Authors :
Suman Rani; Dr. Sunita
Volume/Issue :
Volume 10 - 2025, Issue 2 - February
Google Scholar :
https://tinyurl.com/3b9bdzvn
Scribd :
https://tinyurl.com/4dek97p2
DOI :
https://doi.org/10.38124/ijisrt/25feb1403
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
The complex realm of transcendental numbers is examined in this subject, along with its characteristics,
relationships to other branches of mathematics, and practical uses. The study starts with a summary of transcendental
number theory, including its historical evolution, salient characteristics, and important mathematical applications. To
provide clarity and depth, the fundamental elements—such as the Lindemann–Weier strass theorem and the terminology
essential to comprehending transcendental numbers—are expanded upon. Transcendental numbers are useful in physics,
computer science, and encryption, as shown by the study's practical scientific applications. A thorough approach to
comprehending, evaluating, and using transcendental numbers is provided via the main strategies used, which include a
literature survey, comparative analysis, algebraic procedures, and logical reasoning.
Keywords :
Transcendental Number Theory, Algebraic Numbers, Lindemann–Weier strassSS Theorem, Diophantine Approximation, Rational and Irrational Numbers, Complex Analysis
References :
- S. Lang, “Introduction to Transcendental Numbers,” vol. 2, pp. 396–506, 2000, doi: 10.1007/978-1-4614-7383-1_37.
- G. H. (1979) Hardy, . “An Introduction to the Theory of Numbers (5th ed.). Oxford: Clarendon Press. p. 159. ISBN 0-19-853171-0.”
- B. Nicolescu, Manifesto of transdisciplinarity. suny Press, 2002.
- B. Nicolescu, “Transdisciplinarity: past, present and future,” Mov. Worldviews Reshaping Sci. policies Pract. Endog. Sustain. Dev. ETC/COMPAS, Leusden, pp. 142– 166, 2006.
- F. F. Nichita, “On models for transdisciplinarity,” Transdiscipl. J. Eng. Sci., vol. 2, 2011.
- K. Roberts and S. R. Valluri, “Tutorial: The quantum finite square well and the Lambert W function,” Can. J. Phys., vol. 95, no. 2, pp. 105–110, 2017.
- D. Veberic, “Having fun with Lambert W (x) function,” arXiv Prepr. arXiv1003.1628, 2010.
- C. Tsallis, “Possible generalization of Boltzmann-Gibbs statistics,” J. Stat. Phys., vol. 52, pp. 479–487, 1988.
- G. B. Da Silva and R. V Ramos, “The lambert–tsallis wq function,” Phys. A Stat. Mech. its Appl., vol. 525, pp. 164–170, 2019.
- J. L. E. da Silva, G. B. da Silva, and R. V Ramos, “The lambert-kaniadakis wκ function,” Phys. Lett. A, vol. 384, no. 8, p. 126175, 2020.
- R. V. Ramos, “Disentropy of the Wigner function,” JOSA B, vol. 36, no. 8, pp. 2244– 2249, 2019.
- C. U. Jensen and D. Marques, “Some field theoretic properties and an application concerning transcendental numbers,” J. Algebr. Its Appl., vol. 9, no. 03, pp. 493–500, 2010.
- P. Erdös and U. Dudley, “Some remarks and problems in number theory related to the work of Euler,” Math. Mag., vol. 56, no. 5, pp. 292–298, 1983.
- L. Berggren, J. Borwein, P. Borwein, and M. Lambert, “Mémoire sur quelques propriétés remarquables des quantités transcendentes circulaires et logarithmiques,” Pi A Source B., pp. 129–140, 2004.
- A. J. Kempner, “On transcendental numbers,” Trans. Am. Math. Soc., vol. 17, no. 4,
- pp. 476–482, 1916.
- E. W. Weisstein, “Liouville’s Constant,” https//mathworld. wolfram. com/, 2004.
- J. Liouville, “Sur des classes très-étendues de quantités dont la valeur n’est ni algébrique, ni même réductible à des irrationnelles algébriques,” J. Math. Pures Appl., vol. 16, pp. 133–142, 1851.
- G. Cantor, “On a property of the class of all real algebraic numbers,” Crelle’s J. Math., vol. 77, no. 1874, pp. 258–262, 1874.
- B. Adamczewski and Y. Bugeaud, “On the complexity of algebraic numbers, II. Continued fractions,” 2005.
- J. A. D. W. Anderson, “Representing geometrical knowledge,” Philos. Trans. R. Soc. London. Ser. B Biol. Sci., vol. 352, no. 1358, pp. 1129–1139, 1997.
- A. O. F. T. ARITHMETIC, “PERSPEX MACHINE VIII: AXIOMS OF TRANSREAL ARITHMETIC,” 2006.
- T. S. dos Reis, W. Gomide, and J. Anderson, “Construction of the transreal numbers and algebraic transfields,” IAENG Int. J. Appl. Math., vol. 46, no. 1, pp. 11–23, 2016.
- T. S. dos Reis and J. A. D. W. Anderson, “Construction of the transcomplex numbers from the complex numbers,” 2014.
- J. A. D. W. Anderson, “Foundations of Transmathematics: Set Membership”.
- F. Ayres, Theory and problems of modern algebra. McGraw-Hill Book Company, 1965.
- J. A. Bergstra, “Division by zero: a survey of options,” Transmathematica, 2019.
- E. Bombieri, “Problems of the millennium: The Riemann hypothesis,” Clay Math. Inst., 2000.
- A. Granville, “Harald Cramér and the distribution of prime numbers,” Scand. Actuar. J., vol. 1995, no. 1, pp. 12–28, 1995.
- M. S. El Naschie, “The cosmic Da Vinci Code for the big bang–a mathematical toy model,” Int. J. Nonlinear Sci. Numer. Simul., vol. 8, no. 2, pp. 191–194, 2007.
- M. S. El Naschie, “The fundamental algebraic equations of the constants of nature Chaos, Solitons & Fractals, vol. 35, no. 2, pp. 320–322, 2008.
The complex realm of transcendental numbers is examined in this subject, along with its characteristics,
relationships to other branches of mathematics, and practical uses. The study starts with a summary of transcendental
number theory, including its historical evolution, salient characteristics, and important mathematical applications. To
provide clarity and depth, the fundamental elements—such as the Lindemann–Weier strass theorem and the terminology
essential to comprehending transcendental numbers—are expanded upon. Transcendental numbers are useful in physics,
computer science, and encryption, as shown by the study's practical scientific applications. A thorough approach to
comprehending, evaluating, and using transcendental numbers is provided via the main strategies used, which include a
literature survey, comparative analysis, algebraic procedures, and logical reasoning.
Keywords :
Transcendental Number Theory, Algebraic Numbers, Lindemann–Weier strassSS Theorem, Diophantine Approximation, Rational and Irrational Numbers, Complex Analysis