A Review of Current and Future Energy Materials for the Construction of Lithium-ion Batteries


Authors : Hudson O. Eriki; Ferguson H. Tobins; Adiat I. Arogundade; Abdulhakeem H. Nurudeen

Volume/Issue : Volume 10 - 2025, Issue 3 - March


Google Scholar : https://tinyurl.com/mff27z9n

Scribd : https://tinyurl.com/sxavjza9

DOI : https://doi.org/10.38124/ijisrt/25mar1367

Google Scholar

Note : A published paper may take 4-5 working days from the publication date to appear in PlumX Metrics, Semantic Scholar, and ResearchGate.

Note : Google Scholar may take 15 to 20 days to display the article.


Abstract : This mini-review was performed to showcase the potential of lithium-ion batteries as key future energy-saving components for use in domestic, automobile, and other energy-demanding sectors. It explores the current and future energy materials that will transform the construction of Lithium-ion batteries, focusing on cathodes, anodes, electrolytes, and separators. It explores the critical advancement and challenges in the field of energy materials for lithium-ion batteries (LIBs), focusing on various components essential for improving battery performance. Different studies have shown that traditional cathode materials, primarily Lithium Cobalt Oxide (LiCoO2), Lithium iron phosphate (LiFeO4) and Lithium Manganese Cobalt Oxide (NMC) have dominated the market due to their favourable electrochemical properties. However, thermal instability and high costs necessitate the exploration of alternative materials like lithium-rich layered oxides and poly-anion compounds which enhance safety and energy density. The drive for cleaner energy is never over-emphasized, with the global shift from fossil-based fuels, more energy sources are investigated to find materials that are sustainable and durable in ensuring energy demands are met of which lithium-ion batteries are the primary source for such endeavour. Recently, the development of high-capacity materials such as lithium-nickel-cobalt-aluminum oxide (NCA) and advanced composite structures shows improved conductivity and structural integrity during the charge-discharge cycle. These innovations aim to balance performance with cost-effectiveness. This mini-review made available details of material composition, types of electrolytes, limitations and challenges of adoption for researchers, students and industry.

Keywords : Energy-Saving, Batteries, Lithium-ion, Composite Materials, Battery Capacity.

References :

  1. M. V. Reddy, A. Mauger, C. M. Julien, A. Paolella, and K. Zaghib, “Brief History of Early Lithium-Battery Development,” Mater. Basel Switz., vol. 13, no. 8, p. 1884, Apr. 2020, doi: 10.3390/ma13081884.
  2. Y. Mekonnen, A. Sundararajan, and A. Sarwat, “A review of cathode and anode materials for lithium-ion batteries,” Mar. 2016, pp. 1–6. doi: 10.1109/SECON.2016.7506639.
  3. E. Podlesnov, M. G. Nigamatdianov, and M. V. Dorogov, “Review of Materials for Electrodes and Electrolytes of Lithium Batteries,” Rev. Adv. Mater. Technol., vol. 4, pp. 39–61, Jan. 2022, doi: 10.17586/2687-0568-2022-4-4-39-61.
  4. W. Qi, J. G. Shapter, Q. Wu, T. Yin, G. Gao, and D. Cui, “Nanostructured anode materials for lithium-ion batteries: principle, recent progress and future perspectives,” J. Mater. Chem. A, vol. 5, no. 37, pp. 19521–19540, 2017, doi: 10.1039/C7TA05283A.
  5. P. U. Nzereogu, A. D. Omah, F. I. Ezema, E. I. Iwuoha, and A. C. Nwanya, “Anode materials for lithium-ion batteries: A review,” Appl. Surf. Sci. Adv., vol. 9, p. 100233, Jun. 2022, doi: 10.1016/j.apsadv.2022.100233.
  6. H.-J. Kim et al., “A Comprehensive Review of Li-Ion Battery Materials and Their Recycling Techniques,” Electronics, vol. 9, no. 7, p. 1161, Jul. 2020, doi: 10.3390/electronics9071161.
  7. E. Jeong Kim et al., “Active material and interphase structures governing performance in sodium and potassium ion batteries,” Chem. Sci., vol. 13, no. 21, pp. 6121–6158, 2022, doi: 10.1039/D2SC00946C.
  8. S. D. Beattie et al., “Understanding capacity fade in silicon based electrodes for lithium-ion batteries using three electrode cells and upper cut-off voltage studies,” J. Power Sources, vol. 302, pp. 426–430, Jan. 2016, doi: 10.1016/j.jpowsour.2015.10.066.
  9. Md. H. Hossain, M. A. Chowdhury, N. Hossain, Md. A. Islam, and M. H. Mobarak, “Advances of lithium-ion batteries anode materials—A review,” Chem. Eng. J. Adv., vol. 16, p. 100569, Nov. 2023, doi: 10.1016/j.ceja.2023.100569.
  10. Manthiram and J. Goodenough, “Layered lithium cobalt oxide cathodes,” Nat. Energy, vol. 6, pp. 323–323, Mar. 2021, doi: 10.1038/s41560-020-00764-8.
  11. L. Bao et al., “Olivine LiFePO4 nanocrystallites embedded in carbon-coating matrix for high power Li-ion batteries,” Electrochimica Acta, vol. 222, pp. 685–692, Dec. 2016, doi: 10.1016/j.electacta.2016.11.024.
  12. Y. Luo et al., “Nickel-rich and cobalt-free layered oxide cathode materials for lithium ion batteries,” Energy Storage Mater., vol. 50, pp. 274–307, Sep. 2022, doi: 10.1016/j.ensm.2022.05.019.
  13. S. Kainat, J. Anwer, A. Hamid, N. Gull, and S. M. Khan, “Electrolytes in Lithium-Ion Batteries: Advancements in the Era of Twenties (2020’s),” Mater. Chem. Phys., vol. 313, p. 128796, Feb. 2024, doi: 10.1016/j.matchemphys.2023.128796.
  14. K. Deng et al., “Nonflammable organic electrolytes for high-safety lithium-ion batteries,” Energy Storage Mater., vol. 32, pp. 425–447, Nov. 2020, doi: 10.1016/j.ensm.2020.07.018.
  15. J. Kang et al., “Improved ionic conductivity and enhancedinterfacial stability of solid polymer electrolytes with porous ferroelectric ceramic nanofibers,” Energy Storage Mater., vol. 53, pp. 192–203, Dec. 2022, doi: 10.1016/j.ensm.2022.09.005.
  16. M. Buckwell et al., “Failure and hazard characterisation of high-power lithium-ion cells via coupling accelerating rate calorimetry with in-line mass spectrometry, statistical and post-mortem analyses,” J. Energy Storage, vol. 65, p. 107069, Aug. 2023, doi: 10.1016/j.est.2023.107069.
  17. Tomaszewska et al., “Lithium-ion battery fast charging: A review,” eTransportation, vol. 1, p. 100011, Aug. 2019, doi: 10.1016/j.etran.2019.100011.
  18. Y. Li et al., “Lithiophilicity: The key to efficient lithium metal anodes for lithium batteries,” J. Energy Chem., vol. 77, pp. 123–136, Feb. 2023, doi: 10.1016/j.jechem.2022.10.026.
  19. W. Lee et al., “Advances in the Cathode Materials for Lithium Rechargeable Batteries,” Angew. Chem. Int. Ed., vol. 59, no. 7, pp. 2578–2605, 2020, doi: 10.1002/anie.201902359.
  20. K. Jia et al., “Degradation Mechanisms of Electrodes Promotes Direct Regeneration of Spent Li-Ion Batteries: A Review,” Adv. Mater., vol. n/a, no. n/a, p. 2313273, doi: 10.1002/adma.202313273.
  21. J. S. Edge et al., “Lithium ion battery degradation: what you need to know,” Phys. Chem. Chem. Phys., vol. 23, no. 14, pp. 8200–8221, 2021, doi: 10.1039/D1CP00359C.
  22. K. Frenander and T. Thiringer, “Low Frequency influence on degradation of commercial Li-ion battery,” Electrochimica Acta, vol. 462, p. 142760, Sep. 2023, doi: 10.1016/j.electacta.2023.142760.
  23. J. Xie and Y.-C. Lu, “A retrospective on lithium-ion batteries,” Nat. Commun., vol. 11, p. 2499, May 2020, doi: 10.1038/s41467-020-16259-9.
  24. Manthiram, “An Outlook on Lithium Ion Battery Technology,” ACS Cent. Sci., vol. 3, Sep. 2017, doi: 10.1021/acscentsci.7b00288.
  25. R. M. Salgado, F. Danzi, J. E. Oliveira, A. El-Azab, P. P. Camanho, and M. H. Braga, “The Latest Trends in Electric Vehicles Batteries,” Molecules, vol. 26, no. 11, p. 3188, May 2021, doi: 10.3390/molecules26113188.
  26. T. Wulandari, D. Fawcett, S. B. Majumder, and G. E. J. Poinern, “Lithium-based batteries, history, current status, challenges, and future perspectives,” Battery Energy, vol. 2, no. 6, p. 20230030, 2023, doi: 10.1002/bte2.20230030.
  27. S. Mahmud et al., “Recent advances in lithium-ion battery materials for improved electrochemical performance: A review,” Results Eng., vol. 15, p. 100472, Sep. 2022, doi: 10.1016/j.rineng.2022.100472.
  28. M. Ghiji et al., “A Review of Lithium-Ion Battery Fire Suppression,” Energies, vol. 13, p. 5117, Oct. 2020, doi: 10.3390/en13195117.
  29. M. Adnan, “The Future of Energy Storage: Advancements and Roadmaps for Lithium-Ion Batteries,” Int. J. Mol. Sci., vol. 24, no. 8, p. 7457, Apr. 2023, doi: 10.3390/ijms24087457.
  30. J. Jyoti, B. P. Singh, and S. K. Tripathi, “Recent advancements in development of different cathode materials for rechargeable lithium ion batteries,” J. Energy Storage, vol. 43, p. 103112, Nov. 2021, doi: 10.1016/j.est.2021.103112.
  31. C. Capiglia, “Recent Progress on Nanostructure Anode Materials for Lithium Ion Batteries,” Mar. 2015. Accessed: May 04, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Recent-Progress-on-Nanostructure-Anode-Materials-Capiglia/067afc74c7185be594b45e088ab2d9bcd302679c
  32. K. I. Ozoemena and M. Kebede, “Next-Generation Nanostructured Lithium-Ion Cathode Materials: Critical Challenges for New Directions in R&D,” K. I. Ozoemena and S. Chen, Eds., in Nanostructure Science and Technology. Cham: Springer International Publishing, 2016, pp. 1–24. doi: 10.1007/978-3-319-26082-2_1.
  33. M. Tajik, A. Makui, and B. M. Tosarkani, “Sustainable cathode material selection in lithium-ion batteries using a novel hybrid multi-criteria decision-making,” J. Energy Storage, vol. 66, p. 107089, Aug. 2023, doi: 10.1016/j.est.2023.107089.
  34. M. Ahangari, B. Szalai, J. Lujan, M. Zhou, and H. Luo, “Advancements and Challenges in High-Capacity Ni-Rich Cathode Materials for Lithium-Ion Batteries,” Materials, vol. 17, no. 4, p. 801, Feb. 2024, doi: 10.3390/ma17040801.
  35. J. W. Fergus, “Recent developments in cathode materials for lithium ion batteries,” J. Power Sources, vol. 195, no. 4, pp. 939–954, Feb. 2010, doi: 10.1016/j.jpowsour.2009.08.089.
  36. K. Lu, C. Zhao, and Y. Jiang, “Research Progress of Cathode Materials for Lithium-ion Batteries,” in E3S Web of Conferences, L. Zhang, S. Defilla, and W. Chu, Eds., 2021, p. 01020. doi: 10.1051/e3sconf/202123301020.
  37. B. Xu, D. Qian, Z. Wang, and Y. S. Meng, “Recent progress in cathode materials research for advanced lithium ion batteries,” Mater. Sci. Eng. R Rep., vol. 73, no. 5, pp. 51–65, May 2012, doi: 10.1016/j.mser.2012.05.003.
  38. H. Kim et al., “Recent Progress in Electrode Materials for Sodium-Ion Batteries,” Adv. Energy Mater., vol. 6, no. 19, p. 1600943, 2016, doi: 10.1002/aenm.201600943.
  39. C. Graf, “Cathode materials for lithium-ion batteries,” in Lithium-Ion Batteries: Basics and Applications, 2018, pp. 29–41. doi: 10.1007/978-3-662-53071-9_4.
  40. Z. Chen, W. Zhang, and Z. Yang, “A review on cathode materials for advanced lithium ion batteries: microstructure designs and performance regulations,” Nanotechnology, vol. 31, no. 1, p. 012001, Jan. 2020, doi: 10.1088/1361-6528/ab4447.
  41. Ghosh and F. Ghamouss, “Role of Electrolytes in the Stability and Safety of Lithium Titanate-Based Batteries,” Front. Mater., vol. 7, Jul. 2020, doi: 10.3389/fmats.2020.00186.
  42. R. Ramachandran and S. Chen, “Modern Development of Novel Electrode Materials as Effective Electrode Catalyst for Lithium Ion Batteries,” 2015. Accessed: May 04, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Modern-Development-of-Novel-Electrode-Materials-as-Ramachandran-Chen/44c484616fa3488cebc79a7301e4ae512161dd12
  43. J. Światowska, Lithium Process Chemistry, 1st Edition Resources, Extraction, Batteries, and Recycling. 2015.
  44. G. Zubi, R. Dufo-López, M. Carvalho, and G. Pasaoglu, “The lithium-ion battery: State of the art and future perspectives,” Renew. Sustain. Energy Rev., vol. 89, pp. 292–308, Jun. 2018, doi: 10.1016/j.rser.2018.03.002.
  45. C. Jang, S. Ida, and T. Ishihara, “Li Utilization and Cyclability of Li-O2 Rechargeable Batteries Incorporating a Mesoporous Pd/^|^beta;-MnO2 Air Electrode,” Electrochemistry, vol. 82, no. 4, pp. 267–272, 2014, doi: 10.5796/electrochemistry.82.267.
  46. D. Miranda, A. M. Almeida, S. Lanceros-Méndez, and C. M. Costa, “Effect of the active material type and battery geometry on the thermal behavior of lithium-ion batteries,” Energy, vol. 185, pp. 1250–1262, Oct. 2019, doi: 10.1016/j.energy.2019.07.099.
  47. H. Guo et al., “Stabilization effects of Al doping for enhanced cycling performances of Li-rich layered oxides,” Ceram. Int., vol. 43, no. 16, pp. 13845–13852, Nov. 2017, doi: 10.1016/j.ceramint.2017.07.107.
  48. Y. Wang, C. Xu, X. Tian, S. Wang, and Y. Zhao, “Challenges and modification strategies of high-voltage cathode materials for Li-ion batteries,” Chin. J. Struct. Chem., vol. 42, no. 10, p. 100167, Oct. 2023, doi: 10.1016/j.cjsc.2023.100167.
  49. H. Liu, Y. P. Wu, E. Rahm, R. Holze, and H. Q. Wu, “Cathode materials for lithium ion batteries prepared by sol-gel methods,” J. Solid State Electrochem., vol. 8, no. 7, pp. 450–466, Jun. 2004, doi: 10.1007/s10008-004-0521-1.
  50. Y. Xiang and X. Wu, “Enhanced electrochemical performances of Li2MnO3 cathode materials by Al doping,” Ionics, vol. 24, no. 1, pp. 83–89, Jan. 2018, doi: 10.1007/s11581-017-2189-4.
  51. B. Chitikela, G. G, S. G, and V. R.P., “Improvement in Electrochemical Performance of Lithium Rich Li2RuO3 Cathode With Co-doping Strategy,” J. Adv. Appl. Sci. Res., vol. 5, no. 1, Mar. 2023, doi: 10.46947/joaasr512023415.
  52. Z. Hu, D. Duan, H. Wang, S. Xu, L. Chen, and D. Zhang, “Improving the cycling stability of LiNi 0.8 Co 0.1 Mn 0.1 O 2 by boron doping to inhibit Li/Ni mixing,” Chem. Commun., vol. 59, no. 83, pp. 12507–12510, 2023, doi: 10.1039/D3CC02902F.
  53. Dong, H. He, D. Zhang, and C. Chang, “Boron improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by enhancing the crystal growth with increased lattice ordering,” J. Mater. Sci. Mater. Electron., vol. 30, no. 19, pp. 18200–18210, Oct. 2019, doi: 10.1007/s10854-019-02174-3.
  54. Meng, Z. Wang, H. Guo, and X. Li, “Enhanced cycling stability of LiNi 0.8 Co 0.1 Mn 0.1 O 2 by reducing surface oxygen defects,” Electrochimica Acta, vol. 234, pp. 99–107, Apr. 2017, doi: 10.1016/j.electacta.2017.03.054.
  55. H. Manjunatha, K. C. Mahesh, G. S. Suresh, and T. V. Venkatesha, “The study of lithium ion de-insertion/insertion in LiMn2O4 and determination of kinetic parameters in aqueous Li2SO4 solution using electrochemical impedance spectroscopy,” Electrochimica Acta, vol. 56, no. 3, pp. 1439–1446, Jan. 2011, doi: 10.1016/j.electacta.2010.08.107.
  56. Z. Cui, Z. Wang, Y. Zhai, R. Gao, Z. Hu, and X. Liu, “Improving Cycling Stability and Rate Capability of High-Voltage LiCoO 2 Through an Integration of Lattice Doping and Nanoscale Coating,” J. Nanosci. Nanotechnol., vol. 20, no. 4, pp. 2473–2481, Apr. 2020, doi: 10.1166/jnn.2020.17181.
  57. R. Etefagh, S. M. Rozati, and H. Arabi, “Al-doped Li1.21[Mn0.54Ni0.125Co0.125]O2 cathode material with enhanced electrochemical properties for lithium-ion battery,” Appl. Phys. A, vol. 126, no. 10, p. 814, Oct. 2020, doi: 10.1007/s00339-020-03832-8.
  58. O. Soge, A. A. Willoughby, O. F. Dairo, and O. O. Onatoyinbo, “Cathode Materials for Lithium-ion Batteries: A Brief Review,” J. New Mater. Electrochem. Syst., vol. 24, no. 1, pp. 229–246, Dec. 2021, doi: 10.14447/jnmes.v24i4.a02.
  59. W. Chu, “Promising Candidates for Lithium Ion Batteries: High Nickel Lithium-Rich Layered Cathode Nanomaterial,” 2017. Accessed: May 04, 2024. [Online]. Available: https://www.semanticscholar.org/paper/Promising-Candidates-for-Lithium-Ion-Batteries%3A-Chu/fd72ab31d9f1f6206fcfc5dc9a3bd2578896e9ec
  60. J. Xiang et al., “Building Practical High-Voltage Cathode Materials for Lithium-Ion Batteries,” Adv. Mater., vol. 34, no. 52, p. 2200912, 2022, doi: 10.1002/adma.202200912.
  61. H. Zhao, “Lithium Titanate-Based Anode Materials,” in Green Energy and Technology, vol. 172, 2015, pp. 157–187. doi: 10.1007/978-3-319-15458-9_6.
  62. H. Putri, A. Khair,  yatim L. Nimah, and S. Suprapto, “Synthesize of LiMn2O4 from manganese ore as cathode materials in lithium ion battery,” presented at the AIP Conference Proceedings, Apr. 2020, p. 030021. doi: 10.1063/5.0002826.
  63. T.-F. Yi, Y.-R. Zhu, X. Zhu, J. Shu, C.-B. Yue, and A.-N. Zhou, “A review of recent developments in the surface modification of LiMn 2 O 4 as cathode material of power lithium-ion battery,” Ionics, vol. 15, pp. 779–784, Dec. 2009, doi: 10.1007/s11581-009-0373-x.
  64. A. Altammar, “A review on nanoparticles: characteristics, synthesis, applications, and challenges,” Front. Microbiol., vol. 14, p. 1155622, Apr. 2023, doi: 10.3389/fmicb.2023.1155622.
  65. T. Vorauer et al., “Impact of solid-electrolyte interphase reformation on capacity loss in silicon-based lithium-ion batteries,” Commun. Mater., vol. 4, no. 1, pp. 1–12, Jun. 2023, doi: 10.1038/s43246-023-00368-1.
  66. J. Popovic, “Novel lithium iron phosphate materials for lithium-ion batteries”.
  67. S. F. Mayer, C. De La Calle, M. T. Fernández-Díaz, J. M. Amarilla, and J. A. Alonso, “Nitridation effect on lithium iron phosphate cathode for rechargeable batteries,” RSC Adv., vol. 12, no. 6, pp. 3696–3707, 2022, doi: 10.1039/D1RA07574H.
  68. F. Schipper et al., “Study of Cathode Materials for Lithium-Ion Batteries: Recent Progress and New Challenges,” in Inorganics, Apr. 2017, p. 32. doi: 10.3390/inorganics5020032.
  69. W. Liu, T. Placke, and K. T. Chau, “Overview of batteries and battery management for electric vehicles,” Energy Rep., vol. 8, pp. 4058–4084, Nov. 2022, doi: 10.1016/j.egyr.2022.03.016.
  70. F. Flamary et al., “Lithium-rich layered titanium sulfides: Cobalt- and Nickel-free high capacity cathode materials for lithium-ion batteries,” Energy Storage Mater., vol. 26, Dec. 2019, doi: 10.1016/j.ensm.2019.12.033.
  71. X. Han et al., “A review on the key issues of the lithium ion battery degradation among the whole life cycle,” eTransportation, vol. 1, p. 100005, Aug. 2019, doi: 10.1016/j.etran.2019.100005.
  72. D. Deng, “Li-ion batteries: basics, progress, and challenges,” Energy Sci. Eng., vol. 3, no. 5, pp. 385–418, 2015, doi: 10.1002/ese3.95.
  73. Eftekhari, “Low voltage anode materials for lithium-ion batteries,” Energy Storage Mater., vol. 7, pp. 157–180, Apr. 2017, doi: 10.1016/j.ensm.2017.01.009.
  74. H. Ma, F. Wang, M. Shen, Y. Tong, H. Wang, and H. Hu, “Advances of LiCoO2 in Cathode of Aqueous Lithium-Ion Batteries,” Small Methods, p. e2300820, Dec. 2023, doi: 10.1002/smtd.202300820.
  75. S. Akhoon, A. Sofi, R. Khan, A. M. Tantray, and S. Rubab, “Application of LiMn2O4 Nanostructures as Efficient Cathodes for Energy Storage Devices,” 2021, pp. 204–228. doi: 10.4018/978-1-7998-5563-7.ch012.
  76. B. Wu, Y. Ren, N. Li, B. Wu, Y. Ren, and N. Li, “LiFePO4 Cathode Material,” in Electric Vehicles - The Benefits and Barriers, IntechOpen, 2011. doi: 10.5772/18995.
  77. A. AbdelHamid, A. Mendoza-Garcia, and J. Y. Ying, “Advances in and prospects of nanomaterials’ morphological control for lithium rechargeable batteries,” Nano Energy, vol. 93, p. 106860, Mar. 2022, doi: 10.1016/j.nanoen.2021.106860.
  78. F. I. Saaid et al., “Ni-rich lithium nickel manganese cobalt oxide cathode materials: A review on the synthesis methods and their electrochemical performances,” Heliyon, vol. 10, no. 1, p. e23968, Jan. 2024, doi: 10.1016/j.heliyon.2023.e23968.
  79. Sofian et al., “Nickel-rich nickel–cobalt–manganese and nickel–cobalt–aluminum cathodes in lithium-ion batteries: Pathways for performance optimization,” J. Clean. Prod., vol. 435, p. 140324, Dec. 2023, doi: 10.1016/j.jclepro.2023.140324.
  80. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials: present and future,” Mater. Today, vol. 18, no. 5, pp. 252–264, Jun. 2015, doi: 10.1016/j.mattod.2014.10.040.
  81. Ma, S. Chong, K. Yao, H. K. Liu, S. X. Dou, and W. Huang, “Advanced anode materials for potassium batteries: Sorting out opportunities and challenges by potassium storage mechanisms,” Matter, vol. 6, no. 10, pp. 3220–3273, Oct. 2023, doi: 10.1016/j.matt.2023.07.009.
  82. G. Wang, G. Wang, L. Fei, L. Zhao, and H. Zhang, “Structural Engineering of Anode Materials for Low-Temperature Lithium-Ion Batteries: Mechanisms, Strategies, and Prospects,” Nano-Micro Lett., vol. 16, no. 1, p. 150, Mar. 2024, doi: 10.1007/s40820-024-01363-y.
  83. G. F. Ishraque Toki, M. Khalid Hossain, W. Ur Rehman, R. Z. Abbas Manj, L. Wang, and J. Yang, “Recent progress and challenges in silicon-based anode materials for lithium-ion batteries,” Ind. Chem. Mater., vol. 2, no. 2, pp. 226–269, 2024, doi: 10.1039/D3IM00115F.
  84. M. Waseem Yaseen, M. P. Maman, S. Mishra, I. Mohammad, and X. Li, “Strategies to alleviate distortive phase transformations in Li-ion intercalation reactions: an example with vanadium pentoxide,” Nanoscale, vol. 16, no. 20, pp. 9710–9727, 2024, doi: 10.1039/D3NR06138H.
  85. Y. Lakhdar et al., “Toward higher-power Li-ion batteries: Unravelling kinetics and thermodynamics of MoNb12O33 vs. NMC622,” J. Power Sources, vol. 588, p. 233710, Dec. 2023, doi: 10.1016/j.jpowsour.2023.233710.
  86. Anansuksawat, T. Sangsanit, S. Prempluem, K. Homlamai, W. Tejangkura, and M. Sawangphruk, “How uniform particle size of NMC90 boosts lithium ion mobility for faster charging and discharging in a cylindrical lithium ion battery cell,” Chem. Sci., vol. 15, no. 6, pp. 2026–2036, 2024, doi: 10.1039/D3SC05698H.
  87. Eftekhari, “Lithium-Ion Batteries with High Rate Capabilities,” ACS Sustain. Chem. Eng., vol. 5, Mar. 2017, doi: 10.1021/acssuschemeng.7b00046.
  88. X. Li, Z. Zhang, L. Gong, Z. Zhang, G. Liu, and P. Tan, “Revealing the mechanism of stress rebound during discharging in lithium-ion batteries,” J. Energy Storage, vol. 58, p. 106454, Feb. 2023, doi: 10.1016/j.est.2022.106454.
  89. X. Ding, Q. Zhou, X. Li, and X. Xiong, “Fast-charging anodes for lithium ion batteries: progress and challenges,” Chem. Commun., vol. 60, no. 18, pp. 2472–2488, Feb. 2024, doi: 10.1039/D4CC00110A.
  90. M. Khan et al., “Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries: Overcoming Challenges and Real-World Applications,” Nano-Micro Lett., vol. 16, no. 1, p. 179, Apr. 2024, doi: 10.1007/s40820-024-01388-3.
  91. J. Asenbauer, T. Eisenmann, M. Kuenzel, A. Kazzazi, Z. Chen, and D. Bresser, “The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites,” Sustain. Energy Fuels, vol. 4, no. 11, pp. 5387–5416, 2020, doi: 10.1039/D0SE00175A.
  92. K. Ji et al., “Lithium intercalation into bilayer graphene,” Nat. Commun., vol. 10, p. 275, Jan. 2019, doi: 10.1038/s41467-018-07942-z.
  93. J. Mueller et al., “Engineering Si-on-Graphite High-Capacity Anodes for Li-ion Battery Applications Fabricated by Fluidized Bed Process,” Chem. Eng. J., vol. 407, p. 126603, Aug. 2020, doi: 10.1016/j.cej.2020.126603.
  94. T. Insinna, E. N. Bassey, K. Märker, A. Collauto, A.-L. Barra, and C. P. Grey, “Graphite Anodes for Li-Ion Batteries: An Electron Paramagnetic Resonance Investigation,” Chem. Mater., vol. 35, no. 14, pp. 5497–5511, Jul. 2023, doi: 10.1021/acs.chemmater.3c00860.
  95. X. Sang et al., “Application of Electron Paramagnetic Resonance in an Electrochemical Energy Storage System,” Magnetochemistry, vol. 9, no. 3, Art. no. 3, Mar. 2023, doi: 10.3390/magnetochemistry9030063.
  96. F. K. Tareq and S. Rudra, “Enhancing the performance of silicon-based anode materials for alkali metal (Li, Na, K) ion battery: A review on advanced strategies,” Mater. Today Commun., vol. 39, p. 108653, Jun. 2024, doi: 10.1016/j.mtcomm.2024.108653.
  97. Casimir, H. Zhang, O. Ogoke, J. Amine, J. Lu, and G. Wu, “Silicon-based Anode for Lithium-ion Batteries: Effectiveness of Materials Synthesis and Electrode Preparation,” Nano Energy, vol. 27, Jul. 2016, doi: 10.1016/j.nanoen.2016.07.023.
  98. M. McDowell, S. Xia, and T. Zhu, “The mechanics of large-volume-change transformations in high-capacity battery materials,” Extreme Mech. Lett., vol. 9, Mar. 2016, doi: 10.1016/j.eml.2016.03.004.
  99. J. Du et al., “Review of metal oxides as anode materials for lithium-ion batteries,” Dalton Trans., vol. 51, Jun. 2022, doi: 10.1039/D2DT01415G.
  100. Bouibes, N. Sakaki, and M. Nagaoka, “Microscopic Analysis of the Mechanical Stability of an SEI Layer Structure Depending on the FEC Additive Concentration in Na-Ion Batteries: Maximum Appearance in Vickers Hardness at Lower FEC Concentrations,” ACS Omega, vol. 8, no. 19, pp. 16570–16578, May 2023, doi: 10.1021/acsomega.2c06224.
  101. Y. Chen, X. Chen, and Y. Zhang, “A Comprehensive Review on Metal-Oxide Nanocomposites for High-Performance Lithium-Ion Battery Anodes,” Energy Fuels, vol. 35, Mar. 2021, doi: 10.1021/acs.energyfuels.1c00315.
  102. S. Fang, D. Bresser, and S. Passerini, “Transition Metal Oxide Anodes for Electrochemical Energy Storage in Lithium‐ and Sodium‐Ion Batteries,” Adv. Energy Mater., vol. 10, no. 1, p. 1902485, Jan. 2020, doi: 10.1002/aenm.201902485.
  103. F. M. Courtel, H. Duncan, Y. Abu-Lebdeh, and I. J. Davidson, “High capacity anode materials for Li-ion batteries based on spinel metal oxides AMn2O4 (A = Co, Ni, and Zn),” J. Mater. Chem., vol. 21, no. 27, pp. 10206–10218, Jun. 2011, doi: 10.1039/C0JM04465B.
  104. L. Dong et al., “Spinel-Structured, Multi-Component Transition Metal Oxide (Ni,Co,Mn)Fe2O4−x as Long-Life ithium-Ion Battery Anode Material,” Batteries, vol. 9, no. 1, Art. no. 1, Jan. 2023, doi: 10.3390/batteries9010054.
  105. S. Upama et al., “Processing of Composite Electrodes of Carbon Nanotube Fabrics and Inorganic Matrices via Rapid Joule Heating,” ACS Appl. Mater. Interfaces, vol. 15, no. 4, pp. 5590–5599, Feb. 2023, doi: 10.1021/acsami.2c17901.
  106. Tundwal et al., “Developments in conducting polymer-, metal oxide-, and carbon nanotube-based composite electrode materials for supercapacitors: a review,” RSC Adv., vol. 14, no. 14, pp. 9406–9439, 2024, doi: 10.1039/D3RA08312H.
  107. H. Adenusi, G. A. Chass, S. Passerini, K. V. Tian, and G. Chen, “Lithium Batteries and the Solid Electrolyte Interphase (SEI)—Progress and Outlook,” Adv. Energy Mater., vol. 13, no. 10, p. 2203307, 2023, doi: 10.1002/aenm.202203307.
  108. K. Daems, P. Yadav, K. B. Dermenci, J. Van Mierlo, and M. Berecibar, “Advances in inorganic, polymer and composite electrolytes: Mechanisms of Lithium-ion transport and pathways to enhanced performance,” Renew. Sustain. Energy Rev., vol. 191, p. 114136, Mar. 2024, doi: 10.1016/j.rser.2023.114136.
  109. J. Chattopadhyay, T. S. Pathak, and D. M. F. Santos, “Applications of Polymer Electrolytes in Lithium-Ion Batteries: A Review,” Polymers, vol. 15, no. 19, Art. no. 19, Jan. 2023, doi: 10.3390/polym15193907.
  110. F. Ajdari et al., “Silicon Solid State Battery: The Solid‐State Compatibility, Particle Size, and Carbon Compositing for High Energy Density,” Adv. Funct. Mater., Apr. 2024, doi: 10.1002/adfm.202314822.
  111. B. Flamme, J. Światowska, M. Haddad, P. Phansavath, V. Ratovelomanana-Vidal, and A. Chagnes, “Sulfone Based-Electrolytes for Lithium-Ion Batteries: Cycling Performances and Passivation Layer Quality of Graphite and LiNi1/3Mn1/3Co1/3O2 Electrodes,” J. Electrochem. Soc., vol. 167, no. 7, p. 070508, Jan. 2020, doi: 10.1149/1945-7111/ab63c3.
  112. M. Pigłowska et al., “Challenges for Safe Electrolytes Applied in Lithium-Ion Cells—A Review,” Materials, vol. 14, no. 22, p. 6783, Nov. 2021, doi: 10.3390/ma14226783.
  113. Y. Lei et al., “Recent Progress on Multifunctional Electrolyte Additives for High-Energy-Density Li Batteries – A Review,” ChemElectroChem, vol. n/a, no. n/a, p. e202300702, doi: 10.1002/celc.202300702.
  114. Prabakaran, R. Manimuthu, S. Gurusamy, and E. Sebasthiyan, “Plasticized Polymer Electrolyte Membranes Based on PEO/PVdF-HFP for Use as an Effective Electrolyte in Lithium-ion Batteries,” Chin. J. Polym. Sci., vol. 35, pp. 407–421, Mar. 2017, doi: 10.1007/s10118-017-1906-9.
  115. S. Brutti et al., “Ionic liquid electrolytes for high-voltage, lithium-ion batteries,” J. Power Sources, vol. 479, p. 228791, Dec. 2020, doi: 10.1016/j.jpowsour.2020.228791.
  116. X. Ma, J. Yu, Y. Hu, J. Texter, and F. Yan, “Ionic liquid/poly(ionic liquid)-based electrolytes for lithium batteries,” Ind. Chem. Mater., vol. 1, no. 1, pp. 39–59, 2023, doi: 10.1039/D2IM00051B.
  117. S. Y. Lee and Y. J. Park, “Effect of Vinylethylene Carbonate and Fluoroethylene Carbonate Electrolyte Additives on the Performance of Lithia-Based Cathodes,” ACS Omega, vol. 5, no. 7, pp. 3579–3587, Feb. 2020, doi: 10.1021/acsomega.9b03932.
  118. J. Minkiewicz et al., “Large-scale manufacturing of solid-state electrolytes: Challenges, progress, and prospects,” Open Ceram., vol. 16, p. 100497, Dec. 2023, doi: 10.1016/j.oceram.2023.100497.
  119. L. Feng, Y. Sun, Y. Yuan, J. Huang, M. Hou, and J. Lu, “Designing inorganic electrolytes for solid-state Li-ion batteries: A perspective of LGPS and garnet,” Mater. Today, vol. 50, Apr. 2021, doi: 10.1016/j.mattod.2021.03.013.
  120. N. Boaretto et al., “Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing,” J. Power Sources, vol. 502, p. 229919, Aug. 2021, doi: 10.1016/j.jpowsour.2021.229919.
  121. G. Liu, J. Yang, J. Wu, Z. Peng, and X. Yao, “Inorganic Sodium Solid Electrolytes: Structure Design, Interface Engineering and Application,” Adv. Mater., vol. n/a, no. n/a, p. 2311475, doi: 10.1002/adma.202311475.
  122. K. Nie et al., “Interfaces Between Cathode and Electrolyte in Solid State Lithium Batteries: Challenges and Perspectives,” Front. Chem., vol. 6, Dec. 2018, doi: 10.3389/fchem.2018.00616.
  123. Y. Liu et al., “Interface Strategies for Enhancing the Lithium-Ion Transport of Composite Polymer Electrolytes toward High-Performance Solid-State Batteries,” ACS Appl. Energy Mater., vol. 7, no. 10, pp. 4303–4313, May 2024, doi: 10.1021/acsaem.3c03240.
  124. J. Shin, S. Jeong, K. Kim, H. Ahn, and H.-J. Ahn, “Preparation and characterization of plasticized polymer electrolytes based on the PVdF-HFP copolymer for lithium/sulfur battery,” J. Mater. Sci. Mater. Electron., vol. 13, pp. 727–733, Dec. 2002, doi: 10.1023/A:1021521207247.
  125. N. Varan, P. Merghes, N. Plesu, L. Macarie, G. Ilia, and V. Simulescu, “Phosphorus-Containing Polymer Electrolytes for Li Batteries,” Batteries, vol. 10, no. 2, Art. no. 2, Feb. 2024, doi: 10.3390/batteries10020056.
  126. Swiderska-Mocek and A. Gabryelczyk, “Interfacial Stabilizing Effect of Lithium Borates and Pyrrolidinium Ionic Liquid in Gel Polymer Electrolytes for Lithium-Metal Batteries,” J. Phys. Chem. C, vol. 127, no. 38, pp. 18875–18890, Sep. 2023, doi: 10.1021/acs.jpcc.3c05263.
  127. M. Etxandi-Santolaya, L. Canals Casals, T. Montes, and C. Corchero, “Are electric vehicle batteries being underused? A review of current practices and sources of circularity,” J. Environ. Manage., vol. 338, p. 117814, Jul. 2023, doi: 10.1016/j.jenvman.2023.117814.
  128. S. Yu. Luchkin, S. A. Lipovskikh, N. S. Katorova, A. A. Savina, A. M. Abakumov, and K. J. Stevenson, “Solid-electrolyte interphase nucleation and growth on carbonaceous negative electrodes for Li-ion batteries visualized with in situ atomic force microscopy,” Sci. Rep., vol. 10, p. 8550, May 2020, doi: 10.1038/s41598-020-65552-6.
  129. Lalinde et al., Perspective Chapter: Thermal Runaway in Lithium-Ion Batteries. IntechOpen, 2022. doi: 10.5772/intechopen.106539.
  130. Hou, M. Yang, D. Wang, and J. Zhang, “Fundamentals and Challenges of Lithium Ion Batteries at Temperatures between −40 and 60 °C,” Adv. Energy Mater., vol. 10, no. 18, p. 1904152, 2020, doi: 10.1002/aenm.201904152.
  131. D. Juarez-Robles, A. A. Vyas, C. Fear, J. A. Jeevarajan, and P. P. Mukherjee, “Overcharge and Aging Analytics of Li-Ion Cells,” J. Electrochem. Soc., vol. 167, no. 9, p. 090547, Jun. 2020, doi: 10.1149/1945-7111/ab9569.
  132. X. Zhu et al., “Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions:An experimental study,” J. Power Sources, vol. 455, p. 227939, Apr. 2020, doi: 10.1016/j.jpowsour.2020.227939.
  133. Manthiram, “Materials Challenges and Opportunities of Lithium Ion Batteries,” J. Phys. Chem. Lett., vol. 2, no. 3, pp. 176–184, Feb. 2011, doi: 10.1021/jz1015422.
  134. M. Khan, “Innovations in Battery Technology: Enabling the Revolution in Electric Vehicles and Energy Storage,” Br. J. Multidiscip. Adv. Stud., vol. 5, pp. 23–41, Feb. 2024, doi: 10.37745/bjmas.2022.0414.
  135. C. Qi et al., “Application of Graphene in Lithium-Ion Batteries,” in Chemistry of Graphene - Synthesis, Reactivity, Applications and Toxicities, IntechOpen, 2024. doi: 10.5772/intechopen.114286.
  136. Lüder, F. Legrain, Y. Chen, and S. Manzhos, “Doping of active electrode materials for electrochemical batteries: An electronic structure perspective,” MRS Commun., vol. 7, pp. 1–18, Aug. 2017, doi: 10.1557/mrc.2017.69.
  137. H. M. Saleh and A. I. Hassan, “Synthesis and Characterization of Nanomaterials for Application in Cost-Effective Electrochemical Devices,” Sustainability, vol. 15, no. 14, Art. no. 14, Jan. 2023, doi: 10.3390/su151410891.
  138. F. Mizuno, A. Hayashi, K. Tadanaga, and M. Tatsumisago, “Effects of Conductive Additives in Composite Positive Electrodes on Charge-Discharge Behaviors of All-Solid-State Lithium Secondary Batteries,” J. Electrochem. Soc., vol. 152, pp. A1499–A1503, Jul. 2005, doi: 10.1149/1.1939633.
  139. S. Jessl et al., “Carbon nanotube conductive additives for improved electrical and mechanical properties of flexible battery electrodes,” Mater. Sci. Eng. A, vol. 735, pp. 269–274, Sep. 2018, doi: 10.1016/j.msea.2018.08.033.
  140. G. Liu et al., “A review on ‘Growth mechanisms and optimization strategies for the interface state of solid‐state lithium‐ion batteries,’” Int. J. Appl. Ceram. Technol., vol. 21, Sep. 2023, doi: 10.1111/ijac.14523.
  141. Liu et al., “Plasma Coupled Electrolyte Additive Strategy for Construction of High‐Performance Solid Electrolyte Interphase on Li Metal Anodes,” Adv. Mater., Jun. 2024, doi: 10.1002/adma.202312812.
  142. Y.-F. Tian et al., “Tailoring chemical composition of solid electrolyte interphase by selective dissolution for long-life micron-sized silicon anode,” Nat. Commun., vol. 14, p. 7247, Nov. 2023, doi: 10.1038/s41467-023-43093-6.
  143. Z. Yu, L. Cui, B. Zhong, and G. Qu, “Research Progress on the Structural Design and Optimization of Silicon Anodes for Lithium-Ion Batteries: A Mini-Review,” Coatings, vol. 13, no. 9, Art. no. 9, Sep. 2023, doi: 10.3390/coatings13091502.
  144. Hariprasad, N. Naresh, B. Nageswara Rao, M. Venkateswarlu, and N. Satyanarayana, “Preparation of LiMn2O4 Nanorods and Nanoparticles for Lithium-ion Battery Applications,” Mater. Today Proc., vol. 3, no. 10, Part B, pp. 4040–4045, Jan. 2016, doi: 10.1016/j.matpr.2016.11.070.
  145. J. C. Barbosa, R. Gonçalves, C. M. Costa, and S. Lanceros-Mendez, “Recent Advances on Materials for Lithium-Ion Batteries,” Energies, vol. 14, no. 11, Art. no. 11, Jan. 2021, doi: 10.3390/en14113145.
  146. Raić et al., “Nanostructured Silicon as Potential Anode Material for Li-Ion Batteries,” Molecules, vol. 25, no. 4, Art. no. 4, Jan. 2020, doi: 10.3390/molecules25040891.
  147. A. Ahad, T. Kennedy, and H. Geaney, “Si Nanowires: From Model System to Practical Li-Ion Anode Material and Beyond,” ACS Energy Lett., vol. 9, no. 4, pp. 1548–1561, Mar. 2024, doi: 10.1021/acsenergylett.4c00262.
  148. Cong, H.-H. Park, M. Jo, H. Lee, and C.-S. Lee, “Synthesis and Electrochemical Performance of Electrostatic Self-Assembled Nano-Silicon@N-Doped Reduced Graphene Oxide/Carbon Nanofibers Composite as Anode Material for Lithium-Ion Batteries,” Molecules, vol. 26, no. 16, Art. no. 16, Jan. 2021, doi: 10.3390/molecules26164831.
  149. L. Syam Sundar, M. Amin Mir, M. Waqar Ashraf, and F. Djavanroodi, “Synthesis and characterization of graphene and its composites for Lithium-Ion battery applications: A comprehensive review,” Alex. Eng. J., vol. 78, pp. 224–245, Sep. 2023, doi: 10.1016/j.aej.2023.07.044.
  150. H. Liu, W. Zeng, Y. Yang, J. Chen, Y. Zhao, and S. Mu, “Synchronously improved graphitization and surface area in a 3D porous carbon network as a high capacity anode material for lithium/sodium-ion batteries,” J. Mater. Chem. A, vol. 9, no. 2, pp. 1260–1268, Jan. 2021, doi: 10.1039/D0TA10179F.
  151. W.-M. Chen et al., “Advanced TiO2/Al2O3 Bilayer ALD Coatings for Improved Lithium-Rich Layered Oxide Electrodes,” ACS Appl. Mater. Interfaces, vol. 16, no. 10, pp. 13029–13040, Mar. 2024, doi: 10.1021/acsami.3c16948.

This mini-review was performed to showcase the potential of lithium-ion batteries as key future energy-saving components for use in domestic, automobile, and other energy-demanding sectors. It explores the current and future energy materials that will transform the construction of Lithium-ion batteries, focusing on cathodes, anodes, electrolytes, and separators. It explores the critical advancement and challenges in the field of energy materials for lithium-ion batteries (LIBs), focusing on various components essential for improving battery performance. Different studies have shown that traditional cathode materials, primarily Lithium Cobalt Oxide (LiCoO2), Lithium iron phosphate (LiFeO4) and Lithium Manganese Cobalt Oxide (NMC) have dominated the market due to their favourable electrochemical properties. However, thermal instability and high costs necessitate the exploration of alternative materials like lithium-rich layered oxides and poly-anion compounds which enhance safety and energy density. The drive for cleaner energy is never over-emphasized, with the global shift from fossil-based fuels, more energy sources are investigated to find materials that are sustainable and durable in ensuring energy demands are met of which lithium-ion batteries are the primary source for such endeavour. Recently, the development of high-capacity materials such as lithium-nickel-cobalt-aluminum oxide (NCA) and advanced composite structures shows improved conductivity and structural integrity during the charge-discharge cycle. These innovations aim to balance performance with cost-effectiveness. This mini-review made available details of material composition, types of electrolytes, limitations and challenges of adoption for researchers, students and industry.

Keywords : Energy-Saving, Batteries, Lithium-ion, Composite Materials, Battery Capacity.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe