Authors :
Chinedu Osita Agbakwuru
Volume/Issue :
Volume 10 - 2025, Issue 4 - April
Google Scholar :
https://tinyurl.com/5ebv5kp5
Scribd :
https://tinyurl.com/5d5s57wp
DOI :
https://doi.org/10.38124/ijisrt/25apr549
Google Scholar
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Note : Google Scholar may take 15 to 20 days to display the article.
Abstract :
Emerging infectious diseases are a major concern to public health in the United States, requiring advanced
surveillance technologies for early diagnosis and response. The incorporation of artificial intelligence (AI)-driven
predictive analytics into syndromic surveillance represents a game-changing technique that uses big data, machine
learning, and real-time health indicators to improve disease outbreak detection. The purpose of this review is to explore
AI-driven predictive analytics in syndromic surveillance, emphasizing its ability to increase early detection of emerging
infectious diseases in the United States. The findings indicate that AI-driven predictive analytics increases the speed,
accuracy, and scalability of syndromic surveillance. AI-powered methods, such as deep learning and natural language
processing, may identify anomalies in symptom patterns, monitor disease progression, and predict epidemics more
accurately. However, with the proper safety measures in place, AI has the potential to transform public health
surveillance, increasing likely national preparedness for emerging infectious disease threats.
Keywords :
Public Health, Artificial Intelligence, Healthcare Surveillance, Predictive Analysis.
References :
- Abat, C., Chaudet, H., Rolain, J.-M., Colson, P., & Raoult, D. (2016). Traditional and syndromic surveillance of infectious diseases and pathogens. International Journal of Infectious Diseases, 48, 22–28. https://doi.org/10.1016/j.ijid.2016.04.021
- Ali, H. (2024). AI for Pandemic Preparedness and Infectious Disease Surveillance: Predicting Outbreaks, Modeling... International Journal of Research Publication and Reviews, 05(08), 4605–4619. https://www.researchgate.net/publication/389138161_AI_for_Pandemic_Preparedness_and_Infectious_Disease_Surveillance_Predicting_Outbreaks_Modeling_Transmission_and_Optimizing_Public_Health_Interventions
- Alowais, S. A., Alghamdi, S. S., Alsuhebany, N., Alqahtani, T., Alshaya, A., Almohareb, S. N., Aldairem, A., Alrashed, M., Saleh, K. B., Badreldin, H. A., Yami, A., Harbi, S. A., & Albekairy, A. M. (2023). Revolutionizing Healthcare: The Role Of Artificial Intelligence In Clinical Practice. BMC Medical Education, 23(1). https://doi.org/10.1186/s12909-023-04698-z
- Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial Intelligence in healthcare: Transforming the Practice of Medicine. Future Healthcare Journal, 8(2), 188–194. NCBI. https://doi.org/10.7861/fhj.2021-0095
- Borio, L., Henderson, D. A., & Hynes, N. A. (2015). Bioterrorism. Elsevier EBooks, 178-190.e2. https://doi.org/10.1016/b978-1-4557-4801-3.00015-1
- Burkom, H., Loschen, W., Wojcik, R., Holtry, R., Punjabi, M., Siwek, M., & Lewis, S. (2021). Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE): Overview, Components, and Public Health Applications. JMIR Public Health and Surveillance, 7(6), e26303. https://doi.org/10.2196/26303
- CDC. (2024). Prevention and Control of Seasonal Influenza with Vaccines: Recommendations of the Advisory Committee on Immunization Practices — United States, 2024–25 Influenza Season . Centers for Disease Control and Prevention. https://www.cdc.gov/mmwr/volumes/73/rr/rr7305a1.htm
- Das, S., & Kataria, V. (2011). Bioterrorism : A Public Health Perspective. Medical Journal Armed Forces India, 66(3), 255–260. https://doi.org/10.1016/s0377-1237(10)80051-6
- Ehrenstein, V., Kharrazi, H., Lehmann, H., & Taylor, C. O. (2020). Obtaining Data From Electronic Health Records. In www.ncbi.nlm.nih.gov. Agency for Healthcare Research and Quality (US). https://www.ncbi.nlm.nih.gov/books/NBK551878/
- Ekundayo F. (2024). Using machine learning to predict disease outbreaks and enhance public health surveillance. World Journal of Advanced Research and Reviews, 24(3), 794–811. https://doi.org/10.30574/wjarr.2024.24.3.3732
- Ennouri, K., Smaoui, S., & Triki, M. A. (2021). Detection of Urban and Environmental Changes via Remote Sensing. Circular Economy and Sustainability, 1, 1423–1437. https://doi.org/10.1007/s43615-021-00035-y
- Heffernan, R., Mostashari, F., Das, D., Karpati, A., Kulldorff, M., & Weiss, D. (2004). Syndromic Surveillance in Public Health Practice, New York City. Emerging Infectious Diseases, 10(5), 858–864. https://doi.org/10.3201/eid1005.030646
- Hughes, H. E., Edeghere, O., O’Brien, S. J., Vivancos, R., & Elliot, A. J. (2020). Emergency department syndromic surveillance systems: a systematic review. BMC Public Health, 20(1). https://doi.org/10.1186/s12889-020-09949-y
- Hughes, J. M., & Gerberding, J. L. (2002). Anthrax Bioterrorism: Lessons Learned and Future Directions. Emerging Infectious Diseases, 8(10), 1013–1014. https://doi.org/10.3201/eid0810.020466
- Hyllestad, S., Amato, E., Nygård, K., Vold, L., & Aavitsland, P. (2021). The effectiveness of syndromic surveillance for the early detection of waterborne outbreaks: a systematic review. BMC Infectious Diseases, 21(1). https://doi.org/10.1186/s12879-021-06387-y
- Ibrahim, N. K. (2020). Epidemiologic surveillance for controlling Covid-19 pandemic: types, challenges and implications. Journal of Infection and Public Health, 13(11). https://doi.org/10.1016/j.jiph.2020.07.019
- Jeyaraman, M., Balaji, S., Jeyaraman, N., & Yadav, S. (2023). Unraveling the Ethical Enigma: Artificial Intelligence in Healthcare. Cureus, 15(8). https://doi.org/10.7759/cureus.43262
- Jiao, Z., Ji, H., Yan, J., & Qi, X. (2022). Application of big data and artificial intelligence in epidemic surveillance and containment. Intelligent Medicine, 3(1). https://doi.org/10.1016/j.imed.2022.10.003
- Lazarus, R., Kleinman, K., Dashevsky, I., Adams, C., Kludt, P., DeMaria, A., & Platt, R. (2002). Use of Automated Ambulatory-Care Encounter Records for Detection of Acute Illness Clusters, Including Potential Bioterrorism Events. Emerging Infectious Diseases, 8(8), 753–760. https://doi.org/10.3201/eid0808.020239
- Lee, L. M. (2011). The Cornerstone of Public Health Practice: Public Health Surveillance, 1961--2011. Www.cdc.gov. https://www.cdc.gov/mmwr/preview/mmwrhtml/su6004a4.htm
- Lombardo, J. S., Burkom, H., & Pavlin, J. (2004). ESSENCE II and the Framework for Evaluating Syndromic Surveillance Systems. Www.cdc.gov. https://www.cdc.gov/mmwr/preview/mmwrhtml/su5301a30.htm
- Loonsk, J. W. (2025). BioSense --- A National Initiative for Early Detection and Quantification of Public Health Emergencies. Cdc.gov. https://www.cdc.gov/Mmwr/preview/mmwrhtml/su5301a13.htm
- MacIntyre, C. R., Chen, X., Kunasekaran, M., Quigley, A., Lim, S., Stone, H., Paik, H.-Y., Yao, L., Heslop, D., Wei, W., Sarmiento, I., & Gurdasani, D. (2023). Artificial intelligence in public health: the potential of epidemic early warning systems. The Journal of International Medical Research, 51(3), 3000605231159335. https://doi.org/10.1177/03000605231159335
- MacIntyre, C. R., Lim, S., Gurdasani, D., Miranda, M., Metcalf, D., Quigley, A., Hutchinson, D., Burr, A., & Heslop, D. J. (2023). Early Detection of Emerging Infectious Diseases - Implications for Vaccine Development. Vaccine, 42(7). https://doi.org/10.1016/j.vaccine.2023.05.069
- Malik, Y. S., Sircar, S., Bhat, S., Ansari, M. I., Pande, T., Kumar, P., Mathapati, B., Balasubramanian, G., Kaushik, R., Natesan, S., Ezzikouri, S., El Zowalaty, M. E., & Dhama, K. (2020). How artificial intelligence may help the Covid‐19 pandemic: Pitfalls and lessons for the future. Reviews in Medical Virology, 31(5). https://doi.org/10.1002/rmv.2205
- McArthur, D. B. (2019). Emerging Infectious Diseases. Nursing Clinics of North America, 54(2), 297–311. https://doi.org/10.1016/j.cnur.2019.02.006
- McClymont, H., Lambert, S. B., Barr, I., Vardoulakis, S., Bambrick, H., & Hu, W. (2024). Internet-based Surveillance Systems and Infectious Diseases Prediction: An Updated Review of the Last 10 Years and Lessons from the COVID-19 Pandemic. Journal of Epidemiology and Global Health, 14(3), 645–657. https://doi.org/10.1007/s44197-024-00272-y
- Meckawy, R., Stuckler, D., Mehta, A., Al-Ahdal, T., & Doebbeling, B. N. (2022). Effectiveness of early warning systems in the detection of infectious diseases outbreaks: a systematic review. BMC Public Health, 22(1). https://doi.org/10.1186/s12889-022-14625-4
- Mei, Y., Guo, X., Chen, Z., & Chen, Y. (2022). An Effective Mechanism for the Early Detection and Containment of Healthcare Worker Infections in the Setting of the COVID-19 Pandemic: A Systematic Review and Meta-Synthesis. International Journal of Environmental Research and Public Health, 19(10), 5943. https://doi.org/10.3390/ijerph19105943
- Miller, T., Durlik I., Kostecka, E., Kozlovska P., Łobodzińska, A., Sokołowska S., & Nowy A. (2025). Integrating Artificial Intelligence Agents with the Internet of Things for Enhanced Environmental Monitoring: Applications in Water Quality and Climate Data. Electronics, 14(4), 696–696. https://doi.org/10.3390/electronics14040696
- Mojahed, N., Mohammadkhani, M. A., & Mohamadkhani, A. (2022). Climate Crises and Developing Vector-Borne Diseases: a Narrative Review. Iranian Journal of Public Health, 51(12). https://doi.org/10.18502/ijph.v51i12.11457
- Nsubuga, P., White, M. E., Thacker, S. B., Anderson, M. A., Blount, S. B., Broome, C. V., Chiller, T. M., Espitia, V., Imtiaz, R., Sosin, D., Stroup, D. F., Tauxe, R. V., Vijayaraghavan, M., & Trostle, M. (2006a). Public Health Surveillance: a Tool for Targeting and Monitoring Interventions. Nih.gov; The International Bank for Reconstruction and Development / The World Bank. https://www.ncbi.nlm.nih.gov/books/NBK11770/
- Nsubuga, P., White, M. E., Thacker, S. B., Anderson, M. A., Blount, S. B., Broome, C. V., Chiller, T. M., Espitia, V., Imtiaz, R., Sosin, D., Stroup, D. F., Tauxe, R. V., Vijayaraghavan, M., & Trostle, M. (2006b). Public Health Surveillance: a Tool for Targeting and Monitoring Interventions. Nih.gov; The International Bank for Reconstruction and Development / The World Bank. https://www.ncbi.nlm.nih.gov/books/NBK11770/
- Olawade, D. B., Wada, O. J., David-Olawade, A. C., Kunonga, E., Abaire, O. J., & Ling, J. (2023). Using artificial intelligence to improve public health: A narrative review. Frontiers in Public Health, 11(1196397). https://doi.org/10.3389/fpubh.2023.1196397
- Rahman, T., Sobur, A., Islam, S., Ievy, S., Hossain, J., El Zowalaty, M. E., Rahman, A. T., & Ashour, H. M. (2020). Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms, 8(9), 1405. https://doi.org/10.3390/microorganisms8091405
- Ramon-Torrell, J. M. (2023). Perspective Chapter: Emerging Infectious Diseases As a Public Health Problem. IntechOpen EBooks. https://doi.org/10.5772/intechopen.113051
- Reeves, J. J., Pageler, N. M., Wick, E. C., Melton, G. B., Tan, Y.-H. G., Clay, B. J., & Longhurst, C. A. (2021). The Clinical Information Systems Response to the COVID-19 Pandemic. Yearbook of Medical Informatics, 30(01), 105–125. https://doi.org/10.1055/s-0041-1726513
- Sabin, N. S., Calliope, A. S., Simpson, S. V., Arima, H., Ito, H., Nishimura, T., & Yamamoto, T. (2020). Implications of human activities for (re)emerging infectious diseases, including COVID-19. Journal of Physiological Anthropology, 39(29). https://doi.org/10.1186/s40101-020-00239-5
- Samaras, A., Bekiaridou, A., Papazoglou, A. S., Moysidis, D. V., Grigorios Tsoumakas, Panagiotis Bamidis, Grigorios Tsigkas, Lazaros, G., Kassimis, G., Nikolaos Fragakis, Vassilios Vassilikos, Zarifis, I., Tziakas, D. N., Konstantinos Tsioufis, Periklis Davlouros, & Giannakoulas, G. (2023). Artificial intelligence-based mining of electronic health record data to accelerate the digital transformation of the national cardiovascular ecosystem: design protocol of the CardioMining study. BMJ Publishing Group, 13(4), e068698–e068698. https://doi.org/10.1136/bmjopen-2022-068698
- Sezgin, E., Hussain, S.-A., Rust, S., & Huang, Y. (2022). Extracting Medical Information from Free-text and Unstructured Patient-Generated Health Data using Natural Language Processing Methods: A Feasibility Study with Real-world Data (Preprint). JMIR Formative Research. https://doi.org/10.2196/43014
- Shang, Y., Li, H., & Zhang, R. (2021). Effects of Pandemic Outbreak on Economies: Evidence From Business History Context. Frontiers in Public Health, 9(1), 1–12. Frontiersin. https://doi.org/10.3389/fpubh.2021.632043
- Sharan, M., Vijay, D., Yadav, J. P., Bedi, J. S., & Dhaka, P. (2023). Surveillance and Response Strategies for Zoonotic Diseases: A Comprehensive Review. Science in One Health, 2, 100050. https://doi.org/10.1016/j.soh.2023.100050
- Shen, Y., Liu, Y., Krafft, T., & Wang, Q. (2025). Progress and challenges in infectious disease surveillance and early warning. Medicine Plus, 2(1), 100071. https://doi.org/10.1016/j.medp.2025.100071
- Smith, G. E., Elliot, A. J., Lake, I., Edeghere, O., Morbey, R., Catchpole, M., Heymann, D. L., Hawker, J., Ibbotson, S., McCloskey, B., Pebody, R., & Public Health England Real-time Syndromic Surveillance Team. (2019). Syndromic surveillance: two decades experience of sustainable systems - its people not just data! Epidemiology and Infection, 147, e101. https://doi.org/10.1017/S0950268819000074
- Suvvari T. K., & Kandi V. (2024). Artificial Intelligence Enhanced Infectious Disease Surveillance - A Call for Global Collaboration. New Microbes and New Infections, 62, 101494–101494. https://doi.org/10.1016/j.nmni.2024.101494
- Sydnor, E. R. M., & Perl, T. M. (2011). Hospital Epidemiology and Infection Control in Acute-Care Settings. Clinical Microbiology Reviews, 24(1), 141–173. https://doi.org/10.1128/cmr.00027-10
- Varnosfaderani, S. M., & Forouzanfar, M. (2024). The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering, 11(4), 337. https://www.mdpi.com/2306-5354/11/4/337
- Zeng, D., Cao, Z., & Neill, D. B. (2021). Artificial intelligence–enabled public health surveillance—from local detection to global epidemic monitoring and control. Artificial Intelligence in Medicine, 437–453. https://doi.org/10.1016/B978-0-12-821259-2.00022-3
- Zhang, L., Guo, W., Zhang, Y., Liu, S., Zhu, Z., Guo, M., Song, W., Chen, Z., Yang, Y., Pu, Y., Ding, S., Zhang, J., Liu, L., & Zhao, Q. (2023). Modern Technologies and Solutions to Enhance Surveillance and Response Systems for Emerging Zoonotic Diseases. Science in One Health, 3, 100061. https://doi.org/10.1016/j.soh.2023.100061
- Zhao, A. P., Li, S., Cao, Z., Hu, P. J.-H., Wang, J., Xiang, Y., Xie, D., & Lu, X. (2024). AI for Science: Predicting Infectious Diseases. Journal of Safety Science and Resilience, 5(2). https://doi.org/10.1016/j.jnlssr.2024.02.002
Emerging infectious diseases are a major concern to public health in the United States, requiring advanced
surveillance technologies for early diagnosis and response. The incorporation of artificial intelligence (AI)-driven
predictive analytics into syndromic surveillance represents a game-changing technique that uses big data, machine
learning, and real-time health indicators to improve disease outbreak detection. The purpose of this review is to explore
AI-driven predictive analytics in syndromic surveillance, emphasizing its ability to increase early detection of emerging
infectious diseases in the United States. The findings indicate that AI-driven predictive analytics increases the speed,
accuracy, and scalability of syndromic surveillance. AI-powered methods, such as deep learning and natural language
processing, may identify anomalies in symptom patterns, monitor disease progression, and predict epidemics more
accurately. However, with the proper safety measures in place, AI has the potential to transform public health
surveillance, increasing likely national preparedness for emerging infectious disease threats.
Keywords :
Public Health, Artificial Intelligence, Healthcare Surveillance, Predictive Analysis.