Advancing Environmental Monitoring for Sustainable Conservation: Challenges, Technologies and Solutions


Authors : Dr. Densingh Johnrose; Mihir Mahesh Sharma; Shabeena Khan

Volume/Issue : Volume 10 - 2025, Issue 2 - February


Google Scholar : https://tinyurl.com/y5sapu3u

Scribd : https://tinyurl.com/4kb7nx34

DOI : https://doi.org/10.5281/zenodo.14937069


Abstract : Environmental monitoring is a cornerstone of sustainable conservation efforts, enabling real-time data collection and analysis to safeguard ecosystems and biodiversity. As the world grapples with unprecedented environmental challenges, including climate change, habitat destruction, and pollution, the need for advanced monitoring technologies has never been more urgent. This paper explores the critical role of environmental monitoring in conservation, emphasizing the technologies that are revolutionizing data collection, analysis, and decision-making. Specifically, it examines the integration of satellite remote sensing, drones, IoT-based sensors, and machine learning in monitoring ecosystems, wildlife, and environmental quality. Despite the progress in technology, several challenges remain in achieving effective and comprehensive environmental monitoring. These include issues related to data accuracy, high costs of technology deployment, and the difficulty of integrating large datasets across different platforms. Furthermore, the scalability and accessibility of these technologies, especially in low-resource regions, present barriers to widespread adoption. This paper discusses innovative solutions to overcome these challenges, such as the use of open-source software, the increasing involvement of citizen science, and collaborative international monitoring programs. Case studies are presented to illustrate the successful application of these technologies in protecting biodiversity, combating deforestation, and improving water quality. The paper concludes by proposing strategic recommendations for improving environmental monitoring frameworks, with an emphasis on fostering global collaboration, enhancing technological accessibility, and ensuring the inclusion of local communities in conservation efforts. Ultimately, advancing environmental monitoring is pivotal to ensuring that conservation strategies are both effective and sustainable. By harnessing cutting-edge technologies and addressing existing barriers, we can create a more resilient and equitable future for our planet's ecosystems.

References :

  1. Mahzarin R. Banaji, Susan T. Fiske, and Douglas S. Massey, “Systemic Racism: Individuals and Interactions, Institutions and Society,” Cognitive Research: Principles and Implications, vol. 6, pp. 1-21, 2021. [CrossRef] [Google Scholar] [Publisher Link]
  2. Lorenzo Belenguer, “AI Bias: Exploring Discriminatory Algorithmic Decision-Making Models and the Application of Possible MachineCentric Solutions Adapted from the Pharmaceutical Industry,” AI and Ethics, vol. 2, pp. 771-787, 2022. [CrossRef] [Google Scholar] [Publisher Link]
  3. Josie Carwardine et al., “Avoiding Costly Conservation Mistakes: The Importance of Defining Actions and Costs in Spatial Priority Setting,” PLoS ONE, vol. 3, no. 7, pp. 1-6, 2008. [CrossRef] [Google Scholar] [Publisher Link]
  4. Josh Cowls et al., “The AI Gambit: Leveraging Artificial Intelligence to Combat Climate Change-Opportunities, Challenges, and Recommendations,” AI and Society, vol. 38, pp. 283-307, 2023. [CrossRef] [Google Scholar] [Publisher Link]
  5. Matthew F. McCabe et al., “The Future of Earth Observation in Hydrology,” Hydrology and Earth System Sciences, vol. 21, no. 7, pp. 3879- 3914, 2017. [CrossRef] [Google Scholar] [Publisher Link] Ranjana Dahake et al. / IJETT, 72(8), 1-7, 2024 7
  6. Melese Genete Muluneh et al., “Impact of Climate Change on Biodiversity and Food Security: A Global Perspective-A Review Article,” Agriculture and Food Security, vol. 10, pp. 1-25, 2021. [CrossRef] [Google Scholar] [Publisher Link]
  7. Rohit Nishant, Mike Kennedy, and Jacqueline Corbett, “Artificial Intelligence for Sustainability: Challenges, Opportunities, and a Research Agenda,” International Journal of Information Management, vol. 53, 2020. [CrossRef] [Google Scholar] [Publisher Link]
  8. David Rodríguez-Rodríguez, and Javier Martínez-Vega, Protected Areas, Effectiveness of Protected Areas in Conserving Biodiversity, Strategies for Sustainability, Springer, Cham, pp. 21-30, 2022. [CrossRef] [Google Scholar] [Publisher Link]
  9. Joel Serey et al., “Pattern Recognition and Deep Learning Technologies, Enablers of Industry 4.0, and their Role in Engineering Research,” Symmetry, vol. 15, no. 2, pp. 1-29, 2023. [CrossRef] [Google Scholar] [Publisher Link]
  10. Vinamra Bhushan Sharma et al., “Recent Advancements in AI-Enabled Smart Electronics Packaging for Structural Health Monitoring,” Metals, vol. 11, no. 10, pp. 1-48, 2021. [CrossRef] [Google Scholar] [Publisher Link]
  11. Huang, Y. Technology innovation and sustainability: Challenges and research needs. Clean Technol. Environ. Policy 2021, 23, 1663–1664. [Google Scholar] [CrossRef] [PubMed]
  12. Bashir, M.F.; Sharif, A.; Staniewski, M.W.; Ma, B.; Zhao, W. Environmental taxes, energy transition and sustainable environmental technologies: A comparative OECD region climate change analysis. J. Environ. Manag. 2024, 370, 122304. [Google Scholar] [CrossRef] [PubMed]
  13. Rehman, M.A.; Hasan, M.; Pata, U.K.; Chen, X.H.; Kontoleon, A. Exploring the Nexus of technology, environmental policy stringency, and political globalization: Pathways to achieving sustainability. Energy Econ. 2024, 107979. [Google Scholar] [CrossRef]
  14. Sharif, A.; Bashir, U.; Mehmood, S.; Cheong, C.W.; Bashir, M.F. Exploring the impact of green technology, renewable energy and globalization towards environmental sustainability in the top ecological impacted countries. Geosci. Front. 2024, 15, 101895. [Google Scholar] [CrossRef]
  15. Sebbagh, T.; Şahin, M.E.; Beldjaatit, C. Green hydrogen revolution for a sustainable energy future. Clean Technol. Environ. Policy 2024, 1–24. [Google Scholar] [CrossRef]
  16. Ezeorba, T.P.C.; Okeke, E.S.; Nwankwo, C.E.; Emencheta, S.C.; Enochoghene, A.E.; Okeke, V.C.; Ozougwu, V.E. Emerging eco-friendly technologies for remediation of Per-and poly-fluoroalkyl substances (PFAS) in water and wastewater: A pathway to environmental sustainability. Chemosphere 2024, 364, 143168. [Google Scholar] [CrossRef]
  17. Feng, Q.; Usman, M.; Saqib, N.; Mentel, U. Modelling the contribution of green technologies, renewable energy, economic complexity, and human capital in environmental sustainability: Evidence from BRICS countries. Gondwana Res. 2024, 132, 168–181. [Google Scholar] [CrossRef]
  18. Huang, Y. Reinforcing sustainability assessment and reshaping technology innovation for highly sustainable manufacturing in the post-COVID-19 era. Smart Sustain. Manuf. Syst. 2020, 4, 341–345. [Google Scholar] [CrossRef]
  19. Doğan, B.; Chu, L.K.; Khalfaoui, R.; Ghosh, S.; Shahbaz, M. Strategy towards sustainable energy transition: The effect of policy uncertainty, environmental technology and natural resources rent in the OECD nations. Resour. Policy 2024, 98, 105333. [Google Scholar] [CrossRef]
  20. Pandey, A.K.; Tyagi, V.V.; Jeyraj, A.; Selvaraj, L.; Rahim, N.A.; Tyagi, S.K. Recent advances in solar photovoltaic systems for emerging trends and advanced applications. Renew. Sustain. Energy Rev. 2026, 53, 859–884. [Google Scholar] [CrossRef]
  21. Ko, J.; Kim, K.; Sohn, J.; Jang, H.; Lee, H.; Kim, D.; Kang, Y. Review on Separation Processes of End-of-Life Silicon Photovoltaic Modules. Energies 2023, 16, 4327. [Google Scholar] [CrossRef]
  22. Zhang, X.; Yu, G.; Ibrahim, R.L.; Sherzod Uralovich, K. Greening the E7 environment: How can renewable and nuclear energy moderate financial development, natural resources, and digitalization towards the target? Int. J. Sustain. Dev. World Ecol. 2024, 31, 447–465. [Google Scholar] [CrossRef]
  23. Hassan, Q.; Algburi, S.; Sameen, A.Z.; Salman, H.M.; Jaszczur, M. Green hydrogen: A pathway to a sustainable energy future. Int. J. Hydrogen Energy 2024, 50, 310–333. [Google Scholar] [CrossRef]
  24. Falcone, P.M.; Hiete, M.; Sapio, A. Hydrogen economy and sustainable development goals: Review and policy insights. Curr. Opin. Green Sustain. Chem. 2021, 31, 100506. [Google Scholar] [CrossRef]
  25. Yu, M.; Wang, K.; Vredenburg, H. Insights into low-carbon hydrogen production methods: Green, blue and aqua hydrogen. Int. J. Hydrogen Energy 2021, 46, 21261–21273. [Google Scholar] [CrossRef]
  26. Abate, R.; Oon, Y.S.; Oon, Y.L.; Bi, Y. Microalgae-bacteria nexus for environmental remediation and renewable energy resources: Advances, mechanisms and biotechnological applications. Heliyon 2024, 10, e31170. [Google Scholar] [CrossRef]
  27. Chicaiza-Ortiz, C.; Peñafiel-Arcos, P.; Herrera-Feijoo, R.J.; Ma, W.; Logroño, W.; Tian, H.; Yuan, W. Waste-to-Energy technologies for municipal solid waste management: Bibliometric review, life cycle assessment, and energy potential case study. J. Clean. Prod. 2024, 480, 143993. [Google Scholar] [CrossRef]
  28. Zheng, H.; Wang, Y.; Feng, X.; Li, S.; Leong, Y.K.; Chang, J.S. Renewable biohydrogen production from straw biomass–Recent advances in pretreatment/hydrolysis technologies and future development. Int. J. Hydrogen Energy 2022, 47, 37359–37373. [Google Scholar] [CrossRef]
  29. Sharma, S.; Tsai, M.L.; Sharma, V.; Sun, P.P.; Nargotra, P.; Bajaj, B.K.; Dong, C.D. Environment friendly pretreatment approaches for the bioconversion of lignocellulosic biomass into biofuels and value-added products. Environments 2023, 10, 6. [Google Scholar] [CrossRef]
  30. Anacleto, T.; Kozlowsky-Suzuki, B.; Wilson, A.; Enrich-Prast, A. Comprehensive Meta-Analysis of Pathways to Increase Biogas Production in the Textile Industry. Energies 2022, 15, 5574. [Google Scholar] [CrossRef]
  31. Okolie, J.; Jimoh, T.; Akande, O.; Okoye, P.; Ogbaga, C.; Adeleke, A.; Ikubanni, P.; Güleç, F.; Amenaghawon, A. Pathways for the Valorization of Animal and Human Waste to Biofuels, Sustainable Materials, and Value-Added Chemicals. Environments 2023, 10, 46. [Google Scholar] [CrossRef]
  32. Thakur, A.; Kumar, R.; Sahoo, P. Uranium and Fluoride Removal from Aqueous Solution Using Biochar: A Critical Review for Understanding the Role of Feedstock Types, Mechanisms, and Modification Methods. Water 2022, 14, 4063. [Google Scholar] [CrossRef]
  33. Ganie, A.S.; Bano, S.; Khan, N.; Sultana, S.; Rehman, Z.; Rahman, M.M.; Khan, M.Z. Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere 2021, 275, 130065. [Google Scholar] [CrossRef] [PubMed]
  34. Al Masud, M.A.; Shin, W.S.; Sarker, A.; Septian, A.; Das, K.; Deepo, D.M.; Malafaia, G. A critical review of sustainable application of biochar for green remediation: Research uncertainty and future directions. Sci. Total Environ. 2023, 904, 166813. [Google Scholar] [CrossRef] [PubMed]
  35. Sachdeva, S.; Kumar, R.; Sahoo, P.K.; Nadda, A.K. Recent advances in biochar amendments for immobilization of heavy metals in an agricultural ecosystem: A systematic review. Environ. Pollut. 2023, 319, 120937. [Google Scholar] [CrossRef]
  36. Neulls, T.; Gouveia, P.; da Silva Pereira, C.; Souza, C.; Chaves, F.; Souza, I.; Tavarez, R.; Aliança, A.; Gonçalves, M.; Gomes, W.; et al. Comparative Study of Two Organic Wastes as Adsorbents in the Treatment of Water Rich in Nitrogen Compounds. Water 2023, 15, 876. [Google Scholar] [CrossRef]
  37. Chen, T.; Yang, X.; Sun, Q.; Hu, A.; Qin, D.; Li, J.; Wang, Y.; Yu, C. Changes in Wastewater Treatment Performance and the Microbial Community during the Bioaugmentation of a Denitrifying Pseudomonas Strain in the Low Carbon–Nitrogen Ratio Sequencing Batch Reactor. Water 2022, 14, 540. [Google Scholar] [CrossRef]
  38. Sun, Y.; Ke, Z.; Shen, C.; Sun, R.; Wei, Q.; Yin, Z.; Yang, W. Fabrication of Carbon Aerogels Derived from Metal-Organic Frameworks/Carbon Nanotubes/Cotton Composites as an Efficient Sorbent for Sustainable Oil–Water Separation. Appl. Sci. 2022, 12, 7285. [Google Scholar] [CrossRef]
  39. Karami, A.; Shomal, R.; Sabouni, R.; Al-Sayah, M.; Aidan, A. Parametric Study of Methyl Orange Removal Using Metal–Organic Frameworks Based on Factorial Experimental Design Analysis. Energies 2022, 15, 4642. [Google Scholar] [CrossRef]
  40. Park, Y.; Son, J. Phytotoxicity and Accumulation of Antibiotics in Water Lettuce (Pistia stratiotes) and Parrot Feather (Myriophyllum aquaticum) Plants under Hydroponic Culture Conditions. Appl. Sci. 2022, 12, 630. [Google Scholar] [CrossRef]
  41. Pandey, D.K.; Hunjra, A.I.; Bhaskar, R.; Al-Faryan, M.A.S. Artificial intelligence, machine learning and big data in natural resources management: A comprehensive bibliometric review of literature spanning 1975–2022. Resour. Policy 2023, 86, 104250. [Google Scholar] [CrossRef]
  42. Rao, A.; Talan, A.; Abbas, S.; Dev, D.; Taghizadeh-Hesary, F. The role of natural resources in the management of environmental sustainability: Machine learning approach. Resour. Policy 2023, 82, 103548. [Google Scholar] [CrossRef]
  43. Yang, F.; Zuo, R.; Kreuzer, O.P. Artificial intelligence for mineral exploration: A review and perspectives on future directions from data science. Earth-Sci. Rev. 2024, 258, 104941. [Google Scholar] [CrossRef]
  44. Nti, E.K.; Cobbina, S.J.; Attafuah, E.E.; Opoku, E.; Gyan, M.A. Environmental sustainability technologies in biodiversity, energy, transportation and water management using artificial intelligence: A systematic review. Sustain. Futures 2022, 4, 100068. [Google Scholar] [CrossRef]
  45. Zhao, D.; Zhang, T.; Chen, T.; He, Q.; Huang, D. Multi-Indicator Weighted Robustness Analysis of Planktonic Community Systems under Different Destructive Factors. Appl. Sci. 2023, 13, 8742. [Google Scholar] [CrossRef]
  46. Yoshikuni, A.C.; Dwivedi, R.; dos Santos, M.Q.L.; Liu, F.; Yoshikun, M.M. Sustainable Environmental Performance: A Cross-Country Fuzzy Set Qualitative Comparative Analysis Empirical Study of Big Data Analytics and Contextual Factors. J. Clean. Prod. 2024, 481, 144040. [Google Scholar] [CrossRef]
  47. Valdez, R.; Guzmán-Aranda, J.C.; Abarca, F.J.; Tarango-Arámbula, L.A.; Sánchez, F.C. Wildlife conservation and management in Mexico. Wildl. Soc. Bull. 2006, 34, 270–282. [Google Scholar] [CrossRef]
  48. Teel, T.L.; Manfredo, M.J. Understanding the diversity of public interests in wildlife conservation. Conserv. Biol. 2010, 24, 128–139. [Google Scholar] [CrossRef]
  49. Keil, P.; Storch, D.; Jetz, W. On the decline of biodiversity due to area loss. Nat. Commun. 2015, 6, 8837. [Google Scholar] [CrossRef]
  50. Prokop, P.; Fančovičová, J. Animals in dangerous postures enhance learning, but decrease willingness to protect animals. Eurasia J. Math. Sci. Technol. Educ. 2017, 13, 6069–6077. [Google Scholar] [CrossRef]

Environmental monitoring is a cornerstone of sustainable conservation efforts, enabling real-time data collection and analysis to safeguard ecosystems and biodiversity. As the world grapples with unprecedented environmental challenges, including climate change, habitat destruction, and pollution, the need for advanced monitoring technologies has never been more urgent. This paper explores the critical role of environmental monitoring in conservation, emphasizing the technologies that are revolutionizing data collection, analysis, and decision-making. Specifically, it examines the integration of satellite remote sensing, drones, IoT-based sensors, and machine learning in monitoring ecosystems, wildlife, and environmental quality. Despite the progress in technology, several challenges remain in achieving effective and comprehensive environmental monitoring. These include issues related to data accuracy, high costs of technology deployment, and the difficulty of integrating large datasets across different platforms. Furthermore, the scalability and accessibility of these technologies, especially in low-resource regions, present barriers to widespread adoption. This paper discusses innovative solutions to overcome these challenges, such as the use of open-source software, the increasing involvement of citizen science, and collaborative international monitoring programs. Case studies are presented to illustrate the successful application of these technologies in protecting biodiversity, combating deforestation, and improving water quality. The paper concludes by proposing strategic recommendations for improving environmental monitoring frameworks, with an emphasis on fostering global collaboration, enhancing technological accessibility, and ensuring the inclusion of local communities in conservation efforts. Ultimately, advancing environmental monitoring is pivotal to ensuring that conservation strategies are both effective and sustainable. By harnessing cutting-edge technologies and addressing existing barriers, we can create a more resilient and equitable future for our planet's ecosystems.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe