Advancements in Wearable Health Monitoring - Analyzing the Developments of Wearable Sensors and Machine Learning for Epileptic Seizure Detection to improve Athletic Performance


Authors : Mannat Dhir

Volume/Issue : Volume 9 - 2024, Issue 8 - August

Google Scholar : https://tinyurl.com/5bmuwpvu

Scribd : https://tinyurl.com/5y9txujv

DOI : https://doi.org/10.38124/ijisrt/IJISRT24AUG317

Abstract : Wearable technology (WT) is a revolution in real-time data analytics and sports performance tracking. Both new and professional athletes depend on wearable technology to improve their competitive outcomes and training efficiency. However, further studies are needed to gain complete understanding to optimize their full potential in sports. A warning before the onset of seizure is important to improve quality of life (QoL) of athletes who have epilepsy. There is a need to evaluate the feasibility of wearable sensors to predict seizures with machine learning (ML). Epilepsy poses different challenges to manage and monitor because of unpredictable seizures. Wearable devices provide real-time data collection and constant monitoring to provide insights to trends and patterns related to seizure. Wearable technology is helpful to manage seizure as it allows early prediction, detection, and personalized intervention to empower healthcare providers and patients. This study explores latest advancements in wearable sensors designed for managing epilepsy. The findings of this study has highlighted the importance of wearable devices to improve accuracy in seizure detection, improve patient health with real-time monitoring, and promote data-based decision-making. However, this study recommends further research to validate reliability and accuracy of those devices in different clinical settings and populations. Combined efforts are needed among clinicians, researchers, patients, and technology developers to drive advancements and innovation in wearable technology for managing epilepsy, ultimately improving quality of life and outcomes for people with this neurological disorder.

Keywords : Wearable Technology, Machine Learning, Epilepsy, Seizures, Wearable Sensors.

References :

  1. Beghi, E. (2020). The epidemiology of epilepsy. Neuroepidemiology54(2), 185-191.
  2. Blachut, B., Hoppe, C., Surges, R., Elger, C., & Helmstaedter, C. (2017). Subjective seizure counts by epilepsy clinical drug trial participants are not reliable. Epilepsy & Behavior67, 122-127.
  3. Shih, J. J., Fountain, N. B., Herman, S. T., Bagic, A., Lado, F., Arnold, S., ... & Labiner, D. M. (2018). Indications and methodology for video‐electroencephalographic studies in the epilepsy monitoring unit. Epilepsia59(1), 27-36.
  4. Elger, C. E., & Hoppe, C. (2018). Diagnostic challenges in epilepsy: seizure under-reporting and seizure detection. The Lancet Neurology17(3), 279-288.
  5. Verdru, J., & Van Paesschen, W. (2020). Wearable seizure detection devices in refractory epilepsy. Acta Neurologica Belgica120, 1271-1281.
  6. Leijten, F. S., Dutch TeleEpilepsy Consortium, van Andel, J., Ungureanu, C., Arends, J., Tan, F., ... & de Groot, M. (2018). Multimodal seizure detection: A review. Epilepsia59, 42-47.
  7. Beniczky, S., Conradsen, I., Henning, O., Fabricius, M., & Wolf, P. (2018). Automated real-time detection of tonic-clonic seizures using a wearable EMG device. Neurology90(5), e428-e434.
  8. Bruno, E., Simblett, S., Lang, A., Biondi, A., Odoi, C., Schulze-Bonhage, A., ... & RADAR-CNS Consortium. (2018). Wearable technology in epilepsy: the views of patients, caregivers, and healthcare professionals. Epilepsy & Behavior85, 141-149.
  9. Simblett, S. K., Biondi, A., Bruno, E., Ballard, D., Stoneman, A., Lees, S., ... & Wykes, T. (2020). Patients' experience of wearing multimodal sensor devices intended to detect epileptic seizures: a qualitative analysis. Epilepsy & Behavior102, 106717.
  10. Beniczky, S., Karoly, P., Nurse, E., Ryvlin, P., & Cook, M. (2021). Machine learning and wearable devices of the future. Epilepsia62, S116-S124.
  11. Saab, K., Dunnmon, J., Ré, C., Rubin, D., & Lee-Messer, C. (2020). Weak supervision as an efficient approach for automated seizure detection in electroencephalography. NPJ digital medicine3(1), 59.
  12. Asif, U., Roy, S., Tang, J., & Harrer, S. (2020). SeizureNet: Multi-spectral deep feature learning for seizure type classification. In Machine Learning in Clinical Neuroimaging and Radiogenomics in Neuro-oncology: Third International Workshop, MLCN 2020, and Second International Workshop, RNO-AI 2020, Held in Conjunction with MICCAI 2020, Lima, Peru, October 4–8, 2020, Proceedings 3 (pp. 77-87). Springer International Publishing.
  13. Onorati, F., Regalia, G., Caborni, C., Migliorini, M., Bender, D., Poh, M. Z., ... & Picard, R. W. (2017). Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia58(11), 1870-1879.
  14. Yang, L., Amin, O., & Shihada, B. (2024). Intelligent Wearable Systems: Opportunities and Challenges in Health and Sports. ACM Computing Surveys56(7), 1-42.
  15. Nahavandi, D., Alizadehsani, R., Khosravi, A., & Acharya, U. R. (2022). Application of artificial intelligence in wearable devices: Opportunities and challenges. Computer Methods and Programs in Biomedicine213, 106541.
  16. Nissar, G., Khan, R. A., Mushtaq, S., Lone, S. A., & Moon, A. H. (2024). IoT in healthcare: a review of services, applications, key technologies, security concerns, and emerging trends. Multimedia Tools and Applications, 1-62.
  17. Chowdhury, L. (2024). Mental Wellbeing Technologies in High-Performance Sport: Current Knowledge and Future Directions.
  18. Habtamu, M., Tolosa, K., Abera, K., Demissie, L., Samuel, S., Temesgen, Y., ... & Dawud, A. A. (2023). A novel wearable device for automated real-time detection of epileptic seizures. BMC Biomedical Engineering5(1), 7.
  19. Nithya, N., & Nallavan, G. (2021, March). Role of Wearables in Sports based on Activity recognition and biometric parameters: A Survey. In 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS) (pp. 1700-1705). IEEE.
  20. Casher, C. (2019). Moneyball in the Era of Biometrics: Who Has Ownership over the Biometric Data of Professional Athletes. Dalhousie J. Legal Stud.28, 1.
  21. Garlewicz, A. (2020). Athlete biometric data in soccer: Athlete protection or athlete exploitation?. DePaul J. Sports L.16, ii.
  22. Shavers, B., & Bair, J. (2016). Digital Identity. Hiding behind the Keyboard: Uncovering Covert Communication Methods with Forensic Analysis; Syngress: Amsterdam, The Netherlands, 187-202.
  23. Seçkin, A. Ç., Ateş, B., & Seçkin, M. (2023). Review on Wearable Technology in sports: Concepts, Challenges and opportunities. Applied Sciences13(18), 10399.
  24. Taborri, J., Keogh, J., Kos, A., Santuz, A., Umek, A., Urbanczyk, C., ... & Rossi, S. (2020). Sport biomechanics applications using inertial, force, and EMG sensors: A literature overview. Applied bionics and biomechanics2020.
  25. Leite, S. M., Freitas, J., Campelo, M., & Maciel, M. J. (2016). Electrocardiographic evaluation in athletes:‘Normal’changes in the athlete's heart and benefits and disadvantages of screening. Revista Portuguesa de Cardiologia (English Edition)35(3), 169-177.
  26. Sarubbi, B., Papaccioli, G., Ciriello, G. D., Russo, V., Correra, A., & Baggish, A. (2023). Electrocardiogram in athletes. In Athlete s Heart (pp. 51-76). Academic Press.
  27. Löllgen, H., & Leyk, D. (2018). Exercise testing in sports medicine. Deutsches Ärzteblatt International115(24), 409.
  28. Isakadze, N., & Martin, S. S. (2020). How useful is the smartwatch ECG?. Trends in cardiovascular medicine30(7), 442-448.
  29. Sarhaddi, F., Kazemi, K., Azimi, I., Cao, R., Niela-Vilén, H., Axelin, A., ... & Rahmani, A. M. (2022). A comprehensive accuracy assessment of Samsung smartwatch heart rate and heart rate variability. PLoS One17(12), e0268361.
  30. Thompson, T., Steffert, T., Ros, T., Leach, J., & Gruzelier, J. (2008). EEG applications for sport and performance. Methods45(4), 279-288.
  31. Perrey, S., & Besson, P. (2018). Studying brain activity in sports performance: Contributions and issues. Progress in brain research240, 247-267.
  32. Casson, A. J. (2019). Wearable EEG and beyond. Biomedical engineering letters9(1), 53-71.
  33. Koff, M. F. (2015). Biomechanics of peripheral joints. In Rheumatology (pp. 65-71). Mosby.
  34. Howell, J. (2019). Principles and components of upper limb orthoses. In Atlas of Orthoses and Assistive Devices (pp. 134-145). Elsevier.
  35. Fonseca, J., Ramos, V., Amaro, J. P., Moita, F., & Roseiro, L. (2019, February). Framework for Knee Joint Movement Analysis with Inertial Sensors and Recursive Filters. In 2019 IEEE 6th Portuguese Meeting on Bioengineering (ENBENG) (pp. 1-4). IEEE.
  36. Wilk, M. P., Walsh, M., & O’Flynn, B. (2020). Multimodal sensor fusion for low-power wearable human motion tracking systems in sports applications. IEEE Sensors Journal21(4), 5195-5212.
  37. Waqar, A., Ahmad, I., Habibi, D., Hart, N., & Phung, Q. V. (2021). Enhancing athlete tracking using data fusion in wearable technologies. IEEE Transactions on Instrumentation and Measurement70, 1-13.
  38. Kos, A., & Umek, A. (2018). Wearable sensor devices for prevention and rehabilitation in healthcare: Swimming exercise with real-time therapist feedback. IEEE internet of things journal6(2), 1331-1341.
  39. Benson, L. C., Clermont, C. A., Bošnjak, E., & Ferber, R. (2018). The use of wearable devices for walking and running gait analysis outside of the lab: A systematic review. Gait & posture63, 124-138.
  40. Ahamed, N. U., Kobsar, D., Benson, L., Clermont, C., Kohrs, R., Osis, S. T., & Ferber, R. (2018). Using wearable sensors to classify subject-specific running biomechanical gait patterns based on changes in environmental weather conditions. PLoS One13(9), e0203839.
  41. Kos, M., & Kramberger, I. (2017). A wearable device and system for movement and biometric data acquisition for sports applications. IEEE access5, 6411-6420.
  42. Liu, Y., Ghannam, R., & Heidari, H. (2019). Smart Multi-Sensor Wristband for Gesture Classification. In Proceedings of the IEEE UKCAS, London, UK.
  43. Liu, W., Long, Z., Yang, G., & Xing, L. (2022). A self-powered wearable motion sensor for monitoring volleyball skill and building big sports data. Biosensors12(2), 60.
  44. Gao, X., Zheng, M., Lv, H., Zhang, Y., Zhu, M., & Hou, Y. (2022). Ultrahigh sensitive flexible sensor based on textured piezoelectric composites for preventing sports injuries. Composites Science and Technology229, 109693.
  45. Kreil, M., Ogris, G., & Lukowicz, P. (2008, June). Muscle activity evaluation using force sensitive resistors. In 2008 5th International Summer School and Symposium on Medical Devices and Biosensors (pp. 107-110). IEEE.
  46. Rico-González, M., Los Arcos, A., Clemente, F. M., Rojas-Valverde, D., & Pino-Ortega, J. (2020). Accuracy and reliability of local positioning systems for measuring sport movement patterns in stadium-scale: A systematic review. Applied sciences10(17), 5994.
  47. Waqar, A., Ahmad, I., Habibi, D., & Phung, Q. V. (2021). Analysis of GPS and UWB positioning system for athlete tracking. Measurement: Sensors14, 100036.
  48. Liu, J., Huang, G., Hyyppä, J., Li, J., Gong, X., & Jiang, X. (2023). A survey on location and motion tracking technologies, methodologies and applications in precision sports. Expert Systems with Applications, 120492.
  49. Li, R. T., Kling, S. R., Salata, M. J., Cupp, S. A., Sheehan, J., & Voos, J. E. (2016). Wearable performance devices in sports medicine. Sports health8(1), 74-78.
  50. Kamišalić, A., Fister Jr, I., Turkanović, M., & Karakatič, S. (2018). Sensors and functionalities of non-invasive wrist-wearable devices: A review. Sensors18(6), 1714.
  51. Hayes, A. (2022). What Is Wearable Technology (Wearables)? Definition and Examples. Retrieved from https://www.investopedia.com/terms/w/ wearable-technology.asp?utm_medium=email&utm _source=transaction.
  52. Happiest Minds. (2022). Wearables, Wearable Technology & Devices. Retrieved from https://www.happiestminds.com/insights/wearable-technology/?utm_medium=email&utm_source=transaction
  53. Builtin (n.d.). What is wearable technology? examples of wearables. Retrieved from https://builtin.com/wearables?utm_medium=email&utm_source=transaction
  54. Johansson, D., Malmgren, K., & Alt Murphy, M. (2018). Wearable sensors for clinical applications in epilepsy, Parkinson’s disease, and stroke: a mixed-methods systematic review. Journal of neurology265, 1740-1752.
  55. Ong, J. S., Wong, S. N., Arulsamy, A., Watterson, J. L., & Shaikh, M. F. (2022). Medical technology: A systematic review on medical devices utilized for epilepsy prediction and management. Current Neuropharmacology20(5), 950.
  56. Ahuja, A., Agrawal, S., Acharya, S., Batra, N., & Daiya, V. (2024). Advancements in Wearable Digital Health Technology: A Review of Epilepsy Management. Cureus16(3).
  57. DerSarkissian, C. (2023). Seizure Alert Devices: What Are Your Options? WebMD. Retrieved from https://www.webmd.com/epilepsy/what-to-know-seizure-alert-devices?utm_medium=email&utm_ source=transaction
  58. Epilepsy Foundation (n.d.). Seizure Monitors & Devices. Retrieved from https://epilepsyfoundation.org.au/understanding-epilepsy/epilepsy-and-seizure-management-tools/seizure-monitors-devices/?utm_medium=email &utm_source=transaction.
  59. Rukasha, T., I Woolley, S., Kyriacou, T., & Collins, T. (2020). Evaluation of wearable electronics for epilepsy: A systematic review. Electronics9(6), 968.
  60. Sylver, A. (2022). Wearable devices could help predict seizures. Retrieved from https://news.fiu.edu/2022/seizure-prediction-fiu-researchers-work-to-improve-lives-for-epileptics? utm_medium=email&utm_source=transaction.
  61. Yamakawa, T., Miyajima, M., Fujiwara, K., Kano, M., Suzuki, Y., Watanabe, Y., ... & Maehara, T. (2020). Wearable epileptic seizure prediction system with machine-learning-based anomaly detection of heart rate variability. Sensors20(14), 3987.
  62. Tang, J., El Atrache, R., Yu, S., Asif, U., Jackson, M., Roy, S., ... & Loddenkemper, T. (2021). Seizure detection using wearable sensors and machine learning: Setting a benchmark. Epilepsia62(8), 1807-1819.
  63. Li, W., Wang, G., Lei, X., Sheng, D., Yu, T., & Wang, G. (2022). Seizure detection based on wearable devices: A review of device, mechanism, and algorithm. Acta Neurologica Scandinavica146(6), 723-731.
  64. Stirling, R. E., Grayden, D. B., D'Souza, W., Cook, M. J., Nurse, E., Freestone, D. R., ... & Karoly, P. J. (2021). Forecasting seizure likelihood with wearable technology. Frontiers in neurology12, 704060.
  65. Sadhu, S., Solanki, D., Brick, L. A., Nugent, N. R., & Mankodiya, K. (2023). Designing a Clinician-Centered Wearable Data Dashboard (CarePortal): Participatory Design Study. JMIR Formative Research7, e46866.
  66. Angelides, M. C., Wilson, L. A. C., & Echeverría, P. L. B. (2018). Wearable data analysis, visualisation and recommendations on the go using android middleware. Multimedia Tools and Applications77(20), 26397-26448.
  67. Suter, S. K., Spinner, G. R., Hoelz, B., Rey, S., Thanabalasingam, S., Eckstein, J., & Hirsch, S. (2022). Visualization and analysis of wearable health data from covid-19 patients. arXiv preprint arXiv:2201.07698.
  68. Hicks, J. L., Althoff, T., Sosic, R., Kuhar, P., Bostjancic, B., King, A. C., ... & Delp, S. L. (2019). Best practices for analyzing large-scale health data from wearables and smartphone apps. NPJ digital medicine2(1), 45.
  69. Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial intelligence in healthcare: transforming the practice of medicine. Future healthcare journal8(2), e188.
  70. Prajapati, C. (2022). Integration of Wearable Devices with EHR. Apexon. Retrieved from https://www.apexon.com/blog/integration-of-wearable-devices-with-ehr/?utm_medium=email&utm_source=transaction
  71. Syscreations (2023). EHR Integration with Wearable Devices. Retrieved from https://www.syscreations.ca/blog/ehr-wearable-technology-integration/?utm_medium=email&utm_ source=transaction.
  72. PrognoCIS. (2024). Telemedicine and EHR Integration with Wearable Technology. Retrieved from https://prognocis.com/wearable-integration-with-ehr-promotes-interoperability/?utm_medium= email&utm_source=transaction.
  73. Yamakawa, T., Inoue, T., Harada, M., & Tsuneda, A. (2007). Design of a CMOS heartbeat spike-pulse detection circuit integrable in an RFID tag for heart rate signal sensing. IEICE transactions on electronics90(6), 1336-1343.
  74. Fujiwara, K., Miyajima, M., Yamakawa, T., Abe, E., Suzuki, Y., Sawada, Y., ... & Matsushima, E. (2015). Epileptic seizure prediction based on multivariate statistical process control of heart rate variability features. IEEE Transactions on Biomedical Engineering63(6), 1321-1332.
  75. Yamakawa, T. (2012). A low-cost long-life RR interval telemeter with automatic gain control for various ECG amplitudes. Journal of Advanced Research in Physics3(1).
  76. Yamakawa, T., Fujiwara, K., Kano, M., Miyajima, M., Suzuki, Y., Maehara, T., ... & Matsushima, E. (2013, October). Development of a wearable HRV telemetry system to be operated by non-experts in daily life. In 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (pp. 1-4). IEEE.
  77. Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., & Schwartz, P. J. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. European heart journal17(3), 354-381.
  78. Fuller, D., Colwell, E., Low, J., Orychock, K., Tobin, M. A., Simango, B., ... & Taylor, N. G. (2020). Reliability and validity of commercially available wearable devices for measuring steps, energy expenditure, and heart rate: systematic review. JMIR mHealth and uHealth8(9), e18694.
  79. Shei, R. J., Holder, I. G., Oumsang, A. S., Paris, B. A., & Paris, H. L. (2022). Wearable activity trackers–advanced technology or advanced marketing?. European Journal of Applied Physiology122(9), 1975-1990.
  80. Brinkmann, B. H., Karoly, P. J., Nurse, E. S., Dumanis, S. B., Nasseri, M., Viana, P. F., ... & Cook, M. J. (2021). Seizure diaries and forecasting with wearables: epilepsy monitoring outside the clinic. Frontiers in Neurology12, 690404.
  81. Challener, C.A. (2020). Wearable Technology: Innovation, Adherence, and Clinical Outcomes. Pharma’s Almanac. Retrieved from https://www.pharmasalmanac.com/articles/wearable-technology-innovation-adherence-and-clinical-outcomes?utm_medium=email&utm_source=transaction.
  82. Materia, F. T., & Smyth, J. M. (2024). Acceptability and concerns about innovative wearable health sensors in persons with and without chronic disease diagnosis. Internet Interventions35, 100702.
  83. Johnson, K. B., Wei, W. Q., Weeraratne, D., Frisse, M. E., Misulis, K., Rhee, K., ... & Snowdon, J. L. (2021). Precision medicine, AI, and the future of personalized health care. Clinical and translational science14(1), 86-93.
  84. Yang, Y., Lee, J. T., Guidera, J. A., Vlasov, K. Y., Pei, J., Brown, E. N., ... & Shanechi, M. M. (2019). Developing a personalized closed-loop controller of medically-induced coma in a rodent model. Journal of neural engineering16(3), 036022.
  85. Zhang, G., Chen, Y., Zhou, W., Chen, C., & Liu, Y. (2023). Bioenergy‐Based Closed‐Loop Medical Systems for the Integration of Treatment, Monitoring, and Feedback. Small Science3(10), 2300043.
  86. American Heart Association (2022). Study finds people who need wearable health devices the most use them the least. Retrieved from https://newsroom.heart.org/news/study-finds-people-who-need-wearable-health-devices-the-most-use-them-the-least.
  87. Raza, M. M., Venkatesh, K. P., & Kvedar, J. C. (2023). Promoting racial equity in digital health: applying a cross-disciplinary equity framework. npj Digital Medicine, 6(1), 3.
  88. https://www.cureus.com/articles/241470-advancements-in-wearable-digital-health-technology-a-review-of-epilepsy-management#!/

Wearable technology (WT) is a revolution in real-time data analytics and sports performance tracking. Both new and professional athletes depend on wearable technology to improve their competitive outcomes and training efficiency. However, further studies are needed to gain complete understanding to optimize their full potential in sports. A warning before the onset of seizure is important to improve quality of life (QoL) of athletes who have epilepsy. There is a need to evaluate the feasibility of wearable sensors to predict seizures with machine learning (ML). Epilepsy poses different challenges to manage and monitor because of unpredictable seizures. Wearable devices provide real-time data collection and constant monitoring to provide insights to trends and patterns related to seizure. Wearable technology is helpful to manage seizure as it allows early prediction, detection, and personalized intervention to empower healthcare providers and patients. This study explores latest advancements in wearable sensors designed for managing epilepsy. The findings of this study has highlighted the importance of wearable devices to improve accuracy in seizure detection, improve patient health with real-time monitoring, and promote data-based decision-making. However, this study recommends further research to validate reliability and accuracy of those devices in different clinical settings and populations. Combined efforts are needed among clinicians, researchers, patients, and technology developers to drive advancements and innovation in wearable technology for managing epilepsy, ultimately improving quality of life and outcomes for people with this neurological disorder.

Keywords : Wearable Technology, Machine Learning, Epilepsy, Seizures, Wearable Sensors.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe