meta-analysis of robotic versus open and video-assisted thoracoscopic surgery approaches for lobectomy. Interact Cardiovasc Thorac Surg 28(4):526–534. https://doi.org/10.21037/acs.2019.02.04
- Vijayakumar M, Shetty R (2020) Robotic surgery in oncology. Indian J Surg Oncol 11(4):549–551. https:// Doi. org/ 10. 1007/ s13193-020-01251-y
- ] Takeuchi M, Kitagawa Y. Artificial intelligence and surgery. Ann Gastroenterol Surg 2024; 8:45.
- Rasouli JJ, Shao J, Neifert S, et al. Artificial intelligence and robotics in spine surgery. Glob Spine J 2021; 11:556–64.
- Choudhury A, Asan O. Role of artificial intelligence in patient safety outcomes: systematic literature review. JMIR Med Inform 2020;8: e18599.
- Rus G, Andras I, Vaida C, et al. Artificial intelligence-based hazard detection in robotic-assisted single-incision oncologic surgery. Cancers 2023; 15:3387.
- Takeuchi M, Kitagawa Y. Artificial intelligence and surgery. Ann Gastroenterol Surg 2024; 8:45.
- Rasouli JJ, Shao J, Neifert S, et al. Artificial intelligence and robotics in spine surgery. Glob Spine J 2021; 11:556–64.
- Choudhury A, Asan O. Role of artificial intelligence in patient safety outcomes: systematic literature review. JMIR Med Inform 2020
Minimally Modern invasive medicine is developing remarkably; robotic surgery uses computer-operated robotic
technology to increase accuracy, vision, and surgical efficiency. By enabling real-time analysis, decision-making, and
automatic support throughout operations, artificial intelligence (AI) magnifies these benefits even more. Al-driven robotic
systems are increasingly embraced offering improved patient outcomes including reduced recovery times, minimal
complications, and enhanced precision in many different medical disciplines including neurosurgery, cardiothoracic,
gynaecological, gastrointestinal, urological, orthopaedic, and oncology operations. Among artificial intelligence's
contributions to robotic surgery are motion control, haptic feedback, and picture identification, thereby optimizing
surgical precision and results. Still, problems including cybersecurity risks, integration challenges, and regulatory
obstacles call for innovation and adaptation. Future advancements include increased robotic autonomy, customized
surgical solutions, and AI-powered training simulations---which open the road for safer, more patient-specific surgical
treatment-based on Emphasizing its potential to totally disrupt existing healthcare procedures, this paper explores the
transforming impact of AI-enhanced robotic surgery, its clinical applications, advantages, challenges, and shifting scene of
medical robotics.
Keywords :
Artificial Intelligence, Surgical Procedures, Challenges, Future Prospects.