An Interdisciplinary Framework for the Development of Intelligent Accounting, Automation Systems Integrating: Predictive Risk Analytics and Dynamic Internal Control Mechanisms to Enhance Regulatory Compliance and Fraud Mitigation in High-Risk Economic Sectors


Authors : Mark Sekinobe; Kevin Mukasa; Faith Isabella Nayebale; Jimmy Kato

Volume/Issue : Volume 10 - 2025, Issue 12 - December


Google Scholar : https://tinyurl.com/mvejwjk6

Scribd : https://tinyurl.com/4xwdzbjs

DOI : https://doi.org/10.38124/ijisrt/25dec1138

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : The rapid digitalization of financial processes, coupled with increasing regulatory complexity, cyber risks, and economic volatility, has exposed the limitations of traditional accounting automation systems that rely on static rules and retrospective analysis. In response, this paper proposes an interdisciplinary framework for the development of intelligent accounting automation systems that integrate predictive risk analytics (PRA) and dynamic internal control mechanisms (DICM). Drawing on advances in artificial intelligence, machine learning, data analytics, and governance theory, the study synthesizes existing literature to illustrate how accounting systems can transition from reactive compliance tools to proactive, adaptive decision-support infrastructures. The framework emphasizes real-time risk prediction, continuous learning, automated control adaptation, and ethical governance as core design principles. Through sectoral illustrations from finance, healthcare, and technology-driven supply chains, the paper demonstrates how intelligent accounting systems enhance fraud detection, regulatory compliance, and operational resilience in high-risk economic environments. The study contributes to accounting and information systems research by providing a structured conceptual foundation for next-generation accounting automation and highlighting practical integration strategies that align technological innovation with transparency, accountability, and sustainable value creation.

References :

  1.  Abad Segura, E. (2023). Holistic approach to new technologies for secure accounting management.
  2. Adebiyi, O. O. (2023). Exploring the impact of predictive analytics on accounting and auditing expertise: A regression analysis of LinkedIn survey data. Available at SSRN 4626506..
  3. Adeniran, I. A., Efunniyi, C. P., Osundare, O. S., & Abhulimen, A. O. (2024). Enhancing security and risk management with predictive analytics: A proactive approach. International Journal of Management & Entrepreneurship Research, 6(8).
  4. Akinbowale, O. E., Mashigo, M. P., & Zerihun, P. (2024). Understanding and mitigating cyberfraud in Africa. AOSIS.
  5. Akinwande, O. T., Esechie, C. O., & Adesanya, O. R. (2024). Exploring the role of AI-enhanced online marketplaces in facilitating economic growth: An impact analysis on trade relations between the United States and Sub-Saharan Africa. Revista de Gestão Social e Ambiental, 18(6), e07494. https://doi.org/10.24857/rgsa.v18n6-139
  6. Alex Lwembawo Mukasa, Esther A. Makandah, & Sunday Anwansedo. (2025). Adaptive AI and quantum computing for real-time financial fraud detection and cyber-attack prevention in U.S. healthcare. World Journal of Advanced Research and Reviews, 26(2), 2785–2794. https://doi.org/10.30574/wjarr.2025.26.2.1767
  7. Aljohani, A. (2023). Predictive Analytics and Machine Learning for Real-Time Supply Chain Risk Mitigation and Agility. Sustainability, 15(20), 15088. https://doi.org/10.3390/su152015088
  8. Alles, M. G., Brennan, G., Kogan, A., & Vasarhelyi, M. A. (2018). Continuous monitoring of                business process controls: A pilot implementation of a continuous auditing system at   Siemens. International Journal of Accounting Information Systems, 31, 1–15.                     https://doi.org/10.1016/j.accinf.2018.10.002
  9. Alles, M. G., Kogan, A., & Vasarhelyi, M. A. (2008). Putting continuous auditing theory into                practice: Lessons from two pilot implementations. Journal of Information Systems, 22(2),                 195–214. https://doi.org/10.2308/jis.2008.22.2.195
  10. Alles, M. G., Vasarhelyi, M. A., & Williams, K. T. (2010). Continuous auditing: The future of    auditing. Journal of Emerging Technologies in Accounting, 7(1), 1–16.              https://doi.org/10.2308/jeta.2010.7.1.1
  11. Altundağ, S. (2024). Artificial intelligence-based audit software: Today’s realities and future vision. DergiPark. DOI: 10.58348/denetisim.1512650.
  12. Ameyaw, M. N., Boateng, F., & Asante, E. (2024). Blockchain-enabled accounting systems and audit transparency. Journal of Emerging Technologies in Accounting.
  13. Amirian, S., Tafti, A. P., Gong, M. F., Carlson, L. A., Lohse, I., Weiss, K. R., & Plate, J. F. (2023). Explainable AI in Orthopedics: Challenges, Opportunities, and Prospects. 232, 1374–1380. https://doi.org/10.1109/csce60160.2023.00230
  14. Appelbaum, D., Kogan, A., Vasarhelyi, M. A., & Yan, Z. (2017). Impact of business analytics   and enterprise systems on managerial accounting. International Journal of Accounting           Information Systems, 25, 29–44. https://doi.org/10.1016/j.accinf.2017.03.003
  15. Arena, F., & Isaac, J. (2023). The Intersection of Data Governance and Financial Analytics in Risk Mitigation.
  16. Badu, J. K. (2025). Fraud Risk in Focus. A Qualitative Analysis of Internal Audit Role in Fraud Risk Management in Africa. International Journal of Applied Research in Business and Management, 6(1). https://doi.org/10.51137/wrp.ijarbm.2025.jbfa.45660
  17. Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., … Herrera, F. (2020). Explainable artificial intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58, 82–115. https://doi.org/10.1016/j.inffus.2019.12.012
  18. Beatrice Oyinkansola Adelakun, Ebere Ruth Onwubuariri, Gbenga Adeniyi Adeniran, & Afari Ntiakoh. (2024). Enhancing fraud detection in accounting through AI: Techniques and case studies. Finance & Accounting Research Journal, 6(6), 978–999. https://doi.org/10.51594/farj.v6i6.1232
  19. Beatrice Oyinkansola Adelakun. (2022). THE IMPACT OF AI ON INTERNAL AUDITING: TRANSFORMING PRACTICES AND ENSURING COMPLIANCE. Finance & Accounting Research Journal, 4(6), 350–370. https://doi.org/10.51594/farj.v4i6.1316
  20. Bennet, D., Rahmania Az Zahra, A., Maria, L., & Putri Ayu Sanjaya, Y. (2024). Blockchain Technology: Revolutionizing Transactions in the Digital Age. ADI Journal on Recent Innovation (AJRI), 5(2), 194–199. https://doi.org/10.34306/ajri.v5i2.1065
  21. Bhambri, P., Rani, S., & Pareek, P. K. (2024). Financial Innovations (pp. 226–243). igi global.
  22. Bolton, R. J., & Hand, D. J. (2002). Statistical fraud detection: A review. Statistical Science, 17(3), 235–255. https://doi.org/10.1214/ss/1042727940
  23. Brennan, G. (2020). Internal Controls. In The Definitive Guide to Blockchain for Accounting and Business: Understanding the Revolutionary Technology (pp. 229–265). Emerald Publishing Limited.
  24. Brown-Liburd, H., Issa, H., & Lombardi, D. (2015). Behavioral implications of Big Data’s     impact on audit judgment and decision making and future research directions. Accounting   Horizons, 29(2), 451–468. https://doi.org/10.2308/acch-51023
  25. Cao, M., Chychyla, R., & Stewart, T. (2015). Big Data analytics in financial statement audits. Accounting Horizons, 29(2), 423–429. https://doi.org/10.2308/acch-51068
  26. Chen, F.-H., Hsu, M.-F., & Hu, K.-H. (2022). Enterprise’s internal control for knowledge discovery in a big data environment by an integrated hybrid model. Information Technology and Management, 23(3), 213–231.
  27. Das, S., Patel, R., & Kumar, V. (2025). Context-aware artificial intelligence for anomaly detection in financial systems. IEEE Transactions on Knowledge and Data Engineering.
  28. Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608.
  29. El Bechychy, I., & Allioui, A. (2024). Financial Integrity: An In-Depth Exploration of Internal Control and Audit Triumphs in Fostering Resilient Business Strategies. SCIENTIA, 118.
  30. Elommal, N., & Manita, R. (2022). Blockchain technology and the audit profession: A literature review. Journal of Emerging Technologies in Accounting, 19(1), 131–155
  31. Esther . A. Makandah, Ebuka Emmanuel Aniebonam, Similoluwa Blossom Adesuwa Okpeseyi, & Oyindamola Ololade Waheed. (2025). AI-Driven Predictive Analytics for Fraud Detection in Healthcare: Developing a Proactive Approach to Identify and Prevent Fraudulent Activities. https://doi.org/10.5281/ZENODO.14769423
  32. Gami, S. J., Shah, K., Katru, C. R., & Nagarajan, S. K. S. (2024). Interactive Data Quality Dashboard: Integrating Real-Time Monitoring with Predictive Analytics for Proactive Data Management.
  33. Garcia, A. C. B., Garcia, M. G. P., & Rigobon, R. (2024). Algorithmic discrimination in the credit domain: What do we know about it? AI & SOCIETY, 39(4), 2059–2098. https://doi.org/10.1007/s00146-023-01676-3
  34. Gotthardt, M., Martikainen, M., Saramo, C., Paksoy, O., Koivulaakso, D., & Lehner, O. (2020). Current State and Challenges in the Implementation of Smart Robotic Process Automation in Accounting and Auditing. ACRN Journal of Finance and Risk Perspectives, 9(1), 90–102. https://doi.org/10.35944/jofrp.2020.9.1.007
  35. Hafez, I. Y., Hafez, A. Y., Saleh, A., Abd El-Mageed, A. A., & Abohany, A. A. (2025). A systematic review of AI-enhanced techniques in credit card fraud detection. Journal of Big Data, 12(1), 6. https://doi.org/10.1186/s40537-024-01048-8
  36. Halima Oluwabunmi Bello, Adebimpe Bolatito Ige, & Maxwell Nana Ameyaw. (2024). Adaptive machine learning models: Concepts for real-time financial fraud prevention in dynamic environments. World Journal of Advanced Engineering Technology and Sciences, 12(2), 021–034. https://doi.org/10.30574/wjaets.2024.12.2.0266
  37. Hammouch, H. (2024). Enhancing Management Control Through ERP Systems: A Comprehensive Literature Review. iRASD Journal of Management, 6(3), 125–133. https://doi.org/10.52131/jom.2024.0603.0128
  38. Hankenson, R., Williams, M., & Cole, T. (2024). AI-driven risk analytics in financial decision systems. Journal of Risk and Financial Management, 17(2), 45–62.
  39. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Springer.
  40. Hoffman, R. R., Mueller, S. T., Klein, G., & Litman, J. (2018). Metrics for explainable AI: Challenges and prospects. arXiv preprint arXiv:1812.04608
  41. Huang, F., Li, H., & Wang, T. (2018). Information technology capability, management forecast accuracy, and analyst forecast revisions. Accounting Horizons, 32(3), 49–70.
  42. Hussain, S. (2024). Ensuring Regulatory Compliance in Digital Accounting Systems: A Framework Approach.
  43. Hussain, S., Mustafa, M. W., Jumani, T. A., Saeed, M. S., & Baloch, S. K. (2020). A novel unsupervised feature‐based approach for electricity theft detection using robust PCA and outlier removal clustering algorithm. International Transactions on Electrical Energy Systems, 30(11). https://doi.org/10.1002/2050-7038.12572
  44. Ilori, O., Naiho, H., & Nwosu, N. (2024). Advanced data analytics in internal audits: A conceptual framework for comprehensive risk assessment and fraud detection. Finance & Accounting Research Journal, 6(6), 931–952. https://doi.org/10.51594/farj.v6i6.1213
  45. Ivakhnenkov, S. (2023). Artificial intelligence application in auditing. Scientific Papers NaUKMA. Economics, 8(1), 54–60. https://doi.org/10.18523/2519-4739.2023.8.1.54-60
  46. Jans, M., Alles, M. G., & Vasarhelyi, M. A. (2014). A field study on the use of process mining of event logs as an analytical procedure in auditing. The Accounting Review, 89(5), 1751–1773. https://doi.org/10.2308/accr-50801
  47. Jejeniwa, T., Jejeniwa, T., & Mhlongo, N. (2024). A COMPREHENSIVE REVIEW OF THE IMPACT OF ARTIFICIAL INTELLIGENCE ON MODERN ACCOUNTING PRACTICES AND FINANCIAL REPORTING. Computer Science & IT Research Journal, 5(4), 1031–1047. https://doi.org/10.51594/csitrj.v5i4.1086
  48. Kamalaruban, P., Pi, Y., Burrell, S., Drage, E., Skalski, P., Wong, J., & Sutton, D. (2024). Evaluating Fairness in Transaction Fraud Models: Fairness Metrics, Bias Audits, and Challenges. 555–563.
  49. Khair, A. A., Rahman, A. A., & Zainuddin, Z. (2020). Ethical issues in artificial intelligence and accounting automation. Journal of Accounting and Organizational Change, 16(4), 519–536.
  50. Khan, M. A., Khan, R., Praveen, P., Verma, A. R., & Panda, M. K. (2024). Infrastructure possibilities and human-centered approaches with Industry 5.0. IGI Global.
  51. Kingston, J. (2017). Artificial intelligence and legal ethics: Whether AI lawyers can make ethical decisions. Artificial Intelligence and Law, 25(1), 27–53.
  52. Kogan, A., Alles, M. G., Vasarhelyi, M. A., & Wu, J. (2014). Design and evaluation of a continuous data level auditing system. Auditing: A Journal of Practice & Theory, 33(4), 221–245. https://doi.org/10.2308/ajpt-50709
  53. Kosasih, E. E., & Brintrup, A. (2022). Reinforcement Learning Provides a Flexible Approach for Realistic Supply Chain Safety Stock Optimisation. IFAC-PapersOnLine, 55(10), 1539–1544. https://doi.org/10.1016/j.ifacol.2022.09.609
  54. Kotu, V., & Deshpande, B. (2014). Predictive analytics and data mining: Concepts and practice with rapidminer. Morgan Kaufmann.
  55. Kuenkaikaew, S., & Vasarhelyi, M. A. (2013). The predictive audit framework. The International Journal of Digital Accounting Research, 13(19), 37–71.
  56. Lekkala, C. (2021). Modernizing Legacy Data Infrastructure for Financial Services. International Journal of Science and Research (IJSR), 10, 1634–1638. https://doi.org/10.21275/SR24430141102
  57. Li, C., Peters, G. F., Richardson, V. J., & Watson, M. W. (2012). The consequences of information technology control weaknesses on management information systems: The case of Sarbanes-Oxley internal control reports. Mis Quarterly, 179–203.
  58. Mallela, I. R., Reddy, P., & Rao, S. (2020). Transparency and explainability in AI-enabled financial reporting systems. Journal of Information Systems, 34(2), 85–104.
  59. Manginte, S. Y. (2024). Fortifying transparency: Enhancing corporate governance through robust internal control mechanisms. Advances in Management & Financial Reporting, 2(2), 72–84.
  60. Manish Kumar Keshri. (2025). Scaling use of Machine Learning & Artificial Intelligence in Semiconductor Industry. International Journal on Science and Technology, 16(1), 2973. https://doi.org/10.71097/IJSAT.v16.i1.2973
  61. Mäntymäki, M., Minkkinen, M., Birkstedt, T., & Viljanen, M. (2022). Putting AI Ethics into Practice: The Hourglass Model of Organizational AI Governance (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2206.00335
  62. Mbah, G., & Evelyn, A. (2024). AI-powered cybersecurity: Strategic approaches to mitigate risk and safeguard data privacy. World Journal of Advanced Research and Reviews, 24(3), 310–327. https://doi.org/10.30574/wjarr.2024.24.3.3695
  63. Mökander, J. (2023). Auditing of AI: Legal, Ethical and Technical Approaches. Digital Society, 2(3), 49. https://doi.org/10.1007/s44206-023-00074-y
  64. Moran, K. (2023). Generative AI applications in financial services risk management. Harvard Business Review Digital Articles.
  65. Mupa, M. N., Chiganze, F., Mpofu, T., Mangeya, R., & Mubvuta, M. (2024). The Evolving Role of Management Accountants in Risk Management and Internal Controls in the Energy Sector. 8, 859–881.
  66. Namiri, K. (2008). Model-driven management of internal controls for business process compliance.
  67. Ng, W., Lim, E. P., & Chen, H. (2021). Robotic process automation for auditing and accounting: A systematic literature review. International Journal of Accounting Information Systems, 40, 100503.
  68. Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. (2011). The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3), 559–569. https://doi.org/10.1016/j.dss.2010.08.006
  69. Nwaimo, C., Okafor, E., & Adeyemi, T. (2024). Intelligent accounting systems and predictive risk analytics in emerging economies. African Journal of Accounting, Finance and Banking Research, 18(1), 1–19.
  70. Nweje, U. (2024). Blockchain Technology for Secure Data Integrity and Transparent Audit Trails in Cybersecurity. Int. J. Res. Publ. Rev, 5(12), 4902–4916.
  71. Oviya, S., Sharadha, N., Bhuvaneswari, E., Vijayalakshmi, S., & Sushma. (2024). The Impact of Automation and Ai in Revolutionising Traditional Accounting Methods. Journal of Informatics Education and Research. https://doi.org/10.52783/jier.v4i2.1001
  72. Owolabi, O. S., Uche, P. C., Islam, R. B., Chhetri, B. J. T., Ihejirika, C., & Adeniken, N. T. (2024). Ethical Implication of Artificial Intelligence (AI) Adoption in Financial Decision Making. Computer and Information Science, 17(1), 49. https://doi.org/10.5539/cis.v17n1p49
  73. Palakurti, N. (2025). Integrating Predictive Analytics into Risk Management: A Modern Approach for Financial Institutions. International Journal of Innovative Research in Science Engineering and Technology, 14. https://doi.org/10.15680/IJIRSET.2025.1401014
  74. Pavlovic, M., Gligoric, C., Zdravkovic, F., & Pavlovic, D. (2024). Revolutionizing management accounting: The role of artificial intelligence in predictive analytics, automated reporting, and decision-making. Business & Management Compass, 68(4), 23–42.
  75. Poisat, P., Cullen, M., & Calitz, A. P. (2024). Human resource managers’ perceptions on the impact of AI on the South African workforce. SA Journal of Human Resource Management, 22. https://doi.org/10.4102/sajhrm.v22i0.2593
  76. Purc-Stephenson, R. J., & Thrasher, C. (2010). Decision fatigue and heuristic processing in high-stakes environments. Journal of Behavioral Decision Making, 23(3), 279–295.
  77. R. Rifa Herdian. (2025). Systematic Literature Review on The Role of Digital Talents in Corporate Digital Transformation. Journal of Information Systems Engineering and Management, 10(3), 340–356. https://doi.org/10.52783/jisem.v10i3.4753
  78. Raisch, S., & Krakowski, S. (2021). Artificial intelligence and management: The automation–augmentation paradox. Academy of Management Review, 46(1), 192–210. https://doi.org/10.5465/amr.2018.0072
  79. Ramachandran, A. (2024). The Transformative Impact of Artificial Intelligence on Substantive Audit Procedures and Testing A Comprehensive Analysis.
  80. Rao, V. S., Radhakrishnan, G. V., Mukkala, P., Thomas, T., & Ali, M. (2025). Rethinking Risk Management: The Role of AI and Big Data in Financial Forecasting. Advances in Consumer Research. Association for Consumer Research (U.S.), 2, 178–185.
  81. Rathee, R., Singh, M., Yadav, M., & Nghiem, X.-H. (2025). Embracing industry 5.0: Evolution, applications, and strategies in the era of human AI collaboration. In Impacts of Generative AI on the Future of Research and Education (pp. 395–416). IGI Global.
  82. Ridzuan, N. N., Masri, M., Anshari, M., Fitriyani, N. L., & Syafrudin, M. (2024). AI in the Financial Sector: The Line between Innovation, Regulation and Ethical Responsibility. Information, 15(8), 432. https://doi.org/10.3390/info15080432
  83. Rizzi, M., & Lazaro, C. (2022). Predictive analytics and governance: A new sociotechnical imaginary for uncertain futures. International Journal of Law in Context, 19(1), 70–90.
  84. Safonova, M. F. (2023). Choosing an internal control model for agrarian organizations to ensure economic security. International Accounting, 26(3), 293–312. https://doi.org/10.24891/ia.26.3.293
  85. Salami, I. A., Popoola, A. D., Gbadebo, M. O., Kolo, F. H. O., & Adesokan-Imran, T. O. (2025). AI- Powered Behavioural Biometrics for Fraud Detection in Digital Banking: A Next-Generation Approach to Financial Cybersecurity. Asian Journal of Research in Computer Science, 18(4), 473–494. https://doi.org/10.9734/ajrcos/2025/v18i4632
  86. Sanka, P. (2025). Real-time dashboards and predictive analytics in modern accounting systems. International Journal of Accounting Information Systems.
  87. Sarioguz, O., & Miser, E. (2024). Integrating AI in financial risk management: Evaluating the effects of machine learning algorithms on predictive accuracy and regulatory compliance.
  88. Sharma, N. A., Ali, A. B. M. S., Buksh, Z., Chand, R. R., Hanif, A., & Beheshti, A. (2024). Explainable AI Frameworks: Navigating the Present Challenges and Unveiling Innovative Applications. Algorithms, 17(6), 227. https://doi.org/10.3390/a17060227
  89. Shen, Q. (2024). AI-driven financial risk management systems: Enhancing predictive capabilities and operational efficiency. Applied and Computational Engineering, 69(1), 134–139. https://doi.org/10.54254/2755-2721/69/20241494
  90. Tackett, J. A., Wolf, F., & Claypool, G. A. (2006). Internal control under Sarbanes‐Oxley: A critical examination. Managerial Auditing Journal, 21(3), 317–323. https://doi.org/10.1108/02686900610653044
  91. Tamraparani, V. (2020). Automating Invoice Processing in Fund Management: Insights from RPA and Data Integration Techniques. Available at SSRN 5117121.
  92. Taylan, O., Alkabaa, A., Alqabbaa, H., Pamukçu, E., & Leiva, V. (2023). Early Prediction in Classification of Cardiovascular Diseases with Machine Learning, Neuro-Fuzzy and Statistical Methods. Biology, 12(1), 117. https://doi.org/10.3390/biology12010117
  93. Temitayo Oluwaseun Jejeniwa, Noluthando Zamanjomane Mhlongo, & Titilola Olaide Jejeniwa. (2024). SOCIAL IMPACT OF AUTOMATED ACCOUNTING SYSTEMS: A REVIEW: ANALYZING THE SOCIETAL AND EMPLOYMENT IMPLICATIONS OF THE RAPID DIGITIZATION IN THE ACCOUNTING INDUSTRY. Finance & Accounting Research Journal, 6(4), 684–706. https://doi.org/10.51594/farj.v6i4.1069
  94. Tsai, C. (2008). Financial decision support using neural networks and support vector machines. Expert Systems, 25(4), 380–393.
  95. Tshwane University of Technology, Akinbowale, O. E., Mashigo, M. P., Tshwane University of Technology, Zerihun, M. F., & Tshwane University of Technology. (2024). Understanding and mitigating cyberfraud in Africa (1st ed.). AVARSITY Books. https://doi.org/10.4102/aosis.2024.BK485
  96. Vasarhelyi, M. A., Alles, M. G., & Williams, K. T. (2010). Continuous assurance for the now economy. Institute of Chartered Accountants of Scotland.
  97. Vuković, D. B., Dekpo-Adza, S., & Matović, S. (2025). AI integration in financial services: A systematic review of trends and regulatory challenges. Humanities and Social Sciences Communications, 12(1), 562. https://doi.org/10.1057/s41599-025-04850-8
  98. Yassin, M., Frihatni, A. A., & Muhammadun, M. (2025). Opportunities and Challenges: Revitalising the Accounting Profession Against Artificial Intelligent. Riwayat: Educational Journal of History and Humanities, 8(1), 353–362. https://doi.org/10.24815/jr.v8i1.43906
  99. Yermack, D. (2017). Corporate governance and blockchains. Review of Finance, 21(1), 7–31.

The rapid digitalization of financial processes, coupled with increasing regulatory complexity, cyber risks, and economic volatility, has exposed the limitations of traditional accounting automation systems that rely on static rules and retrospective analysis. In response, this paper proposes an interdisciplinary framework for the development of intelligent accounting automation systems that integrate predictive risk analytics (PRA) and dynamic internal control mechanisms (DICM). Drawing on advances in artificial intelligence, machine learning, data analytics, and governance theory, the study synthesizes existing literature to illustrate how accounting systems can transition from reactive compliance tools to proactive, adaptive decision-support infrastructures. The framework emphasizes real-time risk prediction, continuous learning, automated control adaptation, and ethical governance as core design principles. Through sectoral illustrations from finance, healthcare, and technology-driven supply chains, the paper demonstrates how intelligent accounting systems enhance fraud detection, regulatory compliance, and operational resilience in high-risk economic environments. The study contributes to accounting and information systems research by providing a structured conceptual foundation for next-generation accounting automation and highlighting practical integration strategies that align technological innovation with transparency, accountability, and sustainable value creation.

CALL FOR PAPERS


Paper Submission Last Date
31 - January - 2026

Video Explanation for Published paper

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe