Authors :
Amandeep Kaur; Brij Bhushan Sharma; Jyoti Pandir; Poonam Kumari; Dr. Rajneesh Kaur; Versha Sharma
Volume/Issue :
Volume 10 - 2025, Issue 5 - May
Google Scholar :
https://tinyurl.com/3kvxmpsa
DOI :
https://doi.org/10.38124/ijisrt/25may1561
Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.
Abstract :
Some of the most significant medications ever found are derived from fungi, and they have shown to be essential
in the treatment of chronic illnesses. Not only have they prevented millions of deaths, but in certain instances, they have
altered about the limits of medical advancement. With new businesses entering the market and hoping so use cutting-edge
genomic technologies to speed up the discovery process, this might be about to change. This review looks at the path of
discovery for both authorized fungal-derived medications and those undergoing clinical trials for long-term illnesses. We
address the potential ecological roles of essential chemicals in nature and with how this connects to these application in
human medicine. We demonstrate that how compounds meant to prohibit rival fungi, frequently interact with human
receptors drug, sometimes with unanticipated benefits, due to conservation of drug receptors between fungi and people. In
addition, we map the locations of medications, antimicrobial substances, and hallucinogenic mushrooms like fungal tree and
focus on their distribution with that of all fungal metabolites. Lastly, we look at the self-resistance phenomena with fungi
and how to predict the mechanism of metabolites and facilitate the drug discovery and lead optimization process.
Keywords :
Secondary Metabolites Production, Fungal Metabolites Biosynthesis, Application of Fungi in Pharmaceuticals.
References :
- Abad, M.J., Bedoya, L.M., Bermejo, P., 2011. Marine compounds and their antimicrobial activities. In: Méndez Vilas, A. (Ed.), Science Against Microbial Pathogens: Communicating Current Research and Technological Advances. vol. 51. FORMATEX, Badajoz, pp. 1293–1306.
- Abdel-Lateff, A.A.-A.M., 2004. Secondary metabolites of marine-derived fungi: natural product chemistry and biological activity. Dissertation. Abo-Kadoum, M.A., Abo-Dahab, N.F., Awad, M.F., Abdel-Hadi, A.M., 2013. Marine-derived fungus, Penicillium aurantiogriseums
- Akone, S.H., Mandi, A., Kurtan, T., Hartmann, R., Lin, W., Daletos, G., et al., 2016. Inducing secondary metabolite production by the endophytic fungus Chaetomium sp. through fungal–bacterial co-culture and epigenetic modification. Tetrahedron 72, 6340–6347.
- Awad, N.E., Kassem, H.A., Hamed, M.A., El-Feky, A.M., Elnaggar, M.A., Mahmoud, K., et al., 2018. Isolation and characterization of the bioactive metabolites from the soil derived fungus Trichoderma viride. Mycology 9, 70–80.
- Ayob, F.W., Simarani, K., Zainal Abidin, N., Mohamad, J., 2017. First report on a novel Nigrosporasphaerica isolated from Catharanthus roseus plant with anticarcinogenic properties. Microbbiotechnol 10 (4), 926–932.
- Beattie, K.D., Rouf, R., Gander, L., May, T.W., Ratkowsky, D., Donner, C.D., Gill, M., Tiralongo, E., 2010. Antibacterial metabolites from Australian macrofungi from the genus Cortinarius. Phytochemistry 71, 948–955.
- Béni, Z., Dékány, M., Kovács, B., Csupor-Löffler, B., Zomborszki, Z.P., Kerekes, E., Szekeres, A., Urbán, E., Hohmann, J., Ványolós, A., 2018. Bioactivity-guided isolation of antimicrobial and antioxidant metabolites from the mushroom Tapinellaatrotomentosa. Molecules 23 (5), 1082.
- Bhagobaty, R.K., Joshi, S.R., 2012. Antimicrobial and antioxidant activity of endophytic fungi isolated from ethnomedicinal plants of the “Sacred forests” of Meghalaya, India. Med. Mycol. J. 19 (1), 5–11.
- Bugni, S., Ireland, C., 2004. Marine-derived fungi, a chemically and biologically diverse group of microorganisms. R. Soc. Chem. Adv. 21, 143–163.
- Chadha, N., Mishra, M., Prasad, R., Varma, A., 2014. Root endophytic fungi: research update. J. Biol. Life. Sci. 5, 135–158.
- Chambergo, F.S., Valencia, E.Y., 2016. Fungal biodiversity to biotechnology. Appl. Microbiol. Biotechnol. 100 (6), 2567–2577.
- Chen, S., Cai, R., Hong, K., She, Z., 2016. New furoisocoumarins and isocoumarins from the mangrove endophytic fungus aspergillus sp. 085242. Beilstein J. Org. Chem. 12 (1), 2077–2085.
- Chen, Y., Liu, Z., Liu, H., Pan, Y., Li, J., Liu, L., She, Z., 2018. Dichloroisocoumarins with potential anti-inflammatory activity from the mangrove endophytic fungus Ascomycota sp. CYSK-4. Mar. Drugs 16 (2), 54.
- Choi, D.B., Cha, W.S., Kang, S.H., Lee, B.R., 2004. Effect of Pleurotusferulae Extracts on viability of human lung cancer and cervical Cancer cell lines Biotechnol. Bioprocess Eng. 9, 356–361.
- Clutterbuck, P.W., Oxford, A.E., Raistrick, H., Smith, G., 1932. Studies in the biochemistry of micro-organisms, the metabolic products of the Penicillium brevicompactum series. Biochem. J. 26 (5), 1441.
- De Kesel, A., Haelewaters, D., 2019. Laboulbeniales (Fungi, Ascomycota) of cholevine beetles (Coleoptera, Leiodidae) in Belgium and the Netherlands. Sterbeeckia 35, 60–66.
- Deng, S., Zhang, G., Kuai, J., Fan, P., Wang, X., Zhou, P., Yang, D., Zheng, X., Liu, X., Wu, Q., Huang, Y., 2018. Lentinan inhibits tumor angiogenesis via interferon γ and in a T cell independent manner. J. Exp. Clin. Cancer Res. 37 (1), 1–2.
- Deshmukh, S.K., Verekar, S.A., Periyasamy, G., Ganguli, B.N., 2012. Fungi: a potential source of anti-inflammatory compounds. Microorganism in Sustain Agricul and Biotechnol, 613–645.
- Deshmukh, S.K., Prakash, V., Ranjan, N., 2017. Recent advances in the discovery of bioactive metabolites from Pestalotiopsis. Phytochem. Rev. 16, 883–920.
- Devi, R., Kaur, T., Guleria, G., Rana, K.L., Kour, D., Yadav, N., Yadav, A.N., Saxena, A.K., 2020. Fungal secondary metabolites and their biotechnological applications for human health. In: New and Future Developments in Microbial Biotechnology and Bioengineer. Elsevier, pp. 147–161.
- Diling, C., Chaoqun, Z., Jian, Y., Jian, L., Jiyan, S., Yishen, X., Guoxiao, L., 2017. Immunomodulatory activities of a fungal protein extracted from Hericiumerinaceus through regulating the gut microbiota. Front. Immunol. 8, 666.
- Boston, MA. Ehsanifard, Z., Mir-Mohammadrezaei, F., Safarzadeh, A., Ghobad-Nejhad, M., 2017. Aqueous extract of Inocutislevis improves insulin resistance and glucose tolerance in high sucrose-fed Wistar rats. J. Herbmed. Pharmacol. 6, 160–164.
- Evidente, A., Kornienko, A., Cimmino, A., Andolfi, A., Lefranc, F., Mathieu, V., et al., 2014. Fungal metabolites with anticancer activity. Nat. Prod. Rep. 31, 617–627.
- Godtfredsen, W.O., Jahnsen, S., Lorck, H., 1962. Fusidic acid: a new antibiotic. Nature 193, 987. Goyal, S., Ramawat, K.G., Mérillon, J.M., 2016. Different shades of fungal metabolites: an overview. In: Fungal Metabolites. Springer, pp. 1–29.
- Hameed, I., Masoodi, S.R., Mir, S.A., Nabi, M., et al., 2015. Type 2 diabetes mellitus: from a metabolic disorder to an inflammatory condition. World J. Diabetes 6, 598–612.
- Huang, H., Wang, S.L., Nguyen, V., Kuo, Y.H., 2018. Isolation and identification of potent antidiabetic compounds from Antrodiacinnamomea—an edible Taiwanese mushroom. Molecules 23, 1–12.
- Hyde, K.D., Xu, J., Rapior, S., Jeewon, R., Lumyong, S., Niego, A.G., Abeywickrama, P.D., Aluthmuhandiram, J.V., Brahamanage, R.S., Brooks, S., Chaiyasen, A., 2019. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97 (1), 1–36.
- Ibrahim, S.R., Mohamed, G.A., Abdel-Latif, M.M., El-Messery, S.M., Shehata, I.A., 2015. Minutaside A, new amylase inhibitor flavonol glucoside from Tagetes minuta: antidiabetic, antioxidant, and molecular modeling studies. Starch-Stärke 67, 976–984.
- Indarmawan, T., Mustopa, A.Z., Budiarto, B.R., Tarman, K., 2016. Antibacterial activity of extracellular protease isolated from an algicolous fungus Xylariapsidii KT30 against gram-positive bacteria. Hayati J. Biosci. 23 (2), 73–78.
- Ishikawa, N.K., Fukushi, Y., Yamaji, K., Tahara, S., Takahashi, K., 2001. Antimicrobial cuparene-type sesquiterpenes, enokipodins C and D, from a mycelial culture of flammulinavelutipes. J. Nat. Prod. 64, 932–934.
- Jeong, S.C., Jeong, Y.T., Yang, B.K., Islam, R., et al., 2010. White button mushroom (Agaricus bisporus) lowers blood glucose and cholesterol levels in diabetic and hypercholesterolemic rats. Nutr. Res. 30, 49–56.
- Kellogg, J.J., Raja, H.A., 2017. Endolichenic fungi: a new source of rich bioactive secondary metabolites on the horizon. Phytochem. Rev. 16, 271–293.
- Khaled, M., Jiang, Z.Z., Zhang, L.Y., 2013. Deoxypodophyllotoxin: a promising therapeutic agent from herbal medicine. J. Ethnopharmacol. 149 (1), 24–34.
- Kim, Y.W., Kim, K.H., Choi, H.J., Lee, D.S., 2005. Anti-diabetic activity of β-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnol. Lett. 27, 483–487.
- Kour, D., Rana, K.L., Kumar, A., Rastegari, A.A., Yadav, N., Yadav, A.N., et al., Gupta, V.K., Singh, B.N., 2019. Extremophiles for hydrolytic enzymes productions: Biodiversity and potential biotechnological applications. In: Molina, G., Gathergood, N. (Eds.), Bioprocessing for Biomolecules Production. Wiley, Hoboken NJ, pp. 321–372.
- Kumar, K.S., Vani, M.G., Hsieh, H.W., Lin, C.C., Wang, S.Y., 2019. Antcin-a modulates epithelial-to-mesenchymal transition and inhibits migratory and invasive potentials of human breast cancer cells via p53-mediated miR 200c activation. Planta Med. 85 (09/10), 755–765.
- Lee, S.Y., Kim, M., Kim, S.H., et al., 2016. Transcriptomic analysis of the white rot fungus Polyporusbrumalisprovides insight into sesquiterpene biosynthesis. Microbiol. Res. 182, 141–149Epicoccum nigrum. Nat. Prod. Res. 35 (2), 257–265
- Li, G., Yu, K., Li, F., Xu, K., Li, J., He, S., Cao, S., Tan, G., 2014. Anticancer potential of Hericiumerinaceus extracts against human gastrointestinal cancers. J. Ethnopharmacol. 153, 521–530.
- Li, F., Sun, W., Zhang, S., Gao, W., Lin, S., Yang, B., Chai, C., Li, H., Wang, J., Hu, Z., Zhang, Y., 2020. New cyclopiane diterpenes with anti-inflammatory activity from the sea sediment-derived fungus Penicillium sp. TJ403–2. Chin. Chem. Lett. 31 (1), 197–201.
- Liu, J., Zhan, D., Zhang, M., Chen, R., et al., 2017. Periconones B-E, new meroterpenoids from endophytic fungus Periconia sp. Chin. Chem. Lett. 28, 248–252.
- Liu, H.X., Tan, H.B., Chen, Y.C., Li, S.N., Li, H.H., Zhang, W.M., 2018b. Secondary metabolites from the Colletotrichum gloeosporioides A12, an endophytic fungus derived from Aquilaria sinensis. Nat. Prod. Res. 32, 2360–2365.
- Liu, C.C., Zhang, Z.Z., Feng, Y.Y., Gu, Q.Q., Li, D.H., Zhu, T.J., 2019. Secondary metabolites from Antarctic marine-derived fungus Penicillium crustosum HDN153086. Nat. Prod. Res. 33, 414–419.
- Ma, Y.M., Liang, X.A., Kong, Y., Jia, B., 2016. Structural diversity and biological activities of indole diketopiperazine alkaloids from fungi. J. Agric. Food Chem. 64, 6659–6671.
- Macheleidt, J., Mattern, D.J., Fischer, J., Netzker, T., Weber, J., Schroeckh, V., et al., 2016. Regulation and role of fungal secondary metabolites. Annu. Rev. Genet. 50, 371–392.
- Maiti, S., Mallick, S.K., Bhutia, S.K., Behera, B., Mandal, M., Maiti, T.K., 2011. Antitumor effect of culinary medicinal oyster mushroom, Pleurotusostreatus (Jacq.: Fr.) P. Kumm., derived protein fraction on tumor bearing mice models. Int. J. Med. Mushrooms 13, 427–440.
- Meier, J.J., Bhushan, A., Butler, A.E., Rizza, R.A., Butler, P.C., 2005. Sustained beta cell apoptosis in patients with long-standing type 1 diabetes: indirect evidence for islet regeneration? Diabetologia 48, 2221–2228
- Muszyńska, B., Grzywacz-Kisielewska, A., Kała, K., Gdula-Argasińska, J., 2018. Anti-inflammatory properties of edible mushrooms: a review. Food Chem. 15 (243), 373–381.
- Niskanen, T., Douglas, B., Kirk, P., Crous, P., Lücking, R., Matheny, P.B., Cai, L., Hyde, K., Cheek, M., Willis, K.J., 2018. New discoveries: species of fungi described in 2017. State World’s Fungi, 18–23.
- Noor, A.O., Almasri, D.M., Bagalagel, A.A., Abdallah, H.M., Mohamed, S.G., Mohamed, G.A., Ibrahim, S.R., 2020. Naturally occurring isocoumarins derivatives from endophytic fungi: sources, isolation, structural characterization, biosynthesis, and biological activities. Molecules 25 (2), 395.
- Poucheret, P., Fons, F., Rapior, S., 2006. Biological and pharmacological activity of higher fungi: 20-year retrospective analysis. Cryptogam. Mycol. 27, 311–333.
- Preuss, H.G., Echard, B., Bagchi, D., Perricone, N.V., Zhuang, C., 2007. Enhanced insulin-hypoglycemic activity in rats consuming a specific glycoprotein extracted from maitake mushroom. Mol. Cell. Biochem. 306, 105–113.
- Rao, K.V., Mani, P., Satyanarayana, B., Rao, T.R., 2017. Purification and structural elucidation of three bioactive compounds isolated from Streptomyces coelicoflavus BC 01 and their biological activity. Biotech 7 (1), 24.
- Richter, L., Wanka, F., Boecker, S., Storm, D., Kurt, T., Vural, O., et al., 2014. Engineering of Aspergillus niger for the production of secondary metabolites. Fungal Biol. Biotechnol. 1, 4.
- Ro, D.K., Paradise, E.M., Ouellet, M., Fisher, K.J., Newman, K.L., Ndungu, J.M., 2006. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940.
- Song, R.Y., Wang, X.B., Yin, G.P., Liu, R.H., Kong, L.Y., Yang, M.H., 2017. Isocoumarin derivatives from the endophytic fungus, Pestalotiopsis sp. Fitoterapia 122, 115–118.
- Song, X., Gaascht, F., Schmidt-Dannert, C., Salomon, C.E., 2020a. Discovery of antifungal and biofilm preventative compounds from mycelial cultures of a unique north American Hericium sp. fungus. Molecules 25 (963).
- Song, X., Gaascht, F., Schmidt-Dannert, C., Salomon, C.E., 2020b. Discovery of antifungal and biofilm preventative compounds from mycelial cultures of a unique north American Hericiumsp. Fungus. Molecules 25 (4), 963.
- Stanikunaite, R., Trappe, J.M., Khan, S.I., Ross, S.A., 2007. Evaluation of therapeutic activity of hypogeous ascomycetes and basidiomycetes from North America. Int. J. Med. Mushrooms 9, 7–14.
- Stanikunaite, R., Khan, S.I., Trappe, J.M., Ross, S.A., 2009. Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Elaphomycesgranulatus. Phytother. Res. 23, 575–578.
- Strobel, G., Daisy, B., 2003. Bioprospecting for microbial endophytes and their natural products. Microbiol. Mol. Biol. Rev. 4 (67), 491–502.
- Thakur, M.P., Singh, H.K., 2013. Mushrooms, their bioactive compounds and medicinal uses: a review. Med. Plants 5 (1), 1–20.
- Topka, S., Khalil, S., Stanchina, E., Vijai, J., Offit, K., 2018. Preclinical evaluation of enhanced irofulven antitumor activity in an ERCC3 mutant background by in-vitro and in-vivo tumor models. AACR 78, 3258.
- Venkatchalam, G., Venkatchalam, A., Suryanarayanan, T.S., Doble, M., 2011. Isolation and characterization of new antioxidant and antibacterial compounds from algicolous marine fungus Curvulariatuberculata. In: International Conference on Bioscience, Biochemistry and Bioinformatics. vol. 5, pp. 302–304.
- Wang, S., Li, X., Teuscher, F., Li, D., Diesel, A., Ebel, R., Wang, B., 2006. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J. Nat. Prod. 69 (11), 1622–1625.
- Wang, L.Y., Huang, C.S., Chen, Y.H., Chen, C.C., Chen, C.C., Chuang, C.H., 2019a. Anti-inflammatory effect of erinacine C on NO production through down-regulation of NF-κB and activation of Nrf2-mediated HO-1 in BV2 microglial cells treated with LPS. Molecules 24 (18), 3317.
- Wang, X.Y., Zhang, D.D., Yin, J.Y., Nie, S.P., Xie, M.Y., 2019b. Recent developments in Hericiumerinaceus polysaccharides: extraction, purification, structural characteristics and biological activities. Crit. Rev. Food Sci. Nutr. 59, 96–115.
- Wu, B., Wiese, J., Labes, A., Kramer, A., Schmaljohann, R., Imhoff, J.F., 2015. Lindgomycin, an unusual antibiotic polyketide from a marine fungus of the Lindgomycetaceae. Mar. Drugs 13, 4617–4632.
- Wu, B., Wiese, J., Wenzel-Storjohann, A., Malien, S., Schmaljohann, R., Imhoff, J.F., 2016. Engyodontochones, new antibiotics from the marine fungus Engyodontium album strain LF069. Chemistry 22, 7452–7462.
- Wu, S.J., Tung, Y.J., Ng, L.T., 2020. Anti-diabetic effects of Grifolafrondosa bioactive compound and its related molecular signaling pathways in palmitate-induced C2C12 cells. J. Ethnopharmacol. 260, 112962.
- Zhao, Y., Liu, D., Proksch, P., Yu, S., Lin, W., 2016. Isocoumarin derivatives from the sponge-associated fungus Peyronellaea glomerata with antioxidant activities. Chem. Biodivers. 13, 1186–1193.
- Zhao, J., Feng, J., Tan, Z., Liu, J., et al., 2017. Stachybotrysins A-G, Phenylspirodrimane derivatives from the fungus Stachybotryschartarum. J. Nat. Prod. 80, 1819–1826.
- Zhao, M., Ruan, Q., Pan, W., Tang, Y., Zhao, Z., Cui, H., 2020. New polyketides and diterpenoid derivatives from the fungus Penicillium sclerotiorum GZU-XW03-2 and their anti-inflammatory activity. Fitoterapia 1 (143), 1045-61
Some of the most significant medications ever found are derived from fungi, and they have shown to be essential
in the treatment of chronic illnesses. Not only have they prevented millions of deaths, but in certain instances, they have
altered about the limits of medical advancement. With new businesses entering the market and hoping so use cutting-edge
genomic technologies to speed up the discovery process, this might be about to change. This review looks at the path of
discovery for both authorized fungal-derived medications and those undergoing clinical trials for long-term illnesses. We
address the potential ecological roles of essential chemicals in nature and with how this connects to these application in
human medicine. We demonstrate that how compounds meant to prohibit rival fungi, frequently interact with human
receptors drug, sometimes with unanticipated benefits, due to conservation of drug receptors between fungi and people. In
addition, we map the locations of medications, antimicrobial substances, and hallucinogenic mushrooms like fungal tree and
focus on their distribution with that of all fungal metabolites. Lastly, we look at the self-resistance phenomena with fungi
and how to predict the mechanism of metabolites and facilitate the drug discovery and lead optimization process.
Keywords :
Secondary Metabolites Production, Fungal Metabolites Biosynthesis, Application of Fungi in Pharmaceuticals.