A Review on the Valorization of Agro-Industrial Fruit Peels Through Combined Enzyme and Microwave Extraction for Functional Ingredient Development


Authors : Osisami Olubukunola F.; Egwim C. Evans; Adeboye E. Seyi; Madaki F. M.; Busari M. B.; Salith H. Suleiman; Hassan S. Abu; Ononokpono G. E.

Volume/Issue : Volume 11 - 2026, Issue 1 - January


Google Scholar : https://tinyurl.com/f75jvbf7

Scribd : https://tinyurl.com/52w2tpz6

DOI : https://doi.org/10.38124/ijisrt/26jan294

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.


Abstract : Large volumes of byproducts are generated during the processing of citrus, plantain, and banana, much of which is discarded, contributing to environmental pollution and inefficient resource use. These agro-wastes, however, are rich sources of bioactive compounds with significant nutritional and therapeutic potential. In the context of increasing global interest in sustainable resource utilization and circular economy strategies, the valorization of fruit peels represents a promising pathway for developing high-value functional ingredients for food and pharmaceutical applications. This review synthesizes current knowledge on the major phytochemicals present in these wastes with particular emphasis on total phenolics, flavonoids, including quercetin and its derivatives, carotenoids, and sulfur-containing compounds. The reported biological activities of these compounds, such as antidiabetic, anti-obesity, anticancer, and antimicrobial effects, are discussed in relation to their relevance for pharmacological and biomedical applications. The review further examines recent advances in green extraction technologies, focusing on enzyme-assisted and microwave-assisted extraction methods, which offer improved efficiency and sustainability compared with conventional solvent-intensive and high-temperature techniques. Additionally, emerging applications of machine learning approaches for identifying, predicting, and prioritizing bioactive compounds from complex plant matrices are briefly considered.

Keywords : Bioactive Compounds, Phytochemicals, Total Phenolics, Agro-Wastes, Machine Learning.

References :

  1. Abemsana Devi, O., & Saikia Barooah, M. (2025). Antioxidant properties of natural bioactive compounds. IntechOpen. https://doi.org/10.5772/intechopen.1007127
  2. Abirami, A., Nagarani, G., & Siddhuraju, P. (2014). In vitro antioxidant, antihyperglycemic, and antihyperlipidemic activities of Citrus hystrix peel extracts. Food Chemistry, 165, 418–427.
  3. Acevedo, S. A., Carrillo, Á. J. D., Flórez-López, E., & Grande-Tovar, C. D. (2021). Recovery of banana waste-loss from production and processing: A contribution to a circular economy. Molecules, 26(17), 5282. https://doi.org/10.3390/molecules26175282
  4. ACS Omega. (2024). Advanced extraction techniques for retrieving bioactive components from natural sources. ACS Omega, 9(29), 31274–31297. https://doi.org/10.1021/acsomega.4c02718
  5. Al-Khayri, J. M., Sahana, G. R., Nagella, P., Joseph, B. V., Alessa, F. M., & Al-Mssallem, M. Q. (2022). Flavonoids as potential anti-inflammatory molecules: A review. Molecules, 27(9), 2901. https://doi.org/10.3390/molecules27092901
  6. Alvarez, A., & Galan, J. E. L. (2025). A critical review of plantain agricultural waste valorization for energy and sustainability applications. Discover Sustainability, 6, 1190. https://doi.org/10.1007/s43621-025-01823-4
  7. Al-Wabel, M. I., Ahmad, M., Rasheed, H., Rafique, M. I., Ahmad, J., & Usman, A. R. A. (2022). Environmental issues due to open dumping and landfilling. In P. Pathak & S. G. Palani (Eds.), Circular economy in municipal solid waste landfilling: Biomining & leachate treatment (pp. 73–98). Springer. https://doi.org/10.1007/978-3-031-07785-2_4
  8. Anwar, M. M. J. (2025). Advances in green technologies for bioactive extraction and valorization of agro-waste in food and nutraceutical industries. Scholars Journal of Life Sciences, 10(5), 1–10. https://doi.org/10.36348/sjls.2025.v10i05.005
  9. Bala, S., Garg, D., Sridhar, K., Inbaraj, B. S., Singh, R., Kamma, S., Tripathi, M., & Sharma, M. (2023). Transformation of agro-waste into value-added bioproducts and bioactive compounds: Micro/nano formulations and application in the agri-food-pharma sector. Bioengineering, 10(2), 152. https://doi.org/10.3390/bioengineering10020152
  10. Balogun, O., & Kang, H. W. (2024). Bioactivities and applications of fruit byproducts and their phytochemicals: A mini review. Food Reviews International, 40(10), 3964–4004. https://doi.org/10.1080/87559129.2024.2383429
  11. Bastos, K. V. L. d. S., de Souza, A. B., Tomé, A. C., & Souza, F. d. M. (2025). New strategies for the extraction of antioxidants from fruits and their by-products: A systematic review. Plants, 14(5), 755. https://doi.org/10.3390/plants14050755
  12. Belkozhayev, A. M., Abaildayev, A., Kossalbayev, B. D., Tastambek, K. T., Kadirshe, D. K., & Toleutay, G. (2025). Microbial valorization of agricultural and agro-industrial waste into bacterial cellulose: Innovations for circular bioeconomy integration. Microorganisms, 13(12), 2686. https://doi.org/10.3390/microorganisms13122686
  13. Bhavani, M., et al. (2023). Global importance of banana production. Journal reference, details as provided.
  14. Bhadange, Y. A., Carpenter, J., & Saharan, V. K. (2024). A comprehensive review on advanced extraction techniques for retrieving bioactive components from natural sources. ACS Publications. https://pubs.acs.org/doi/10.1021/acsomega.4c02718
  15. Bhatt, S., et al. (2024). Advanced green extraction technologies for functional compounds. Innovative Food Science & Emerging Technologies. https://doi.org/10.1016/j.ifset.2024.103828
  16. Chakanaka, P., Mungwari, C., King'ondu, C. K., Sigauke, P., & Obadele, B. A. (2024). Conventional and modern techniques for bioactive compounds recovery from plants: A review. ACS Omega, 9(29), 31274–31297. https://doi.org/10.1021/acsomega.4c02718
  17. Chakraborty, S., Goel, K., Rasal, V., Paul, K., & Mandal, D. (2024). [Title unavailable]. Amity Institute of Food Technology.
  18. Das, S., Nadar, S. S., & Rathod, V. K. (2021). Integrated strategies for enzyme-assisted extraction of bioactive molecules: A review. International Journal of Biological Macromolecules, 191, 899–917. https://doi.org/10.1016/j.ijbiomac.2021.09.060
  19. Díaz-de-Cerio, E., & Trigueros, E. (2025). Evaluating the sustainability of emerging extraction technologies for valorization of food waste: Microwave, ultrasound, enzyme-assisted, and supercritical fluid extraction. Agriculture, 15(19), 2100. https://doi.org/10.3390/agriculture15192100
  20. El Gharras, H. (2009). Polyphenols: Food sources, properties and applications—A review. International Journal of Food Science and Technology, 44(12), 2512–2518. https://doi.org/10.1111/j.1365-2621.2009.02077.x
  21. Esonu, C. E., Iheme, C. I., Njoku, O. C., Agwu, L. O., Airaodion, A. I., et al. (2024). Investigation of proximate composition and bioactive components in banana (Musa acuminata) peels using advanced analytical techniques. Journal of Nutrition and Food Processing, 7(10). https://doi.org/10.31579/2637-8914/256
  22. FoCha. (2025). Article reference from Food Chemistry Advances. https://doi.org/10.1016/j.focha.2025.101136
  23. Focha. (2025). Environmental and food applications of fruit by-product valorization. Food Chemistry Advances, 101136. https://doi.org/10.1016/j.focha.2025.101136
  24. Food & Humanity. (2024). Bioactive compounds of foods: Phytochemicals and peptides. https://doi.org/10.1016/j.foohum.2024.100354
  25. Food Processing. (2025). Innovations in natural product extraction. https://doi.org/10.1016/j.foodp.2025.100047
  26. Food Processing. (2025). Sustainable food extraction and valorization technologies. Food Processing and Preservation, 100047. https://doi.org/10.1016/j.foodp.2025.100047
  27. Food Research Journal. (2020). Antioxidant compounds in banana peel. https://doi.org/10.1016/j.foodres.2020.109061
  28. Ghag, S. B., & Ganapathi, T. R. (2019). Banana and plantains: Improvement, nutrition, and health. In J.-M. Mérillon & K. G. Ramawat (Eds.), Bioactive molecules in food (pp. 1–35). Springer. https://doi.org/10.1007/978-3-319-78030-6_73
  29. Gupta, P., et al. (2023). Environmental implications of fruit waste mismanagement. Waste Management. https://doi.org/10.1016/j.wasman.2023.02.035
  30. Health & Food Sciences. (2024). Bioactive compounds and extraction challenges. https://doi.org/10.1016/j.sciaf.2024.e02509
  31. Intharuksa, A., Kuljarusnont, S., Sasaki, Y., & Tungmunnithum, D. (2024). Flavonoids and other polyphenols: Bioactive molecules from traditional medicine recipes/medicinal plants and their potential for phytopharmaceutical and medical application. Molecules, 29(23), 5760. https://doi.org/10.3390/molecules29235760
  32. Islam, M., Malakar, S., Rao, M. V., et al. (2023). Recent advancement in ultrasound-assisted novel technologies for the extraction of bioactive compounds from herbal plants: A review. Food Science and Biotechnology, 32, 1763–1782. https://doi.org/10.1007/s10068-023-01346-6
  33. JAFR. (2025). Journal of African Food Research article. https://doi.org/10.1016/j.jafr.2025.101983
  34. Jamal Anwar, M. M. (2025). Advances in green technologies for bioactive extraction and valorization of agro-waste in food and nutraceutical industries. Scientific Journal of Life Sciences, 10(5), 1–20. https://doi.org/10.36348/sjls.2025.v10i05.005
  35. Johri, S., & Sharma, P. (2025). Nutritional and phytochemical characterization of plantain peel. The Pharma Innovation Journal, 14(1), 36–41.
  36. Kamiloglu, S., Capanoglu, E., & Jafari, S. M. (2022). An overview of food bioactive compounds and their health‐promoting features. In S. M. Jafari & E. Capanoglu (Eds.), Retention of bioactives in food processing (pp. 1–39). Springer. https://doi.org/10.1007/978-3-030-96885-4_1
  37. Kaur, S., Kaur, G., Kumari, A., Ghosh, A., Singh, G., Bhardwaj, R., Kumar, A., & Riar, A. (2020). Resurrecting forgotten crops: Food-based products from potential underutilized crops—a path to nutritional security and diversity. Food Energy Security. https://doi.org/10.1002/fes3.220
  38. Koul, B., Yakoob, M., & Shah, M. P. (2022). Agricultural waste management strategies for environmental sustainability. Environmental Research, 206, 112285. https://doi.org/10.1016/j.envres.2021.112285
  39. Kumar, H., Bhardwaj, K., Sharma, R., et al. (2020). Fruit and vegetable peels: Utilization of high-value horticultural waste in novel industrial applications. Molecules, 25(20). PMCID: PMC7356603
  40. Ligarda-Samanez, C. A., Huamán-Carrión, M. L., Calsina-Ponce, W. C., et al. (2025). Technological innovations and circular economy in the valorization of agri-food by-products: Advances, challenges and perspectives. Foods, 14(11), 1950. https://doi.org/10.3390/foods14111950
  41. Łubek-Nguyen, A., Ziemichód, W., & Olech, M. (2022). Application of enzyme-assisted extraction for recovery of natural bioactive compounds. Applied Sciences, 12(7), 3232. https://doi.org/10.3390/app12073232
  42. Maled, S. B., et al. (2024). Enzyme-assisted extraction. In Bioactive Extraction and Application in Food and Nutraceutical Industries. Humana. https://doi.org/10.1007/978-1-0716-3601-5_8
  43. Mandal, D., et al. (2023). Nutritional content and bioactive compounds of banana peel and its potential utilization: A review. Journal of Food and Nutrition Science, Special Issue. https://doi.org/10.17756/jfcn.2023-s1-073
  44. Manso, T., Lores, M., & de Miguel, T. (2021). Antimicrobial activity of polyphenols and natural polyphenolic extracts on clinical isolates. Antibiotics, 11(1), 46. https://doi.org/10.3390/antibiotics11010046
  45. Maqbool, Z., et al. (2025). Citrus waste as source of bioactive compounds: Extraction and utilization. Discover Food, 5, 8. https://doi.org/10.1007/s44187-025-00276-y
  46. Masud Parvez, G. M., Tonu, J. F., Ara, R., Joarder, M. M. M., Sarker, R. K., Naznin, M. A., Hossain, M. S., Sultana, R., Parvin, S., & Abdul Kader, M. (2023). Nutritional content and bioactive compounds of banana peel and its potential utilization: A review. Journal of Pharmacognosy and Phytochemistry, 12(1), 14574. https://doi.org/10.22271/phyto.2023.v12.i1c.14574
  47. Mehdizadeh, M., Omidi, A., Matindike, R., et al. (2025). Agri-waste valorization: Pathways to sustainable bioenergy and biochemical innovation. Circular Economy and Sustainability. https://doi.org/10.1007/s43615-025-00688-z
  48. Mehta, N., S., J., Kumar, P., Verma, A. K., Umaraw, P., Khatkar, S. K., Khatkar, A. B., Pathak, D., Kaka, U., & Sazili, A. Q. (2022). Ultrasound-assisted extraction and the encapsulation of bioactive components for food applications. Foods, 11(19), 2973. https://doi.org/10.3390/foods11192973
  49. Mudasir, Y., Aggarwal, P., Aslam, R., & Rehal, J. (2020). Extraction of bioactives from citrus. In Inamuddin, A. M. Asiri, & A. M. Isloor (Eds.), Green sustainable processes for chemical and environmental engineering and science (pp. 357–377). Elsevier. https://doi.org/10.1016/B978-0-12-817388-6.00015-5
  50. Muley, A. B., Thorat, A. S., Singhal, R. S., & Babu, K. H. (2022). A tri-enzyme co-immobilized magnetic complex: Process details, kinetics, thermodynamics, and applications. International Journal of Biological Macromolecules, 118, 1781–1795. https://doi.org/10.1016/j.jff.2022.105163
  51. Munir, H., Yaqoob, S., Awan, K. A., Imtiaz, A., Naveed, H., Ahmad, N., Naeem, M., Sultan, W., & Ma, Y. (2024). Unveiling the chemistry of citrus peel: Insights into nutraceutical potential and therapeutic applications. Foods, 13(11), 1681. https://doi.org/10.3390/foods13111681
  52. Nargotra, P., Ortizo, R. G. G., Wang, J. X., et al. (2024). Enzymes in the bioconversion of food waste into valuable bioproducts: A circular economy perspective. Systems Microbiology and Biomanufacturing, 4, 850–868. https://doi.org/10.1007/s43393-024-00283-7
  53. Nirmal, N. P., Khanashyam, A. C., Mundanat, A. S., Shah, K., Babu, K. S., Thorakkattu, P., Al-Asmari, F., & Pandiselvam, R. (2023). Valorization of fruit waste for bioactive compounds and their applications in the food industry. Foods, 12(3), 556. https://doi.org/10.3390/foods12030556
  54. Nutritional Phytochemical Composition and In Vitro Functional Properties of Ripe and Unripe Plantain Peels. (2024). ResearchGate preprint.
  55. Nweke, C. N., Onu, C. E., Nwabanne, J. T., Ohale, P. E., Madiebo, E. M., & Chukwu, M. M. (2023). Optimal pretreatment of plantain peel waste for biogas production using neural-network modeling. Heliyon, 9(11), e21995. https://doi.org/10.1016/j.heliyon.2023.e21995
  56. Odunayo, O. O. (2025). Citrus peels: An effective source of bioactive compounds. IntechOpen. https://doi.org/10.5772/intechopen.1004330
  57. Oliveira, M. R. d., Cantorani, J. R. H., & Pilatti, L. A. (2025). Sustainable extraction of bioactive compounds from food processing by-products: Strategies and circular economy insights. Processes, 13(11), 3611. https://doi.org/10.3390/pr13113611
  58. Omidi, A., et al. (2024). Sustainable valorization strategies for agro-industrial residues. Process Safety and Environmental Protection, 180, 1–15. https://doi.org/10.1016/j.psep.2024.01.055
  59. Omotayo, A. O., & Aremu, A. O. (2020). Underutilized African indigenous fruit trees and food–nutrition security: Opportunities, challenges, and prospects. Food Security Journal. https://doi.org/10.1002/fes3.220
  60. Okorie, D., & Eleazu, C. (2015). Nutrient and heavy metal composition of plantain (Musa paradisiaca) and banana (Musa paradisiaca) peels. Food and Nutrition Sciences. https://doi.org/10.4172/2155-9600.1000370
  61. Okwu, D. E. (2008). Citrus fruits: A rich source of phytochemicals. Journal of Chemistry, details as provided.
  62. Osorio-Tobón, J. F. (2020). Recent advances and comparisons of conventional and alternative extraction techniques of phenolic compounds. Journal of Food Science and Technology, 57(12), 4299–4315. https://doi.org/10.1007/s13197-020-04433-2
  63. Perea-Moreno, A. J., & Muñoz-Rodríguez, D. (2024). Agro-industrial wastes valorisation to energy and value-added products for environmental sustainability. In R. T. Kapoor et al. (Eds.), Biomass Valorization (pp. 1–26). Springer. https://doi.org/10.1007/978-981-97-8557-5_1
  64. Pramanik, P., Chatterjee, S., Sinha, O., & Garai, U. (2023). Bioactive components of banana peel: A comprehensive review. Pure and Applied Biology, 12(1), 470–490. http://dx.doi.org/10.19045/bspab.2023.120049
  65. Putra, N. R., Aziz, A. H. A., Faizal, A. N. M., & Che Yunus, M. A. (2022). Methods and Potential in Valorization of Banana Peels Waste by Various Extraction Processes: In Review. Sustainability, 14(17), 10571. https://doi.org/10.3390/su141710571
  66. Rather, J. A., Akhter, N., Ayaz, Q., et al. (2023). Fruit peel valorization, phytochemical profile, biological activity, and applications in food and packaging industries: Comprehensive review. Current Food Science and Technology Reports, 1, 63–79. https://doi.org/10.1007/s43555-023-00007-3
  67. Rawat, N., Das, S., Wani, A. W., Javeed, K., Qureshi, S. N., & Zarina. (2024). [Article title unavailable]. International Journal of Chemical Studies, 7(7), Article 968. https://doi.org/10.33545/2618060X.2024.v7.i7Sa.968
  68. ResearchGate. (2023). Antioxidant potential and bioactive compounds in banana peel: A review. Retrieved from https://www.researchgate.net/publication/383213377_Antioxidant_potential_and_bioactive_compounds_in_banana_peel_A_review
  69. ResearchGate. (2025). Green solvent extraction and eco-friendly novel techniques of bioactive compounds from plant waste. Retrieved from https://www.researchgate.net/publication/396689524
  70. Ristivojević, P., Krstić Ristivojević, M., Stanković, D., & Cvijetić, I. (2024). Advances in extracting bioactive compounds from food and agricultural waste and by-products using natural deep eutectic solvents: A circular economy perspective. Molecules, 29(19), 4717. https://doi.org/10.3390/molecules29194717
  71. Saad, A. M., Mohammed, D. M., Alkafaas, S. S., Ghosh, S., Negm, S. H., Salem, H. M., Fahmy, M. A., Semary, H. E., Ibrahim, E. H., AbuQamar, S. F., El-Tarabily, K. A., & El-Saadony, M. T. (2025). Dietary polyphenols and human health: Sources, biological activities, nutritional and immunological aspects, and bioavailability—A comprehensive review. Frontiers in Immunology, 16, 1653378. https://doi.org/10.3389/fimmu.2025.1653378
  72. Saikia, D., Panme, F. A., Das, D., Nayak, P. K., & Kesavan, R. (2024). Exploring the potential of underutilized fruits and vegetables: Nutrition, sustainability, and future prospects. In S. Roy, P. Nisha, & R. Chakraborty (Eds.), Traditional Foods: The Reinvented Superfoods (pp. 1–20). Springer, Cham. https://doi.org/10.1007/978-3-031-72757-3_6
  73. Saini, R. K., Ranjit, A., Sharma, K., Prasad, P., Shang, X., Gowda, K. G. M., & Keum, Y.-S. (2022). Bioactive compounds of citrus fruits: Composition and health benefits of carotenoids, flavonoids, limonoids, and terpenes. Antioxidants, 11(2), 239. https://doi.org/10.3390/antiox11020239
  74. Saleem, M., et al. (2023). [Study referenced from Heliyon, 9(4), e15433.] https://doi.org/10.1016/j.crbiot.2023.100152
  75. Samanta, S., Banerjee, J., Ahmed, R., & Dash, S. K. (2023). Potential benefits of bioactive functional components of citrus fruits for health promotion and disease prevention. In S. Singh Purewal, S. Punia Bangar, & P. Kaur (Eds.), Recent advances in citrus fruits (pp. xx–xx). Springer. https://doi.org/10.1007/978-3-031-37534-7_15
  76. Santiago, B., Sillero, L., Moreira, M. T., Feijoo, G., & González-García, S. (2023). Agri-food waste valorisation. In P. Chowdhary & A. Raj (Eds.), Agri-Food Waste Valorisation (Vol. 78, pp. 1–44). Royal Society of Chemistry.
  77. Scientific Bulletin Series F. Biotechnologies (2024). Valorization of vegetal by-products and plant waste for sustainable applications. Scientific Bulletin. Series F. Biotechnologies, Vol. XXVIII, No. 2, 2024. DOI: 10.1016/j.cscee.2024.101066
  78. Shicai Sun, Yu, Y., Jo, Y., Han, J. H., Xue, Y., Cho, M., Bae, S. J., Ryu, D., Park, W., Ha, K. T., & Zhuang, S. (2024). Impact of extraction techniques on phytochemical composition and bioactivity of natural product mixtures. Innovative Food Science & Emerging Technologies, 103828. https://doi.org/10.1016/j.ifset.2024.103828
  79. Sidhu, J. S., & Zafar, T. A. (2018). Bioactive compounds in banana fruits and their health benefits. Food Quality and Safety, 2(4), 183–188. https://doi.org/10.1093/fqsafe/fyy019
  80. Silva, S. O., Mafra, A. K. C., Pelissari, F. M., Rodrigues de Lemos, L., & Molina, G. (2025). Biotechnology in agro-industry: Valorization of agricultural wastes, by-products and sustainable practices. Microorganisms, 13(8), 1789. https://doi.org/10.3390/microorganisms13081789
  81. Singh, B., Singh, J. P., Kaur, A., & Singh, N. (2020). Phenolic composition, antioxidant potential, and health benefits of citrus peel. Food Research International, 132, 109114. https://doi.org/10.1016/j.foodres.2020.109114
  82. Sun, S., Yu, Y., Jo, Y., Han, J. H., Xue, Y., Cho, M., Bae, S. J., Ryu, D., Park, W., Ha, K. T., & Zhuang, S. (2024). Impact of extraction techniques on phytochemical composition and bioactivity of natural product mixtures. Innovative Food Science & Emerging Technologies, 103828. https://doi.org/10.1016/j.ifset.2024.103828
  83. Suri, S., Singh, A., & Nema, P. K. (2022). Current applications of citrus fruit processing waste: A scientific outlook. Applied Food Research, 2(1), 100050. https://doi.org/10.1016/j.afres.2022.100050
  84. Suriyaprom, S., Mosoni, P., Leroy, S., Kaewkod, T., Desvaux, M., & Tragoolpua, T. (2022). Antioxidants of fruit extracts as antimicrobial agents against pathogenic bacteria. Antioxidants, 11(3), 602. https://doi.org/10.3390/antiox11030602
  85. Sustainable Food Health. (2024). Functional properties of natural product extracts. https://doi.org/10.1002/fsh3.70012
  86. Suthar, M. B., Babu, K., Devi, H. L., Lal, J., & Thakur, A. (2024). Enzyme-assisted extraction of bioactive compounds from underutilized plants. Journal reference, details as provided.
  87. Suthar, M. B., Nadar, S. S., & Rathod, V. K. (2021). Enzyme-assisted extraction of bioactive compounds from underutilized plants for functional food use. Journal of Food Science and Technology, 58(4), 1254–1272.
  88. Thilakarathna, R. C. N., Siow, L. F., Tang, T. K., et al. (2023). A review on application of ultrasound and ultrasound-assisted technology for seed oil extraction. Journal of Food Science and Technology, 60, 1222–1236. https://doi.org/10.1007/s13197-022-05359-7
  89. Torres-Valenzuela, L. S., Franco-Urbano, C., Navia-Porras, D. P., Sarmiento, N., & Rojas, C. (2025). Characterization and chemoinformatic prediction of retention indices of metabolites in coffee and plantain by-product flours using GC-TOF MS. Journal of Agricultural and Food Chemistry, 73(47), 30473–30487. https://doi.org/10.1021/acs.jafc.5c11135
  90. Tsui, T. H., van Loosdrecht, M. C. M., Dai, Y., & Tong, Y. W. (2023). Machine learning and circular bioeconomy: Building new resource efficiency from diverse waste streams. Bioresource Technology, 369, 128445. https://doi.org/10.1016/j.biortech.2022.128445
  91. Usman, M., Nakagawa, M., & Cheng, S. (2023). Emerging trends in green extraction techniques for bioactive natural products. Processes, 11(12), 3444. https://doi.org/10.3390/pr11123444
  92. Uzairu, S. M., & Kano, M. K. (2021). Assessment of phytochemical and mineral composition of unripe and ripe plantain (Musa paradisiaca) peels. African Journal of Food Science, 15(3), 107–112.
  93. V, B., S, L. K., & S, R. K. (2023). Antioxidant and anti-inflammatory properties of the two varieties of Musa acuminata: An in vitro study. Cureus, 15(12), e51260. https://doi.org/10.7759/cureus.51260
  94. Vieira, R. M., de Freitas, C., Beluomini, M. A., et al. (2025). Exploring fruit waste macromolecules and their derivatives to produce building blocks and materials. Reviews in Environmental Science and Biotechnology, 24, 167–189. https://doi.org/10.1007/s11157-024-09713-3
  95. Wani, K. M., & Dhanya, M. (2025). Unlocking the potential of banana peel bioactives: Extraction methods, benefits, and industrial applications. Discover Food, 5(8). https://doi.org/10.1007/s44187-025-00276-y
  96. Wen, L., Zhang, Z., Sun, D. W., Sivagnanam, S. P., & Tiwari, B. K. (2020). Combination of emerging technologies for the extraction of bioactive compounds. Critical Reviews in Food Science and Nutrition, 60(11), 1826–1841. https://doi.org/10.1080/10408398.2019.1602823
  97. Yalcin, H., & Çapar, T. D. (2017). Bioactive compounds of fruits and vegetables. In F. Yildiz & R. Wiley (Eds.), Minimally processed refrigerated fruits and vegetables (pp. 1–27). Springer. https://doi.org/10.1007/978-1-4939-7018-6_21
  98. Yaqoob, M., Aggarwal, P., Aslam, R., & Rehal, J. (2020). Extraction of bioactives from citrus. In Green Sustainable Process for Chemical and Environmental Engineering and Science (pp. 357–377). Elsevier. https://doi.org/10.1016/B978-0-12-817388-6.00015-5
  99. Zaky, A. A., Akram, M. U., Rybak, K., Witrowa-Rajchert, D., & Nowacka, M. (2024). Bioactive compounds from plants and by-products: Novel extraction methods, applications, and limitations. Foods, 13, 1221. https://doi.org/10.3390/foods13061221
  100. Zaky, M., et al. (2024). Citrus peels: An effective source of bioactive compounds. ResearchGateZou, Z., et al. (2016). The citrus genome and global production studies. Journal reference, details as provided.

Large volumes of byproducts are generated during the processing of citrus, plantain, and banana, much of which is discarded, contributing to environmental pollution and inefficient resource use. These agro-wastes, however, are rich sources of bioactive compounds with significant nutritional and therapeutic potential. In the context of increasing global interest in sustainable resource utilization and circular economy strategies, the valorization of fruit peels represents a promising pathway for developing high-value functional ingredients for food and pharmaceutical applications. This review synthesizes current knowledge on the major phytochemicals present in these wastes with particular emphasis on total phenolics, flavonoids, including quercetin and its derivatives, carotenoids, and sulfur-containing compounds. The reported biological activities of these compounds, such as antidiabetic, anti-obesity, anticancer, and antimicrobial effects, are discussed in relation to their relevance for pharmacological and biomedical applications. The review further examines recent advances in green extraction technologies, focusing on enzyme-assisted and microwave-assisted extraction methods, which offer improved efficiency and sustainability compared with conventional solvent-intensive and high-temperature techniques. Additionally, emerging applications of machine learning approaches for identifying, predicting, and prioritizing bioactive compounds from complex plant matrices are briefly considered.

Keywords : Bioactive Compounds, Phytochemicals, Total Phenolics, Agro-Wastes, Machine Learning.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe