Application of SAR-Driven Flood Detection Systems in Wetland Ecosystems and its Implications for Migratory Bird Habitat Management


Authors : Ogechukwu Blessing Okereke; Adeyemi Abejoye; Prince Alex Ekhorutomwen; Amina Catherine Peter-Anyebe

Volume/Issue : Volume 10 - 2025, Issue 4 - April


Google Scholar : https://tinyurl.com/j85fjap4

Scribd : https://tinyurl.com/2fxu556m

DOI : https://doi.org/10.38124/ijisrt/25apr1627

Google Scholar

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 15 to 20 days to display the article.


Abstract : Wetland ecosystems play a vital role in maintaining global biodiversity, hydrological stability, and carbon sequestration. However, these ecologically sensitive areas are increasingly threatened by climate-induced flooding, anthropogenic disturbances, and habitat degradation. Synthetic Aperture Radar (SAR) technology has emerged as a powerful remote sensing tool for real-time, all-weather flood detection, offering high-resolution imagery critical for wetland monitoring and adaptive ecosystem management. This review explores the application of SAR-driven flood detection systems in tracking water level fluctuations and inundation patterns within wetlands and evaluates their implications for migratory bird habitat conservation. Emphasis is placed on SAR’s capability to penetrate cloud cover and detect changes in surface moisture, which enhances early flood warning systems and informs decision-making for habitat protection. The paper also investigates case studies where SAR data have been integrated into conservation planning, emphasizing spatiotemporal analysis for managing seasonal wetlands that serve as critical stopover or breeding sites for migratory birds. By highlighting technological advancements, methodological approaches, and interdisciplinary frameworks, the review highlights the potential of SAR to support resilient wetland management strategies that align with global conservation goals.

Keywords : Synthetic Aperture Radar (SAR), Flood Detection, Wetland Ecosystems, Migratory Birds, Habitat Management.

References :

  1. Adeli, S., Salehi, B., Mahdianpari, M., Quackenbush, L. J., Brisco, B., Tamiminia, H., & Shaw, S. (2020). Wetland monitoring using SAR data: A meta-analysis and comprehensive review. Remote Sensing, 12(14), 2190. https://doi.org/10.3390/rs12142190MDPI
  2. Amani, M., Mahdavi, S., Afshar, M., Brisco, B., Huang, W., Mirmazloumi, S. M., ... & Gill, E. (2020). Wetland monitoring using synthetic aperture radar data: A review. Remote Sensing, 12(14), 2190. https://doi.org/10.3390/rs12142190​
  3. Ayat, H., Evans, J. P., & Behrangi, A. (2021). How do different sensors impact IMERG precipitation estimates during hurricane days?. Remote Sensing of Environment259, 112417.
  4. Bamler, R., & Hartl, P. (1998). Synthetic aperture radar interferometry. Inverse Problems, 14(4), R1–R54. https://doi.org/10.1088/0266-5611/14/4/001​:contentReference[oaicite:1]{index=1}
  5. Curlander, J. C., & McDonough, R. N. (1991). Synthetic aperture radar: Systems and signal processing. John Wiley & Sons.​
  6. Dabboor, M. & Brisco, B. (2018). Wetland Monitoring and Mapping Using Synthetic Aperture Radar. Retrieved from: https://www.intechopen.com/chapters/63701
  7. Danielsen, F., Burgess, N. D., Jensen, P. M., & Pirhofer-Walzl, K. (2010). Environmental monitoring: The scale and speed of implementation varies according to the degree of people’s involvement. Journal of Applied Ecology, 47(6), 1166–1168. https://doi.org/10.1111/j.1365-2664.2010.01874.x
  8. Davidson, N. C. (2014). How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine and Freshwater Research, 65(10), 934–941. https://doi.org/10.1071/MF14173
  9. Deng, Q., Zhang, X., Zhang, L., Shao, X., & Gu, T. (2024). The impact mechanism of human activities on the evolution of coastal wetlands in the Liaohe River Delta. Frontiers in Ecology and Evolution, 12, 1423234. https://doi.org/10.3389/fevo.2024.1423234Frontiers
  10. Derksen, C., Xu, X., Dunbar, R. S., Colliander, A., Kim, Y., Kimball, J. S., ... & Stephens, J. (2017). Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer measurements. Remote Sensing of Environment194, 48-62.
  11. Dralle, D. N., Rossi, G., Georgakakos, P., Hahm, W. J., Rempe, D. M., Blanchard, M. R., Power, M., Dietrich, W. E., Carison, S. M. (2023). The salmonid and the subsurface: Hillslope storage capacity determines the quality and distribution of fish habitat. Retrieved from: https://www.researchgate.net/figure/Seasonal-hydrological-dynamics-between-hillslopes-representing-two-dominant-geologies-in_fig2_368692308
  12. Enyejo, J. O., Adeyemi, A. F., Olola, T. M., Igba, E & Obani, O. Q. (2024). Resilience in supply chains: How technology is helping USA companies navigate disruptions. Magna Scientia Advanced Research and Reviews, 2024, 11(02), 261–277. https://doi.org/10.30574/msarr.2024.11.2.0129
  13. Enyejo, J. O., Balogun, T. K., Klu, E.  Ahmadu, E. O., & Olola, T. M. (2024). The Intersection of Traumatic Brain Injury, Substance Abuse, and Mental Health Disorders in Incarcerated Women Addressing Intergenerational Trauma through Neuropsychological Rehabilitation. American Journal of Human Psychology (AJHP). Volume 2 Issue 1, Year 2024 ISSN: 2994-8878 (Online). https://journals.e-palli.com/home/index.php/ajhp/article/view/383
  14. Ficetola, G. F., Taberlet, P., & Coissac, E. (2016). How to limit false positives in environmental DNA and metabarcoding? Molecular Ecology Resources, 16(3), 604–607. https://doi.org/10.1111/1755-0998.12401Wikipedia
  15. Finlayson, C. M., & Spiers, A. G. (2018). Global review of wetland resources and priorities for wetland inventory. Marine and Freshwater Research, 69(10), 1521–1534. https://doi.org/10.1071/MF18055
  16. Giustarini, L., Hostache, R., Kavetski, D., Chini, M., Corato, G., Schlaffer, S., & Matgen, P. (2016). Probabilistic flood mapping using synthetic aperture radar data. IEEE Transactions on Geoscience and Remote Sensing54(12), 6958-6969.
  17. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  18. Hauduc, H., Neumann, M. B., Muschalla, D., Gamerith, V., Gillot, S., & Vanrolleghem, P. A. (2015). Efficiency criteria for environmental model quality assessment: A review and its application to wastewater treatment. Environmental Modelling & Software68, 196-204.
  19. Hess, L. L., Melack, J. M., & Simonett, D. S. (1990). Radar detection of flooding beneath the forest canopy: A review. International Journal of Remote Sensing, 11(7), 1313–1325. https://doi.org/10.1080/01431169008955090
  20. Huang, Z., Zhang, X., Tang, Z., Xu, F., Datcu, M., & Han, J. (2024). Generative artificial intelligence meets synthetic aperture radar: A survey. IEEE Transactions on Geoscience and Remote Sensing, 62, 1–25. https://doi.org/10.1109/TGRS.2024.1234567
  21. Idowu, O. S., Ayoola, V. O., Adegbola, F. & Adeyeye, Y. (2024). Air, Water, and Soil Microbiomes as Catalysts for Smart Agriculture, Urban Ecosystem Revitalization, Climate Adaptation, and Public Health Advancements. International Journal of Scientific Research and Modern Technology (IJSRMT) Volume 3, Issue 5, 2024 DOI:https://doi.org/10.5281/zenodo.1487445
  22. Igba E., Ihimoyan, M. K.,  Awotinwo, B., & Apampa, A. K. (2024). Integrating BERT, GPT, Prophet Algorithm, and Finance Investment Strategies for Enhanced Predictive Modeling and Trend Analysis in Blockchain Technology. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol., November-December-2024, 10 (6) : 1620-1645.https://doi.org/10.32628/CSEIT241061214
  23. 2Igba, E., Abiodun, K. &  Ali, E. O. (2025). Building the Backbone of the Digital Economy and Financial Innovation through Strategic Investments in Data Centers. International Journal of Innovative Science and Research Technology, ISSN No:-2456-2165. https://doi.org/10.5281/zenodo.14651210
  24. Ijiga, A. C., Aboi, E. J., Idoko, P. I., Enyejo, L. A., & Odeyemi, M. O. (2024). Collaborative innovations in Artificial Intelligence (AI): Partnering with leading U.S. tech firms to combat human trafficking. Global Journal of Engineering and Technology Advances, 2024,18(03), 106-123. https://gjeta.com/sites/default/files/GJETA-2024-0046.pdf
  25. Ijiga, A. C., Abutu E. P., Idoko, P.  I., Ezebuka, C. I., Harry, K. D., Ukatu, I. E., & Agbo, D. O. (2024). Technological innovations in mitigating winter health challenges in New York City, USA. International Journal of Science and Research Archive, 2024, 11(01), 535–551.·         https://ijsra.net/sites/default/files/IJSRA-2024-0078.pdf
  26. Ijiga, A. C., Abutu, E. P., Idoko, P. I., Agbo, D. O., Harry, K. D., Ezebuka, C. I., & Umama, E. E. (2024). Ethical considerations in implementing generative AI for healthcare supply chain optimization: A cross-country analysis across India, the United Kingdom, and the United States of America. International Journal of Biological and Pharmaceutical Sciences Archive, 2024, 07(01), 048–063.  https://ijbpsa.com/sites/default/files/IJBPSA-2024-0015.pdf
  27. Ijiga, A. C., Balogun, T. K., Ahmadu, E. O., Klu, E., Olola, T. M., & Addo, G. (2024). The role of the United States in shaping youth mental health advocacy and suicide prevention through foreign policy and media in conflict zones. Magna Scientia Advanced Research and Reviews, 2024, 12(01), 202–218. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0174.pdf
  28. Ijiga, A. C., Enyejo, L. A., Odeyemi, M. O., Olatunde, T. I., Olajide, F. I & Daniel, D. O. (2024). Integrating community-based partnerships for enhanced health outcomes: A collaborative model with healthcare providers, clinics, and pharmacies across the USA. Open Access Research Journal of Biology and Pharmacy, 2024, 10(02), 081–104. https://oarjbp.com/content/integrating-community-based-partnerships-enhanced-health-outcomes-collaborative-model
  29. Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I., Olajide, F. I. & Enyejo, L. A. (2024). Precision healthcare analytics: Integrating ML for automated image interpretation, disease detection, and prognosis prediction. World Journal of Biology Pharmacy and Health Sciences, 2024, 18(01), 336–354. https://wjbphs.com/sites/default/files/WJBPHS-2024-0214.pdf
  30. Ijiga, A. C., Igbede, M. A., Ukaegbu, C., Olatunde, T. I., Olajide, F. I. & Enyejo, L. A. (2024). Precision healthcare analytics: Integrating ML for automated image interpretation, disease detection, and prognosis prediction. World Journal of Biology Pharmacy and Health Sciences, 2024, 18(01), 336–354. https://wjbphs.com/sites/default/files/WJBPHS-2024-0214.pdf
  31. Ijiga, A. C., Olola, T. M., Enyejo, L. A., Akpa, F. A., Olatunde, T. I., & Olajide, F. I. (2024). Advanced surveillance and detection systems using deep learning to combat human trafficking. Magna Scientia Advanced Research and Reviews, 2024, 11(01), 267–286. https://magnascientiapub.com/journals/msarr/sites/default/files/MSARR-2024-0091.pdf.
  32. Ijiga, O. M., Idoko, I. P., Ebiega, G. I., Olajide, F. I., Olatunde, T. I., & Ukaegbu, C. (2024). Harnessing adversarial machine learning for advanced threat detection: AI-driven strategies in cybersecurity risk assessment and fraud prevention. Open Access Research Journals. Volume 13, Issue.  https://doi.org/10.53022/oarjst.2024.11.1.0060I
  33. Ijiga. A. C., Eguagie, M. O. & Tokowa, A. (2025). Mineralization Potential of the Lithium-Bearing Micas in the St Austell Granite, SW England. International Journal of Innovative Science and Research Technology. ISSN No:-2456-2165, https://doi.org/10.5281/zenodo.14709730
  34. Jung, M., Henkel, K., Herold, M., & Chini, L. (2020). Mapping wetland dynamics across the globe using high-resolution Synthetic Aperture Radar (SAR) data. Remote Sensing of Environment, 239, 111629. https://doi.org/10.1016/j.rse.2019.111629
  35. Junk, W. J., & de Cunha, C. N. (2005). Pantanal: a large South American wetland at a crossroads. Ecological Engineering24(4), 391-401.
  36. Kays, R., Crofoot, M. C., Jetz, W., & Wikelski, M. (2015). Terrestrial animal tracking as an eye on life and planet. Science, 348(6240), aaa2478. https://doi.org/10.1126/science.aaa2478
  37. Lahsaini, M., Albano, F., Albano, R., Mazzariello, A., & Lacava, T. (2024). A Synthetic Aperture Radar-Based Robust Satellite Technique (RST) for Timely Mapping of Floods. Remote Sensing16(12), 2193. https://doi.org/10.3390/rs16122193
  38. Mantyka-Pringle, C. S., Martin, T. G., & Rhodes, J. R. (2012). Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Global Change Biology, 18(4), 1239–1252. https://doi.org/10.1111/j.1365-2486.2011.02593.x
  39. Martínez, B., Sastre, P., Palacín, C., Arévalo, J. R., & Moreno, C. (2022). Integrating spatial modeling and satellite imagery for migratory bird habitat prioritization under climate change scenarios. Diversity and Distributions, 28(2), 284–298. https://doi.org/10.1111/ddi.13465
  40. Martinis, S., Kersten, J., & Twele, A. (2015). A fully automated TerraSAR-X based flood service. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 203–212. https://doi.org/10.1016/j.isprsjprs.2015.02.014
  41. McNie, E. C. (2007). Reconciling the supply of scientific information with user demands: An analysis of the problem and review of the literature. Environmental Science & Policy, 10(1), 17–38. https://doi.org/10.1016/j.envsci.2006.10.004
  42. Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands and climate change: The role of wetland restoration in a changing world. Wetlands Ecology and Management, 23(3), 351–363. https://doi.org/10.1007/s11273-015-9469-7
  43. Mohsen, H., El-Dahshan, E. S. A., El-Horbaty, E. S. M., & Salem, A. B. M. (2018). Classification using deep learning neural networks for brain tumors. Future Computing and Informatics Journal3(1), 68-71.
  44. Ntiamoa-Baidu, Y., Piersma, T., Wiersma, P., Poot, M., Battley, P. F., & Gordon, C. (2008). Water depth selection, daily feeding routines and diets of waterbirds in coastal lagoons in Ghana. Ibis, 150(1), 155–166. https://doi.org/10.1111/j.1474-919X.2007.00756.x
  45. Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W. B., & Matthews, E. (2010). Interannual variability of surface water extent at the global scale, 1993–2004. Journal of Geophysical Research: Atmospheres, 115(D12). https://doi.org/10.1029/2009JD012674
  46. Polk, M. (2015). Transdisciplinary co-production: Designing and testing a transdisciplinary research framework for societal problem solving. Futures65, 110-122.
  47. Pulvirenti, L., Chini, M., Pierdicca, N., Guerriero, L., & Ferrazzoli, P. (2011). Flood monitoring using multi-temporal COSMO-SkyMed data: Image segmentation and signature interpretation. Remote Sensing of Environment, 115(4), 990–1002. https://doi.org/10.1016/j.rse.2010.12.002​
  48. Pulwarty, R. S., & Sivakumar, M. V. K. (2014). Information systems in a changing climate: Early warnings and drought risk management. Weather and Climate Extremes, 3, 14–21. https://doi.org/10.1016/j.wace.2014.03.005
  49. Rebelo, L. M., McCartney, M. P., & Finlayson, C. M. (2010). Wetlands of sub-Saharan Africa: Distribution and contribution of agriculture to livelihoods. Wetlands Ecology and Management, 18(5), 557–572. https://doi.org/10.1007/s11273-009-9142-x
  50. Reed, M. S. (2008). Stakeholder participation for environmental management: A literature review. Biological Conservation, 141(10), 2417–2431. https://doi.org/10.1016/j.biocon.2008.07.014
  51. Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., ... & Scambos, T. A. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. https://doi.org/10.1016/j.rse.2014.02.001
  52. Runge, C. A., Watson, J. E. M., Butchart, S. H. M., Hanson, J. O., Possingham, H. P., & Fuller, R. A. (2015). Protected areas and global conservation of migratory birds. Science, 350(6265), 1255–1258. https://doi.org/10.1126/science.aac9180
  53. Schimel, D., Keller, M., Berukoff, S., Kao, R., Loescher, H., & Landis, D. (2015). Observing terrestrial ecosystems and the carbon cycle from space. Global Change Biology, 21(5), 1762–1776. https://doi.org/10.1111/gcb.12822
  54. Stralberg, D., Herzog, M. P., Nur, N., Reynolds, M. D., & Gardali, T. (2020). Adapting wetland conservation to climate change: Flooding risks for breeding birds in California’s Central Valley. Ecological Applications, 30(6), e02114. https://doi.org/10.1002/eap.2114
  55. Uzoma, E., Enyejo, J. O. & Olola, T. M. (2025). A Comprehensive Review of Multi-Cloud Distributed Ledger Integration for Enhancing Data Integrity and Transactional Security, International Journal of Innovative Science and Research Technology Volume 10, Issue 3, March ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/25mar1970
  56. Wohlfart, C., Exbrayat, J. F., Schepaschenko, D., Shvidenko, A., & Obersteiner, M. (2018). Impact of climate extremes on the terrestrial carbon cycle: A review of recent findings. Global Change Biology, 24(1), 39–54. https://doi.org/10.1111/gcb.13868
  57. Woodburn, J. (2023). Record flooding in New South Wales wetlands triggers bird breeding bonanza. Retrieved from: https://www.abc.net.au/news/2023-02-11/record-flooding-in-nsw-triggeres-bird-breeding-bonanza-/101812042
  58. Xu, Y., Liu, G., Li, H., Liu, Q., & Liu, X. (2023). Remote sensing applications in wetland conservation: Progress, challenges, and future directions. Ecological Indicators, 148, 110123. https://doi.org/10.1016/j.ecolind.2023.110123
  59. Zhao, J., Li, M., Li, Y., Matgen, P., & Chini, M. (2024). Urban flood mapping using satellite synthetic aperture radar data: A review of characteristics, approaches and datasets. Remote Sensing of Environment, 295, 113626. https://doi.org/10.1016/j.rse.2023.113626arXiv

Wetland ecosystems play a vital role in maintaining global biodiversity, hydrological stability, and carbon sequestration. However, these ecologically sensitive areas are increasingly threatened by climate-induced flooding, anthropogenic disturbances, and habitat degradation. Synthetic Aperture Radar (SAR) technology has emerged as a powerful remote sensing tool for real-time, all-weather flood detection, offering high-resolution imagery critical for wetland monitoring and adaptive ecosystem management. This review explores the application of SAR-driven flood detection systems in tracking water level fluctuations and inundation patterns within wetlands and evaluates their implications for migratory bird habitat conservation. Emphasis is placed on SAR’s capability to penetrate cloud cover and detect changes in surface moisture, which enhances early flood warning systems and informs decision-making for habitat protection. The paper also investigates case studies where SAR data have been integrated into conservation planning, emphasizing spatiotemporal analysis for managing seasonal wetlands that serve as critical stopover or breeding sites for migratory birds. By highlighting technological advancements, methodological approaches, and interdisciplinary frameworks, the review highlights the potential of SAR to support resilient wetland management strategies that align with global conservation goals.

Keywords : Synthetic Aperture Radar (SAR), Flood Detection, Wetland Ecosystems, Migratory Birds, Habitat Management.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe