AI-Driven Predictive Analytics for Syndromic Surveillance: Enhancing Early Detection of Emerging Infectious Diseases in the United States


Authors : Chinedu Osita Agbakwuru

Volume/Issue : Volume 10 - 2025, Issue 4 - April


Google Scholar : https://tinyurl.com/5ebv5kp5

Scribd : https://tinyurl.com/5d5s57wp

DOI : https://doi.org/10.38124/ijisrt/25apr549

Google Scholar

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 15 to 20 days to display the article.


Abstract : Emerging infectious diseases are a major concern to public health in the United States, requiring advanced surveillance technologies for early diagnosis and response. The incorporation of artificial intelligence (AI)-driven predictive analytics into syndromic surveillance represents a game-changing technique that uses big data, machine learning, and real-time health indicators to improve disease outbreak detection. The purpose of this review is to explore AI-driven predictive analytics in syndromic surveillance, emphasizing its ability to increase early detection of emerging infectious diseases in the United States. The findings indicate that AI-driven predictive analytics increases the speed, accuracy, and scalability of syndromic surveillance. AI-powered methods, such as deep learning and natural language processing, may identify anomalies in symptom patterns, monitor disease progression, and predict epidemics more accurately. However, with the proper safety measures in place, AI has the potential to transform public health surveillance, increasing likely national preparedness for emerging infectious disease threats.

Keywords : Public Health, Artificial Intelligence, Healthcare Surveillance, Predictive Analysis.

References :

  1. Abat, C., Chaudet, H., Rolain, J.-M., Colson, P., & Raoult, D. (2016). Traditional and syndromic surveillance of infectious diseases and pathogens. International Journal of Infectious Diseases, 48, 22–28. https://doi.org/10.1016/j.ijid.2016.04.021
  2. Ali, H. (2024). AI for Pandemic Preparedness and Infectious Disease Surveillance: Predicting Outbreaks, Modeling... International Journal of Research Publication and Reviews, 05(08), 4605–4619. https://www.researchgate.net/publication/389138161_AI_for_Pandemic_Preparedness_and_Infectious_Disease_Surveillance_Predicting_Outbreaks_Modeling_Transmission_and_Optimizing_Public_Health_Interventions
  3. Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A., Almohareb, S. N., Aldairem, A., Alrashed, M., Saleh, K. B., Badreldin, H. A., Yami, A., Harbi, S. A., & Albekairy, A. M. (2023). Revolutionizing Healthcare: The Role Of Artificial Intelligence In Clinical Practice. BMC Medical Education, 23(1). https://doi.org/10.1186/s12909-023-04698-z
  4. Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial Intelligence in healthcare: Transforming the Practice of Medicine. Future Healthcare Journal, 8(2), 188–194. NCBI. https://doi.org/10.7861/fhj.2021-0095
  5. Borio, L., Henderson, D. A., & Hynes, N. A. (2015). Bioterrorism. Elsevier EBooks, 178-190.e2. https://doi.org/10.1016/b978-1-4557-4801-3.00015-1
  6. Burkom, H., Loschen, W., Wojcik, R., Holtry, R., Punjabi, M., Siwek, M., & Lewis, S. (2021). Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE): Overview, Components, and Public Health Applications. JMIR Public Health and Surveillance, 7(6), e26303. https://doi.org/10.2196/26303
  7. CDC. (2024). Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices — United States, 2024–25 Influenza Season . Centers for Disease Control and Prevention. https://www.cdc.gov/mmwr/volumes/73/rr/rr7305a1.htm
  8. Das, S., & Kataria, V. (2011). Bioterrorism : A Public Health Perspective. Medical Journal Armed Forces India, 66(3), 255–260. https://doi.org/10.1016/s0377-1237(10)80051-6
  9. Ehrenstein, V., Kharrazi, H., Lehmann, H., & Taylor, C. O. (2020). Obtaining Data From Electronic Health Records. In www.ncbi.nlm.nih.gov. Agency for Healthcare Research and Quality (US). https://www.ncbi.nlm.nih.gov/books/NBK551878/
  10. Ekundayo F. (2024). Using machine learning to predict disease outbreaks and enhance public health surveillance. World Journal of Advanced Research and Reviews, 24(3), 794–811. https://doi.org/10.30574/wjarr.2024.24.3.3732
  11. Ennouri, K., Smaoui, S., & Triki, M. A. (2021). Detection of Urban and Environmental Changes via Remote Sensing. Circular Economy and Sustainability, 1, 1423–1437. https://doi.org/10.1007/s43615-021-00035-y
  12. Heffernan, R., Mostashari, F., Das, D., Karpati, A., Kulldorff, M., & Weiss, D. (2004). Syndromic Surveillance in Public Health Practice, New York City. Emerging Infectious Diseases, 10(5), 858–864. https://doi.org/10.3201/eid1005.030646
  13. Hughes, H. E., Edeghere, O., O’Brien, S. J., Vivancos, R., & Elliot, A. J. (2020). Emergency department syndromic surveillance systems: a systematic review. BMC Public Health, 20(1). https://doi.org/10.1186/s12889-020-09949-y
  14. Hughes, J. M., & Gerberding, J. L. (2002). Anthrax Bioterrorism: Lessons Learned and Future Directions. Emerging Infectious Diseases, 8(10), 1013–1014. https://doi.org/10.3201/eid0810.020466
  15. Hyllestad, S., Amato, E., Nygård, K., Vold, L., & Aavitsland, P. (2021). The effectiveness of syndromic surveillance for the early detection of waterborne outbreaks: a systematic review. BMC Infectious Diseases, 21(1). https://doi.org/10.1186/s12879-021-06387-y
  16. Ibrahim, N. K. (2020). Epidemiologic surveillance for controlling Covid-19 pandemic: types, challenges and implications. Journal of Infection and Public Health, 13(11). https://doi.org/10.1016/j.jiph.2020.07.019
  17. Jeyaraman, M., Balaji, S., Jeyaraman, N., & Yadav, S. (2023). Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare. Cureus, 15(8). https://doi.org/10.7759/cureus.43262
  18. Jiao, Z., Ji, H., Yan, J., & Qi, X. (2022). Application of big data and artificial intelligence in epidemic surveillance and containment. Intelligent Medicine, 3(1). https://doi.org/10.1016/j.imed.2022.10.003
  19. Lazarus, R., Kleinman, K., Dashevsky, I., Adams, C., Kludt, P., DeMaria, A., & Platt, R. (2002). Use of Automated Ambulatory-Care Encounter Records for Detection of Acute Illness Clusters, Including Potential Bioterrorism Events. Emerging Infectious Diseases, 8(8), 753–760. https://doi.org/10.3201/eid0808.020239
  20. Lee, L. M. (2011). The Cornerstone of Public Health Practice: Public Health Surveillance, 1961--2011. Www.cdc.gov. https://www.cdc.gov/mmwr/preview/mmwrhtml/su6004a4.htm
  21. Lombardo, J. S., Burkom, H., & Pavlin, J. (2004). ESSENCE II and the Framework for Evaluating Syndromic Surveillance Systems. Www.cdc.gov. https://www.cdc.gov/mmwr/preview/mmwrhtml/su5301a30.htm
  22. Loonsk, J. W. (2025). BioSense --- A National Initiative for Early Detection and Quantification of Public Health Emergencies. Cdc.gov. https://www.cdc.gov/Mmwr/preview/mmwrhtml/su5301a13.htm
  23. MacIntyre, C. R., Chen, X., Kunasekaran, M., Quigley, A., Lim, S., Stone, H., Paik, H.-Y., Yao, L., Heslop, D., Wei, W., Sarmiento, I., & Gurdasani, D. (2023). Artificial intelligence in public health: the potential of epidemic early warning systems. The Journal of International Medical Research, 51(3), 3000605231159335. https://doi.org/10.1177/03000605231159335
  24. MacIntyre, C. R., Lim, S., Gurdasani, D., Miranda, M., Metcalf, D., Quigley, A., Hutchinson, D., Burr, A., & Heslop, D. J. (2023). Early Detection of Emerging Infectious Diseases - Implications for Vaccine Development. Vaccine, 42(7). https://doi.org/10.1016/j.vaccine.2023.05.069
  25. Malik, Y. S., Sircar, S., Bhat, S., Ansari, M. I., Pande, T., Kumar, P., Mathapati, B., Balasubramanian, G., Kaushik, R., Natesan, S., Ezzikouri, S., El Zowalaty, M. E., & Dhama, K. (2020). How artificial intelligence may help the Covid‐19 pandemic: Pitfalls and lessons for the future. Reviews in Medical Virology, 31(5). https://doi.org/10.1002/rmv.2205
  26. McArthur, D. B. (2019). Emerging Infectious Diseases. Nursing Clinics of North America, 54(2), 297–311. https://doi.org/10.1016/j.cnur.2019.02.006
  27. McClymont, H., Lambert, S. B., Barr, I., Vardoulakis, S., Bambrick, H., & Hu, W. (2024). Internet-based Surveillance Systems and Infectious Diseases Prediction: An Updated Review of the Last 10 Years and Lessons from the COVID-19 Pandemic. Journal of Epidemiology and Global Health, 14(3), 645–657. https://doi.org/10.1007/s44197-024-00272-y
  28. Meckawy, R., Stuckler, D., Mehta, A., Al-Ahdal, T., & Doebbeling, B. N. (2022). Effectiveness of early warning systems in the detection of infectious diseases outbreaks: a systematic review. BMC Public Health, 22(1). https://doi.org/10.1186/s12889-022-14625-4
  29. Mei, Y., Guo, X., Chen, Z., & Chen, Y. (2022). An Effective Mechanism for the Early Detection and Containment of Healthcare Worker Infections in the Setting of the COVID-19 Pandemic: A Systematic Review and Meta-Synthesis. International Journal of Environmental Research and Public Health, 19(10), 5943. https://doi.org/10.3390/ijerph19105943
  30. Miller, T., Durlik I., Kostecka, E., Kozlovska P., Łobodzińska, A., Sokołowska S., & Nowy A. (2025). Integrating Artificial Intelligence Agents with the Internet of Things for Enhanced Environmental Monitoring: Applications in Water Quality and Climate Data. Electronics, 14(4), 696–696. https://doi.org/10.3390/electronics14040696
  31. Mojahed, N., Mohammadkhani, M. A., & Mohamadkhani, A. (2022). Climate Crises and Developing Vector-Borne Diseases: a Narrative Review. Iranian Journal of Public Health, 51(12). https://doi.org/10.18502/ijph.v51i12.11457
  32. Nsubuga, P., White, M. E., Thacker, S. B., Anderson, M. A., Blount, S. B., Broome, C. V., Chiller, T. M., Espitia, V., Imtiaz, R., Sosin, D., Stroup, D. F., Tauxe, R. V., Vijayaraghavan, M., & Trostle, M. (2006a). Public Health Surveillance: a Tool for Targeting and Monitoring Interventions. Nih.gov; The International Bank for Reconstruction and Development / The World Bank. https://www.ncbi.nlm.nih.gov/books/NBK11770/
  33. Nsubuga, P., White, M. E., Thacker, S. B., Anderson, M. A., Blount, S. B., Broome, C. V., Chiller, T. M., Espitia, V., Imtiaz, R., Sosin, D., Stroup, D. F., Tauxe, R. V., Vijayaraghavan, M., & Trostle, M. (2006b). Public Health Surveillance: a Tool for Targeting and Monitoring Interventions. Nih.gov; The International Bank for Reconstruction and Development / The World Bank. https://www.ncbi.nlm.nih.gov/books/NBK11770/
  34. Olawade, D. B., Wada, O. J., David-Olawade, A. C., Kunonga, E., Abaire, O. J., & Ling, J. (2023). Using artificial intelligence to improve public health: A narrative review. Frontiers in Public Health, 11(1196397). https://doi.org/10.3389/fpubh.2023.1196397
  35. Rahman, T., Sobur, A., Islam, S., Ievy, S., Hossain, J., El Zowalaty, M. E., Rahman, A. T., & Ashour, H. M. (2020). Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms, 8(9), 1405. https://doi.org/10.3390/microorganisms8091405
  36. Ramon-Torrell, J. M. (2023). Perspective Chapter: Emerging Infectious Diseases As a Public Health Problem. IntechOpen EBooks. https://doi.org/10.5772/intechopen.113051
  37. Reeves, J. J., Pageler, N. M., Wick, E. C., Melton, G. B., Tan, Y.-H. G., Clay, B. J., & Longhurst, C. A. (2021). The Clinical Information Systems Response to the COVID-19 Pandemic. Yearbook of Medical Informatics, 30(01), 105–125. https://doi.org/10.1055/s-0041-1726513
  38. Sabin, N. S., Calliope, A. S., Simpson, S. V., Arima, H., Ito, H., Nishimura, T., & Yamamoto, T. (2020). Implications of human activities for (re)emerging infectious diseases, including COVID-19. Journal of Physiological Anthropology, 39(29). https://doi.org/10.1186/s40101-020-00239-5
  39. Samaras, A., Bekiaridou, A., Papazoglou, A. S., Moysidis, D. V., Grigorios Tsoumakas, Panagiotis Bamidis, Grigorios Tsigkas, Lazaros, G., Kassimis, G., Nikolaos Fragakis, Vassilios Vassilikos, Zarifis, I., Tziakas, D. N., Konstantinos Tsioufis, Periklis Davlouros, & Giannakoulas, G. (2023). Artificial intelligence-based mining of electronic health record data to accelerate the digital transformation of the national cardiovascular ecosystem: design protocol of the CardioMining study. BMJ Publishing Group, 13(4), e068698–e068698. https://doi.org/10.1136/bmjopen-2022-068698
  40. Sezgin, E., Hussain, S.-A., Rust, S., & Huang, Y. (2022). Extracting Medical Information from Free-text and Unstructured Patient-Generated Health Data using Natural Language Processing Methods: A Feasibility Study with Real-world Data (Preprint). JMIR Formative Research. https://doi.org/10.2196/43014
  41. Shang, Y., Li, H., & Zhang, R. (2021). Effects of Pandemic Outbreak on Economies: Evidence From Business History Context. Frontiers in Public Health, 9(1), 1–12. Frontiersin. https://doi.org/10.3389/fpubh.2021.632043
  42. Sharan, M., Vijay, D., Yadav, J. P., Bedi, J. S., & Dhaka, P. (2023). Surveillance and Response Strategies for Zoonotic Diseases: A Comprehensive Review. Science in One Health, 2, 100050. https://doi.org/10.1016/j.soh.2023.100050
  43. Shen, Y., Liu, Y., Krafft, T., & Wang, Q. (2025). Progress and challenges in infectious disease surveillance and early warning. Medicine Plus, 2(1), 100071. https://doi.org/10.1016/j.medp.2025.100071
  44. Smith, G. E., Elliot, A. J., Lake, I., Edeghere, O., Morbey, R., Catchpole, M., Heymann, D. L., Hawker, J., Ibbotson, S., McCloskey, B., Pebody, R., & Public Health England Real-time Syndromic Surveillance Team. (2019). Syndromic surveillance: two decades experience of sustainable systems - its people not just data! Epidemiology and Infection, 147, e101. https://doi.org/10.1017/S0950268819000074
  45. Suvvari T. K., & Kandi V. (2024). Artificial Intelligence Enhanced Infectious Disease Surveillance - A Call for Global Collaboration. New Microbes and New Infections, 62, 101494–101494. https://doi.org/10.1016/j.nmni.2024.101494
  46. Sydnor, E. R. M., & Perl, T. M. (2011). Hospital Epidemiology and Infection Control in Acute-Care Settings. Clinical Microbiology Reviews, 24(1), 141–173. https://doi.org/10.1128/cmr.00027-10
  47. Varnosfaderani, S. M., & Forouzanfar, M. (2024). The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering, 11(4), 337. https://www.mdpi.com/2306-5354/11/4/337
  48. Zeng, D., Cao, Z., & Neill, D. B. (2021). Artificial intelligence–enabled public health surveillance—from local detection to global epidemic monitoring and control. Artificial Intelligence in Medicine, 437–453. https://doi.org/10.1016/B978-0-12-821259-2.00022-3
  49. Zhang, L., Guo, W., Zhang, Y., Liu, S., Zhu, Z., Guo, M., Song, W., Chen, Z., Yang, Y., Pu, Y., Ding, S., Zhang, J., Liu, L., & Zhao, Q. (2023). Modern Technologies and Solutions to Enhance Surveillance and Response Systems for Emerging Zoonotic Diseases. Science in One Health, 3, 100061. https://doi.org/10.1016/j.soh.2023.100061
  50. Zhao, A. P., Li, S., Cao, Z., Hu, P. J.-H., Wang, J., Xiang, Y., Xie, D., & Lu, X. (2024). AI for Science: Predicting Infectious Diseases. Journal of Safety Science and Resilience, 5(2). https://doi.org/10.1016/j.jnlssr.2024.02.002

Emerging infectious diseases are a major concern to public health in the United States, requiring advanced surveillance technologies for early diagnosis and response. The incorporation of artificial intelligence (AI)-driven predictive analytics into syndromic surveillance represents a game-changing technique that uses big data, machine learning, and real-time health indicators to improve disease outbreak detection. The purpose of this review is to explore AI-driven predictive analytics in syndromic surveillance, emphasizing its ability to increase early detection of emerging infectious diseases in the United States. The findings indicate that AI-driven predictive analytics increases the speed, accuracy, and scalability of syndromic surveillance. AI-powered methods, such as deep learning and natural language processing, may identify anomalies in symptom patterns, monitor disease progression, and predict epidemics more accurately. However, with the proper safety measures in place, AI has the potential to transform public health surveillance, increasing likely national preparedness for emerging infectious disease threats.

Keywords : Public Health, Artificial Intelligence, Healthcare Surveillance, Predictive Analysis.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe