Authors :
Vincent Onaji; Lorna Kangethe; Richmond Usoh
Volume/Issue :
Volume 11 - 2026, Issue 1 - January
Google Scholar :
https://tinyurl.com/3ymtn2jh
Scribd :
https://tinyurl.com/vkyrcx8p
DOI :
https://doi.org/10.38124/ijisrt/26jan696
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
This research proposes a unified AI-Enabled ICT Resilience Architecture for next-generation communication
systems demanding ultra-high availability, security, and verifiable trust. It synthesizes three core pillars into a coherent
framework. First, AI and machine learning provide predictive, adaptive resilience through real-time anomaly detection and
automated response. Second, blockchain technology establishes decentralized trust, offering immutable audit trails and
smart contract-driven policy execution for cryptographically assured actions. Third, a high-availability substrate ensures
the underlying network can support these intelligent operations. A systematic review and thematic meta-analysis of
contemporary literature confirm that the synergistic integration of these technologies creates a transformative "cognitive
resilience loop." This loop enables continuous AI-driven monitoring, blockchain-verified decision-making, and assured, self-
healing actuation. The architecture directly addresses the limitations of static, manual defenses, advancing toward
autonomous, trustworthy, and resilient digital infrastructures for critical applications.
Keywords :
AI-Enabled ICT Resilience, High-Availability Communication Systems, Secure Network Architecture, Blockchain- Assured Communication, Fault-Tolerant System Design, and AI-Driven Security and Reliability.
References :
- Check Point Research. (2023). Cyber Security Report 2023: The Year of Mega Ransomware & Supply Chain Attacks. Check Point Software Technologies Ltd.
- Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11-33.
- Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly detection: A survey. ACM Computing Surveys, 41(3), 1-58.
- Nakamoto, S. (2008). Bitcoin: A Peer-to-Peer Electronic Cash System.
- Lamport, L., Shostak, R., & Pease, M. (1982). The Byzantine Generals Problem. ACM Transactions on Programming Languages and Systems, 4(3), 382-401.
- Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.
- Mao, H., Alizadeh, M., & Menache, I. (2016). Resource management with deep reinforcement learning. Proceedings of the 15th ACM Workshop on Hot Topics in Networks, 50-56.
- Cheng, L., Wang, Y., & Liu, J. (2023). Graph neural networks for anomaly detection in large-scale network traffic. IEEE Transactions on Network and Service Management, 20 (1), 45-58.
- Qu, Y., Pokhrel, S. R., Garg, S., Gao, L., & Xiang, Y. (2021). A blockchained federated learning framework for cognitive computing in industrial IoT. IEEE Transactions on Industrial Informatics, 17 (4), 2964-2973.
- Almeida, J. C., Oliveira, R., & Luís, M. (2022). Blockchain-based decentralized management of 5G network slices: A survey. IEEE Communications Surveys & Tutorials, 24 (2), 1126-1159.
- Chowdhury, M. M., Rahman, A., & Islam, R. (2022). A transformer-based framework for multivariate time-series anomaly detection in 5G core networks. IEEE Transactions on Network and Service Management, 19(3), 2102-2114.
- Mouradian, C., Kianpisheh, S., & Glitho, R. H. (2021). AI-driven security orchestration, automation and response for zero-touch network slicing in 5G. IEEE Network, 35(6), 294-300.
- Konečný, J., McMahan, H. B., Yu, F. X., Richtárik, P., Suresh, A. T., & Bacon, D. (2016). Federated learning: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492.
- Samarakoon, S., Bennis, M., Saad, W., & Debbah, M. (2021). Distributed federated learning for ultra-reliable low-latency vehicular communications. IEEE Transactions on Communications, 69(2), 1146-1159.
- Lim, W. Y. B., Luong, N. C., Hoang, D. T., Jiao, Y., Liang, Y. C., Yang, Q., ... & Miao, C. (2020). Federated learning in mobile edge networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3), 2031-2063.
- Rahman, S., Tout, H., & Talhi, C. (2023). Trustworthy federated learning for resilient and secure industrial IoT edge networks. IEEE Internet of Things Journal, 10(5), 4520-4534.
- Hammi, M. T., Hammi, B., Bellot, P., & Serhrouchni, A. (2018). Bubbles of Trust: A decentralized blockchain-based authentication system for IoT. Computers & Security, 78 , 126-142.
- Li, W., Wu, J., Cao, J., Chen, N., Zhang, Q., & Buyya, R. (2020). Blockchain-based trust management in cloud computing systems: A taxonomy, review and future directions. Journal of Cloud Computing, 9 (1), 1-34.
- Xie, J., Tang, H., Huang, T., Yu, F. R., Xie, R., Liu, J., & Liu, Y. (2019). A survey of blockchain technology applied to smart cities: Research issues and challenges. IEEE Communications Surveys & Tutorials, 21 (3), 2794-2830.
- Fernández-Caramés, T. M., & Fraga-Lamas, P. (2020). Towards post-quantum blockchain: A review on blockchain cryptography resistant to quantum computing attacks. IEEE Access, 8 , 21091-21116.
- Novo, O. (2018). Blockchain meets IoT: An architecture for scalable access management in IoT. IEEE Internet of Things Journal, 5 (2), 1184-1195.
- Almeida, J. C., Oliveira, R., & Luís, M. (2022). Blockchain-based decentralized management of 5G network slices: A survey. IEEE Communications Surveys & Tutorials, 24 (2), 1126-1159.
- Din, I. U., Guizani, M., Hassan, S., Kim, B. S., Khan, M. K., Atiquzzaman, M., & Ahmed, S. H. (2021). Trust management for blockchain-enabled IoT devices: A systematic literature review. IEEE Internet of Things Journal, 8 (8), 6546-6566.
- Pan, X., Chen, L., & Xu, X. (2020). Decentralized AI-powered cybersecurity framework using blockchain. Computers & Security, 95 , 101849.
- Jiang, Y., Wang, C., Wang, Y., & Gao, L. (2022). A blockchain-based federated learning framework for secure and trustworthy smart city services. IEEE Internet of Things Journal, 9 (18), 17778-17789.
- Meng, W., Li, W., Tug, S., & Tan, J. (2022). A blockchain and AI-based automated security management framework for Industrial IoT. IEEE Transactions on Industrial Informatics, 18 (5), 2964-2975.
- Qu, Y., Pokhrel, S. R., Garg, S., Gao, L., & Xiang, Y. (2021). A blockchained federated learning framework for cognitive computing in industrial IoT. IEEE Transactions on Industrial Informatics, 17 (4), 2964-2973.
- Din, I. U., Guizani, M., Hassan, S., Kim, B. S., Khan, M. K., Atiquzzaman, M., & Ahmed, S. H. (2021). Trust management for blockchain-enabled IoT devices: A systematic literature review. IEEE Internet of Things Journal, 8 (8), 6546-6566.
- Wang, H., Qin, H., Zhao, M., Wei, X., Shen, H., & Susilo, W. (2022). Blockchain-based fair and trustworthy data trading with decentralized federated learning. IEEE Transactions on Neural Networks and Learning Systems.
- Li, Z., Liu, J., Hao, J., & Wang, H. (2023). BC-SDN: A blockchain-secured software-defined networking architecture for resilient and trustworthy network slicing. IEEE Transactions on Network Science and Engineering, 10 (2), 879-892.
- Liang, F., Yu, W., An, D., Yang, Q., Fu, X., & Zhao, W. (2022). A survey on big data market: Pricing, trading and protection. IEEE Access, 6 , 15132-15154.
- Dinh, T. T. A., Liu, R., Zhang, M., Chen, G., Ooi, B. C., & Wang, J. (2018). Untangling blockchain: A data processing view of blockchain systems. IEEE Transactions on Knowledge and Data Engineering, 30 (7), 1366-1385.
- Huang, J., Kong, L., Chen, G., Wu, M., Liu, X., & Zeng, P. (2021). Towards secure industrial IoT: Blockchain system with credit-based consensus mechanism. IEEE Transactions on Industrial Informatics, 17 (8), 5280-5288.
- Arsiè, D., Callegaro, F., & Tiribelli, S. (2023). Trustworthy AI and blockchain for cybersecurity: A survey on explainability and accountability. Computer Science Review, 47 , 100532.
- De Filippi, P., Mannan, M., & Reijers, W. (2020). Blockchain as a confidence machine: The problem of trust & challenges of governance. Technology in Society, 62 , 101284.
- Talal, M., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Alamoodi, A. H., Albahri, A. S., ... & Lim, C. K. (2022). Smart home-based IoT for real-time and secure remote health monitoring of triage and priority system using body sensors: Multi-driven systematic review. Journal of Medical Systems, 46 (3), 1-33.
- Weng, J., Weng, J., Zhang, J., Li, M., Zhang, Y., & Luo, W. (2021). DeepChain: Auditable and privacy-preserving deep learning with blockchain-based incentive. IEEE Transactions on Dependable and Secure Computing, 18 (5), 2438-2455.
- Hamon, R., Junklewitz, H., & Sanchez, I. (2022). Bridging the gap between AI and explainability in the EU regulatory framework. Journal of Responsible Technology, 11 , 100043.
- Singh, A., Click, K., & Parizi, R. M. (2023). Adversarial machine learning in blockchain-enabled federated learning: A systematic review. Computers & Security, 124 , 102982.
- Paulraj, J., Raghuraman, B., Gopalakrishnan, N., & Otoum, Y. (2025). Autonomous AI-Based Cybersecurity Framework for Critical Infrastructure: A Real-Time Threat Mitigation Approach. arXiv preprint arXiv:2507.07416v1.
- El-Hajj, M. (2025). Enhancing Communication Networks in the New Era with Artificial Intelligence: Techniques, Applications, and Future Directions. Network, 5(1), 1. https://doi.org/10.3390/network5010001
- Kumar, K., Kumar, V., Seema, Sharma, M. K., Khan, A. A., & Idrisi, M. J. (2024). A Systematic Review of Blockchain Technology Assisted with Artificial Intelligence Technology for Networks and Communication Systems. Journal of Computer Networks and Communications, 2024, 1–15. https://doi.org/10.1155/2024/9979371
- Shamsan Saleh, A. M. (2024). Blockchain for secure and decentralized artificial intelligence in cybersecurity: A comprehensive review. Blockchain: Research and Applications, 5(3), 100193. https://doi.org/10.1016/j.bcra.2024.100193
- Lizos, K. A., Maglaras, L., Petrovik, E., El-atty, S. M. A., Tsachtsiris, G., & Ferrag, M. A. (2025). Reliability and Resilience of AI-Driven Critical Network Infrastructure under Cyber-Physical Threats (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2510.19295
- Liem, A. T., Hwang, I.-S., Kharga, R., & Teng, C.-H. (2024). Enhancing Tactile Internet Reliability: AI-Driven Resilience in NG-EPON Networks. Photonics, 11(10), 903. https://doi.org/10.3390/photonics11100903
- Yadav, N., & Kanvaria, V. K. (2025). AI-Driven Cyber Threats: The New Frontier in Digital Security. Thiagarajar College of Preceptors Edu Spectra, 7(2), 15–21. https://doi.org/10.34293/eduspectra.v7i2.03
- Han, D., Jiao, D., & Tu, Y. (2025). Artificial Intelligence, Energy Consumption Intensity, and Supply Chain Resilience in China’s ICT Manufacturing Industry. Sustainability, 17(22), 10253. https://doi.org/10.3390/su172210253
- Bucovețchi, O., Voipan, A. E., Voipan, D., & Stanciu, R. D. (2025). Redefining Organizational Resilience and Success: A Natural Language Analysis of Strategic Domains, Semantics, and AI Opportunities. Systems, 13(11), 999. https://doi.org/10.3390/systems13110999
- Chauhan, C., Laxkar, P., Solanki, R. K., Parihar, S., Rajawat, A. S., & Gadekar, A. R. (2025). Blockchain-Based Framework for Secure Communication in Smart IoT Systems. Journal of Computers, Mechanical and Management, 4(4), 10–18. https://doi.org/10.57159/jcmm.4.4.25209
- Babu, E. S., Rao, M. S., Swain, G., Nikhath, A. K., & Kaluri, R. (2023). Fog‐Sec: Secure end‐to‐end communication in fog‐enabled IoT network using permissioned blockchain system. International Journal of Network Management, 33(5). https://doi.org/10.1002/nem.2248
- Wazid, M., Das, A. K., Shetty, S., Rodrigues, J. J. P. C., & Guizani, M. (2023). AISCM-FH: AI-Enabled Secure Communication Mechanism in Fog Computing-Based Healthcare. IEEE Transactions on Information Forensics and Security, 18, 319–334. https://doi.org/10.1109/tifs.2022.3220959
- Wazid, M., Das, A. K., & Park, Y. (2021). Blockchain‐enabled secure communication mechanism for IoT‐driven personal health records. Transactions on Emerging Telecommunications Technologies, 33(4). https://doi.org/10.1002/ett.4421
- Himdi, T. (2024). A Blockchain and AI-Driven Security Framework for Enhancing Cybersecurity in Cognitive Cities. Advances in Artificial Intelligence and Machine Learning, 04(04), 2908–2926. https://doi.org/10.54364/aaiml.2024.44169
- Khan, A. A., Laghari, A. A., Alroobaea, R., Baqasah, A. M., Alsafyani, M., Bacarra, R., & Alsayaydeh, J. A. J. (2024). Secure Remote Sensing Data With Blockchain Distributed Ledger Technology: A Solution for Smart Cities. IEEE Access, 12, 69383–69396. https://doi.org/10.1109/access.2024.3401591
- Evangeline, C. S., Kumaravelu, V. B., Murugadass, A., Imoize, A. L., Selvaprabhu, P., & Naskath, J. (2025). BSHR‐FA: A Blockchain‐Enabled Secure Hierarchical Routing Using Firefly Algorithm for VANETs. SECURITY AND PRIVACY, 8(3). https://doi.org/10.1002/spy2.70045
- Dhinesh, M., Kirubagaran, K., & Venugopal, E. (2024). An Internet of Things Assisted Blockchain based Secure and Transparent Data Communication between Entities. 2024 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 619–625. https://doi.org/10.1109/i-smac61858.2024.10714837
- Alkwai, L. M., & Yadav, K. (2024). Blockchain-Based Secure 5G/6G Communication for Internet of Things Devices in Consumer Electronic Systems. IEEE Transactions on Consumer Electronics, 70(3), 6327–6338. https://doi.org/10.1109/tce.2024.3454299
- Wazid, M., Bera, B., Das, A. K., Garg, S., Niyato, D., & Hossain, M. S. (2021). Secure Communication Framework for Blockchain-Based Internet of Drones-Enabled Aerial Computing Deployment. IEEE Internet of Things Magazine, 4(3), 120–126. https://doi.org/10.1109/iotm.1001.2100047
- Hafeez, S., Khan, A. R., Al-Quraan, M. M., Mohjazi, L., Zoha, A., Imran, M. A., & Sun, Y. (2023). Blockchain-Assisted UAV Communication Systems: A Comprehensive Survey. IEEE Open Journal of Vehicular Technology, 4, 558–580. https://doi.org/10.1109/ojvt.2023.3295208
- Chenna, S. (2023). AI and Blockchain: Towards Trustworthy and Secure Intelligent Systems. Journal of Advances in Artificial Intelligence, 1(2), 117–122. https://doi.org/10.18178/jaai.2023.1.2.117-122
- Alenizi, A., Mishra, S., & Baihan, A. (2024). Enhancing secure financial transactions through the synergy of blockchain and artificial intelligence. Ain Shams Engineering Journal, 15(6), 102733. https://doi.org/10.1016/j.asej.2024.102733
- Sojitra, M., Jadav, N. K., Gupta, R., Patel, U., Patel, J., Tanwar, S., Pau, G., Alqahtani, F., & Tolba, A. (2025). Interplay of ML and blockchain for secure Internet of Military Vehicles communication underlying 5G. Ad Hoc Networks, 178, 103968. https://doi.org/10.1016/j.adhoc.2025.103968
- Purandhar, N., Sincija, C., Ali, A. M., Menakadevi, B., Anist, A., & Bie, M. (2025). Secure and Decentralized AI for Smart Cities: A Federated Learning and Blockchain–Enabled Predictive Analytics Framework. CompSci & AI Advances, 02(01), 13–24. https://doi.org/10.69626/cai.2025.0013
- Khan, S., Khan, M., Khan, M. A., Khan, M. A., Wang, L., & Wu, K. (2025). A Blockchain-Enabled AI-Driven Secure Searchable Encryption Framework for Medical IoT Systems. IEEE Journal of Biomedical and Health Informatics, 1–14. https://doi.org/10.1109/jbhi.2025.3538623
- Iordache, S., Patilea, C. C., & Paduraru, C. (2024). Enhancing Autonomous Vehicle Safety with Blockchain Technology: Securing Vehicle Communication and AI Systems. Future Internet, 16(12), 471. https://doi.org/10.3390/fi16120471
- Nair, A. R., Jadav, N. K., Gupta, R., & Tanwar, S. (2022). AI-empowered Secure Data Communication in V2X Environment with 6G Network. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), 1–6. https://doi.org/10.1109/infocomwkshps54753.2022.9797928
- Williams, K. L., Prasanth, Y. D., & Jeyaselvi, M. (2024). Hybrid AI Architecture using Edge-Cloud Computing for Secure V2X Communication. 2024 9th International Conference on Communication and Electronics Systems (ICCES), 913–920. https://doi.org/10.1109/icces63552.2024.10859430
- Oseremen Owobu, W., Anthony Abieba, O., Gbenle, P., Paul Onoja, J., Ifesinachi Daraojimba, A., Hassanat Adepoju, A., & Bright Chibunna, U. (2024). Review of Enterprise Communication Security Architectures for Improving Confidentiality Integrity and Availability in Digital Workflows. International Journal of Advanced Multidisciplinary Research and Studies, 4(6), 1417–1426. https://doi.org/10.62225/2583049x.2024.4.6.4024
- Leshchev, S. V. (2022). Artificial Intelligence Limitations: Blockchain Trust and Communication Transparency. In Studies in Computational Intelligence (pp. 249–254). Springer International Publishing. https://doi.org/10.1007/978-3-030-96993-6_25
- Afolabi, A., Ogunrinde, O., & Zabihollah, A. (2025). Digital Twin and AI Models for Infrastructure Resilience: A Systematic Knowledge Mapping. Applied Sciences, 15(24), 13135. https://doi.org/10.3390/app152413135
- Liu, X., & Xu, R. (2025). BIMW: Blockchain-Enabled Innocuous Model Watermarking for Secure Ownership Verification. Future Internet, 17(11), 490. https://doi.org/10.3390/fi17110490
This research proposes a unified AI-Enabled ICT Resilience Architecture for next-generation communication
systems demanding ultra-high availability, security, and verifiable trust. It synthesizes three core pillars into a coherent
framework. First, AI and machine learning provide predictive, adaptive resilience through real-time anomaly detection and
automated response. Second, blockchain technology establishes decentralized trust, offering immutable audit trails and
smart contract-driven policy execution for cryptographically assured actions. Third, a high-availability substrate ensures
the underlying network can support these intelligent operations. A systematic review and thematic meta-analysis of
contemporary literature confirm that the synergistic integration of these technologies creates a transformative "cognitive
resilience loop." This loop enables continuous AI-driven monitoring, blockchain-verified decision-making, and assured, self-
healing actuation. The architecture directly addresses the limitations of static, manual defenses, advancing toward
autonomous, trustworthy, and resilient digital infrastructures for critical applications.
Keywords :
AI-Enabled ICT Resilience, High-Availability Communication Systems, Secure Network Architecture, Blockchain- Assured Communication, Fault-Tolerant System Design, and AI-Driven Security and Reliability.