Authors :
Özden Özkanlısoy
Volume/Issue :
Volume 9 - 2024, Issue 8 - August
Google Scholar :
https://tinyurl.com/3ckm66sa
Scribd :
https://tinyurl.com/yc283c3m
DOI :
https://doi.org/10.38124/ijisrt/IJISRT24AUG1097
Abstract :
The Fourth Industrial Revolution is the
conversion of industries, economies, and so supply chains
by a fusion related to technological, business, and social
disruptive forces. The disruptive forces that cause the
conversion discourse are the technologies it has enabled.
This industrial revolution has a crucial impact on all
industries, especially the manufacturing industry, and
this effect sustains exponentially. The utilisation of The
Fourth Industrial Revolution technologies and the digital
transformation of supply chains is a pivotal step today
towards enhancing their competitiveness and their supply
chain performance and being able to follow the supply
chains of the future. However, implementing them alone
is not enough; new ways to get the most benefit from
them must be inquired. The combined utilisation of
certain industrial revolution technologies boosts their
efficiency and their contributions to companies and
supply chains. This study investigated the correlational
relationships of the eight most used The Fourth Industrial
Revolution technologies in the supply chain context and
determined the technologies with the highest relationship
with each other and called them intertwined technologies.
The sample size consists of 393 companies. The study is a
guide for companies and supply chains that will
implement these technologies or invest in a novel one.
Keywords :
The Fourth Industrial Revolution, Intertwined Technologies, Supply Chain Management.
References :
- Vasin, S., Gamidullaeva, L., Shkarupeta, E., Palatkin, I., & Vasina, T. (2018). Emerging trends and opportunities for Industry 4.0 development in Russia. European Research Studies Journal, 21(3), 63-76.
- Müller, J. M., & Voigt, K. I. (2018). The impact of Industry 4.0 on supply chains in engineer-to-order industries – An exploratory case study. IFAC-PapersOnLine, 51(11), 122–127. https://doi.org/ 10.1016/j.ifacol.2018.08.245
- Lee, C. K. M., Lv, Y., Ng, K. K. H., Ho, W., & Choy, K. L. (2018). Design and application of internet of things-based warehouse management system for smart logistics. International Journal of Production Research, 56(8), 2753–2768. https://doi.org/10.1080/ 00207543.2017.1394592
- Kotarba, M. (2017). Measuring digitalization–key metrics. Foundations of Management, 9(1), 123-138. https://doi.org/10.1515/fman-2017-0010
- Ashurst, C., Doherty, N. F., & Peppard, J. (2008). Improving the impact of IT development projects: the benefits realization capability model. European Journal of Information Systems, 17(4), 352-370. https://doi.org/10.1057/ejis.2008.33
- Hanley, T., Daecher, A., Cotteleer, M., & Sniderman, B. (2018). The Industry 4.0 paradox. Deloitte Insights. https://www2.deloitte.com/insights/us/en/focus/industry-4-0/challenges-on-pathto-digital-transformation/ summary.html
- Queiroz, M. M., Ivanov, D., Dolgui, A., & Fosso Wamba, S. (2022). Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review. Annals of Operations Research, 319(1), 1159-1196. https://doi.org/10.1007/s10479-020-03685-7
- Kupiainen, J. (2006). Translocalisation over the Net: Digitalisation, information technology and local cultures in Melanesia. E-learning and Digital Media, 3(3), 279-290. https://doi.org/10.2304/elea.2006.3.3. 279
- Stolterman, E., & Fors, A. C. (2004). Information technology and the good life. In Kaplan B., Truex, D.P., Wastell, D., Wood-Harper, A.T., & DeGross, J.I. (Eds) information systems research. Springer. https://doi.org/10.1007/1-4020-8095-6_45
- Gyimah-Concepcion, M. (2020). Technology in supply-chain management and logistics: what does the future hold? In A. Pagano, & M. Liotine (Eds), Technology in supply chain management and logistics: Current practice and future applications. Elsevier. doi:10.1016/b978-0-12-815956-9.00010-7. p.194.
- Deloitte, (2020, September 2). Yeni nesil teknolojilerin COVID-19 mücadelesindeki önemi- ülke örnekleri. https://www2.deloitte.com/content/ dam/Deloitte/tr/Documents/consulting/yeni-nesil-teknolojilerin-covid-19-mucadelesindeki-onemi.pdf
- Boudreau, M.C., Loch, K.D., Robey, D., & Straud, D. (1998). Going global: Using information technology to advance the competitiveness of the virtual transnational organization. Academy of Management Perspectives, 12(4), 120–128. https://doi.org/10.5465/ ame.1998.1334008
- Tiwari, S. (2021). Supply chain integration and Industry 4.0: A systematic literature review. Benchmarking: An International Journal, 28(3), 990-1030. https://doi.org/10.1108/BIJ-08-2020-0428
- Jazdi, N. (2014, May 22-24). Cyber physical systems in the context of Industry 4.0. 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania. DOI: 10.1109/ AQTR.2014.6857843
- Hofmann, E., Sternberg, H., Chen, H., Pflaum, A., & Prockl, G. (2019). Supply chain management and Industry 4.0: conducting research in the digital age. International Journal of Physical Distribution & Logistics Management, 49(10), 945-955. https://doi.org/10.1108/IJPDLM-11-2019-399
- Sadiku, M.N., Wang, Y., Cui, S., & Musa, S.M. (2017). Cyber-physical systems: A literature review. European Scientific Journal, 13(36), 52–58. https://doi.org/10.19044/esj.2017.v13n36p52
- Haddara, M., & Elragal, A. (2015). The readiness of ERP systems for the factory of the future. Procedia Computer Science, 64, 721-728. https://doi.org/ 10.1016/j.procs.2015.08.598
- Kusiak, A. (2023). Smart manufacturing. In S.Y. Nof (Ed.) Springer handbook of automation (pp. 973-985). Springer. https://doi.org/10.1007/978-3-030-96729-1_45
- Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 perspective. International Journal of Information and Communication Engineering, 8(1), 37–44.
- Cook, W., Driscoll, A., & Tenbergen, B. (2018). Airborne CPS: A simulator for functional dependencies in cyber physical systems: a traffic collision avoidance system implementation. 2018 4th International Workshop on Requirements Engineering for Self-Adaptive, Collaborative, and Cyber Physical Systems (RESACS), Banff, AB, Canada, IEEE. DOI: 10.1109/RESACS.2018.00011
- Dimitrakopoulos, G., & P. Demestichas. (2010). Intelligent transportation systems. IEEE Vehicular Technology Magazine, 5(1), 77–84. doi: 10.1109/ MVT.2009.935537
- Vierhauser, M., Cleland-Huang, J., Bayley, S., Krismayer, T., Rabiser, R., & Grünbacher, P. (2018, August 29-31). Monitoring CPS at runtime – A case study in the UAV domain. 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Prague, Czech Republic, IEEE. DOI: 10.1109/SEAA.2018.00022
- Ashibani, Y., & Mahmoud, Q. H. (2017). Cyber physical systems security: Analysis, challenges and solutions. Computers & Security, 68(July 2017), 81-97. https://doi.org/10.1016/j.cose.2017.04.005
- Mahmoud, R., Yousuf, T., Aloul, F., & Zualkernan, I. (2015, December 14-16). Internet of things (IoT) security: Current status, challenges and prospective measures. 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST). London, United Kingdom, IEEE. doi: 10.1109/ICITST.2015.7412116
- Lee, K. (2016). How the internet of things will change your world. IdeaBook 2016. http://digital.supplychainquarterly.com/supplychain/ideabook_2016/?folio=50&sub_id=Hxh5qJH8aRP9&pg=1#pg1
- Hermann, M., Pentek, T., & Otto, B. (2016, January 5-8). Design principles for Industrie 4.0 scenarios. 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, IEEE. DOI: 10.1109/HICSS.2016.488
- Malone, T. W. (1999). Is empowerment' just a fad? Control, decision-making, and information technology. BT Technology Journal, 17(4), 141-144. https://doi.org/10.1023/A:1009663512936
- Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: A literature review. International Journal of Production Research, 57(15-16), 4719-4742. https://doi.org/ 10.1080/00207543.2017.1402140
- Nižetić, S., Šolić, P., González-De, D. L. D. I., & Patrono, L. (2020). Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. Journal of Cleaner Production, 274, 1-32. https://doi.org/10.1016/j.jclepro.2020. 122877
- Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243. doi:10.1109/TII.2014.2300753
- Özkanlısoy, Ö. & Bulutlar, F. (2023). Impact of sustainability on supply chain: Contributions and new performance measurements in the disruptive technology era. In M. Russ (Ed.) Cases on enhancing business sustainability through knowledge management systems (pp. 199-250). IGI Global. doi: 10.4018/978-1-6684-5859-4
- Min, H. (2010). Artificial intelligence in supply chain management: Theory and applications. International Journal of Logistics: Research and Applications, 13(1), 13-39. DOI: 10.1080/13675560902736537
- Pournader, M., Ghaderi, H., Hassanzadegan, A., & Fahimnia, B. (2021). Artificial intelligence applications in supply chain management. International Journal of Production Economics, 241, 1-16. https://doi.org/10.1016/j.ijpe.2021.108250
- Manners-Bell, J., & Lyon, K. (2019). The logistics and supply chain innovation handbook: Disruptive technologies and new business models. Kogan Page Publishers.
- Brzóska, J., & Knop, L. (2020). Business model changes in the presence of challenges brought by Industry 4.0. In Nogalski, B. & P. Bula (Ed.). The future of management: Industry 4.0 and digitalization (pp. 22-41). Jagiellonian University Press. DOI: 10.4467/K7123.106/20.20.15521
- Urbanek, G. (2020). The future of branding. In Nogalski, B. (Ed.), The future of management: Industry 4.0 and digitalization (pp. 210-224). Jagiellonian University Press.
- Naz, F., Kumar, A., Majumdar, A., & Agrawal, R. (2021). Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research. Operations Management Research, 15, 378-398. https://doi.org/10.1007/s12063-021-00208-w
- Shankar, V. (2018), How artificial intelligence (AI) is reshaping retailing. Journal of Retailing, 94(4), 5–11.
- Wappa, P. (2011). Wykorzystanie metod sztucznej inteligencji w logistyce. Ekonomia i Zarządzanie, 3(4), 109-121.
- Merlino, M., & Sproge, I. (2017). The augmented supply chain. Procedia Engineering, 178, 308-318. https://doi.org/10.1016/j.proeng.2017.01.053
- Keow, A.K.S., & Nee, A.Y.H. (2018). Robotics in supply chain: Emerging technologies for supply chain management. WouPress.
- Pan, M., Linner, T., Pan, W., Cheng, H., & Bock, T. (2018). A framework of indicators for assessing construction automation and robotics in the sustainability context. Journal of Cleaner Production, 182, 82-95. https://doi.org/10.1016/j.jclepro.2018. 02.053
- Kohl, J. L., van der Schoor, M. J., Syré, A. M., & Göhlich, D. (2020). Social sustainability in the development of service robots. Proceedings of the Design Society: DESIGN Conference (vol. 1). Cambridge University Press. DOI: https://doi.org/10.1017/dsd.2020.59
- Mishra, D., Gunasekaran, A., & Papadopoulos, T. (2018). Big data and supply chain management: A review and bibliometric analysis. Annals of Operations Research, 270(1-2), 313-336. https://doi.org/10.1007/s10479-016-2236-y
- Bi, Z., & Cochran, D. (2014). Big data analytics with applications. Journal of Management Analytics, 1(4), 249–265. https://doi.org/10.1080/23270012.2014. 992985
- Artun, O., & Levin, D. (2015). Predictive marketing: easy ways every marketer can use customer analytics and big data. John Wiley & Sons.
- Davenport, T. H., & Dyché, J. (2013). Big data in big companies. International Institute for Analytics, 3, 1-31.
- Souza, G. C. (2014). Supply chain analytics. Business Horizons, 57(5), 595-605. https://doi.org/10.1016/ j.bushor.2014.06.004
- Naganathan, V. (2018). Comparative analysis of big data, big data analytics: Challenges and trends. International Research Journal of Engineering and Technology, 5(5), 1948-1964.
- Gunasekaran, A., Subramanian, N., & Rahman, S. (2017). Improving supply chain performance through management capabilities. Production Planning & Control, 28(6-8), 473–477. https://doi.org/10.1080/ 09537287.2017.1309680.
- Ghadge, A., Er Kara, M., Moradlou, H., & Goswami, M. (2020). The impact of Industry 4.0 implementation on supply chains. Journal of Manufacturing Technology Management, 31(4), 669-686. https://doi.org/10.1108/JMTM-10-2019-0368.
- Koh, L., Orzes, G., & Jia, F. (2019). The fourth industrial revolution (Industry 4.0): Technologies’ disruption on operations and supply chain management. International Journal of Operations & Production Management, 39, 817–828. https://doi.org/ 10.1108/IJOPM-08-2019-788
- Betti, Q., Montreuil, B., Khoury, R., & Hallé, S. (2020). Smart contracts-enabled simulation for hyperconnected logistics. In M.A. Khan, M.T. Quasim, F. Algarni, & A. Abdullah (Eds.), Decentralised internet of things: A blockchain perspective (pp. 109-149). Springer. https://doi.org/ 10.1007/978-3-030-38677-1
- Hawlitschek, F., Benedikt, N., & Timm, T. (2018). The limits of trust-free systems: A literature review on blockchain technology and trust in the sharing economy. Electronic Commerce Research and Applications, 29(May-June), 50-63. https://doi.org/ 10.1016/j.elerap.2018.03.005.
- Akaba, T. I., Norta, A., Udokwu, C., & Draheim, D. (2020, April 8-8). A framework for the adoption of blockchain-based e-procurement systems in the public sector: A case study of Nigeria. Responsible Design, Implementation and Use of Information and Communication Technology: 19th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society, I3E 2020, Skukuza, South Africa (pp. 3-14). Springer International Publishing. https://doi.org/10.1007/978-3-030-44999-5_1
- Mougayar, W., & Buterin, V. (2016). The business blockchain: Promise, practice, and application of the next internet technology. Wiley. p. 71.
- Omar, I. A., Jayaraman, R., Debe, M. S., Salah, K., Yaqoob, I., & Omar, M. (2021). Automating procurement contracts in the healthcare supply chain using blockchain smart contracts. IEEE Access, 9, 37397-37409. DOI: 10.1109/ACCESS.2021.3062471
- Zheng, Z., Xie, S., Dai, H. N., Chen, W., Chen, X., Weng, J., & Imran, M. (2020). An overview on smart contracts: Challenges, advances and platforms. Future Generation Computer Systems, 105, 475-491. https://doi.org/10.1016/j.future.2019.12.019
- Wan, P. K., Huang, L., & Holtskog, H. (2020). Blockchain-enabled information sharing within a supply chain: A systematic literature review. IEEE Access, 8, 49645-49656. doi: 10.1109/ACCESS. 2020.2980142
- Babich, V., & Hilary, G. (2019). Distributed ledgers and operations: What operations management researchers should know about blockchain technology. Manufacturing & Service Operations Management, 22(2), 1-18. https://doi.org/10.1287/ msom.2018.0752
- Abeyratne, S. A., & Monfared, R. P. (2016). Blockchain ready manufacturing supply chain using distributed ledger. International Journal of Research in Engineering and Technology, 5(9), 1–10. p. 3.
- Casey, M. J., & Wong, P. (2017). Global supply chains are about to get better, thanks to blockchain. In C. Tucker, D. Tapscott, & M. Iansiti, & K. R. Lakhani (Eds.), Blockchain (pp. 125-134). Harvard Business Review Press.
- Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37(2), 517-527. https://doi.org/10.1016/j.jmsy.2015. 04.008
- Dallasega, P., Rauch, E., & Linder, C. (2018). Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review. Computers in Industry, 99, 205-225. https://doi.org/10.1016/j.compind.2018.03.039
- Vazquez-Martinez, G. A., Gonzalez-Compean, J. L., Sosa-Sosa, V. J., Morales-Sandoval, M., & Perez, J. C. (2018). Cloud Chain: A novel distribution model for digital products based on supply chain principles. International Journal of Information Management, 39, 90-103. https://doi.org/10.1016/j.ijinfomgt.2017.12. 006
- Ros, S., Caminero, A. C., Hernández, R., Robles-Gómez, A., & Tobarra, L. (2014). Cloud-based architecture for web applications with load forecasting mechanism: A use case on the e-learning services of a distant university. The Journal of Supercomputing, 68(3), 1556-1578. DOI 10.1007/s11227-014-1125-x
- Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A break in the clouds: Towards acloud definition. ACM Sigcomm Computer Communication Review, 39 (1), 50–55. https://doi.org/10.1145/1496091.1496100
- Aymerich, F. M., Fenu, G., & Surcis, S. (2008, August 4-6). An approach to a cloud computing network. In 2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT) Ostrava, IEEE. DOI: 10.1109/ICADIWT.2008.4664329
- Vickery, S. K., Droge, C., Setia, P., & Sambamurthy, V. (2010). Supply chain information technologies and organisational initiatives: Complimentary versus independent effects on agility and firm performance. International Journal of Production Research, 48(23), 7025–7042. https://doi.org/10.1080/0020754090 3348353
- Iyer, B., & Henderson, J. C. (2010). Preparing for the future: understanding the seven capabilities cloud computing. MIS Quarterly Executive, 9(2), 117-131.
- Kamble, S., Gunasekaran, A., & Gawankar, S. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408-425. https://doi.org/10.1016/j. psep.2018.05.009
- Caputo, A., Marzi, G., & Pellegrini, M.M. (2016) The Internet of Things in manufacturing innovation processes: Development and application of a conceptual framework. Business Process Management Journal, 22(2), 383-402. https://doi.org/10.1108/ BPMJ-05-2015-0072
- Nyman, H.J., & Sarlin, P. (2014, January 6-9). From bits to atoms: 3D printing in the context of supply chain strategies. Proceedings of the Annual Hawaii International Conference on System Sciences 47th Annual Hawaii International Conference on System Sciences (HICSS-47), Waikoloa, Big Island, IEEE. DOI: 10.1109/HICSS.2014.518
- Mohr, S., & Khan, O. (2015). 3D Printing and its disruptive impacts on supply chains of the future. Technology Innovation Management Review, 5(11), 20-25.
- Niaki, M.K., & Nonino, F. (2017). Additive manufacturing management: a review and future research agenda. International Journal of Production Research, 55(5), 1419-1439. https://doi.org/10.1080/ 00207543.2016.1229064
- Petrick, I.J., & Simpson, T.W. (2013). 3D Printing disrupts manufacturing: How economies of one create new rules of competition. Research-Technology Management, 56(6), 12-16. https://doi.org/10.5437/ 08956308X5606193
- Rogers, H., Baricz, N., & Pawar, K. S. (2016). 3D printing services: classification, supply chain implications and research agenda. International Journal of Physical Distribution & Logistics Management, 46(10), 886-907.
- Rad, F. F., Oghazi, P., Palmié, M., Chirumalla, K., Pashkevich, N., Patel, P. C., & Sattari, S. (2022). Industry 4.0 and supply chain performance: A systematic literature review of the benefits, challenges, and critical success factors of 11 core technologies. Industrial Marketing Management, 105, 268-293. https://doi.org/10.1016/j.indmarman.2022. 06.009
- Rejeb, A., Keogh, J. G., Wamba, S. F., & Treiblmaier, H. (2021). The potentials of augmented reality in supply chain management: A state-of-the-art review. Management Review Quarterly, 71, 819–856 https://doi.org/10.1007/s11301-020-00201-w
- Devagiri, J. S., Paheding, S., Niyaz, Q., Yang, X., & Smith, S. (2022). Augmented Reality and Artificial Intelligence in industry: Trends, tools, and future challenges. Expert Systems with Applications, 207(November 2020), 1-13. https://doi.org/10.1016/j. eswa.2022.118002
- Gattullo, M., Scurati, G. W., Fiorentino, M., Uva, A. E., Ferrise, F., & Bordegoni, M. (2019). Towards augmented reality manuals for industry 4.0: A methodology. Robotics and Computer-Integrated Manufacturing, 56, 276-286. https://doi.org/10.1016/j. rcim.2018.10.001
- Kim, S., Nussbaum, M. A., & Gabbard, J. L. (2019). Influences of augmented reality head-worn display type and user interface design on performance and usability in simulated warehouse order picking. Applied Ergonomics, 74, 186-193. https://doi.org/10.1016/j.apergo.2018.08.026
- Glockner, H., Jannek, K., Mahn, J., & Theis, B. (2014). Augmented reality in logistics: Changing the way we see logistics: A DHL perspective. DHL Customer Solutions & Innovation. https://www.dhl.com/discover/content/dam/dhl/downloads/interim/full/dhl-csi-augmented-reality-report.pdf
- Lu, M. (2018). Five ways augmented reality enhances supply chain management. ASCM Insights. https://www.ascm.org/ascm-insights/five-ways-augmented-reality-enhancessupply-chain-management/
- Büyüközkan, G., & Güler, M. (2019). Lojistik 4.0 teknolojilerinin analizi için metodolojik yaklaşım. Journal of Entrepreneurship and Innovation Management, 8(1), 21–47.
- Saucedo Martínez, J., Pérez Lara, M., Marmolejo Saucedo, J., Salais Fierro, T., & Vasant, P. (2018). Industry 4.0 framework for management and operations: A review. Journal of Ambient Intelligence and Humanized Computing, 9(3), 789-801. https://doi.org/10.1007/s12652-017-0533-1
- Anderson, J.M., Nidhi, K., Stanley, K.D., Sorensen, P., Samaras, C., & Oluwatola, O.A. (2016). Autonomous vehicle technology: A guide for policymakers. Rand Corporation.
- Gao, P., Hensley, R., & Zielke, A. (2014). A road map to the future for the auto industry. McKinsey Quarterly, October, 1–11. https://img.etb2bimg.com/ files/retail_files/reports/data_file-A-road-map-to-the-future-for-the-auto-industry-McKinsey-Quarterly-Report-1426754280.pdf
- Garza, A.P., (2011). Look ma, no hands: Wrinkles and wrecks in the age of autonomous vehicles. New Engl. Law Rev. 46, 581–616.
- Luettel, T., Himmelsbach, M., & Wuensche, H. J. (2012). Autonomous ground vehicles concepts and a path to the future. Proceedings of the IEEE, 100(Centennial-Issue), 1831-1839. doi: 10.1109/ JPROC.2012.2189803
- Perussi, J. B., Gressler, F., & Seleme, R. (2019). Supply chain 4.0: Autonomous vehicles and equipment to meet demand. International Journal of Supply Chain Management, 8(4), 33–41.
- Schwab, K. (2017). The fourth industrial revolution. New York: World Economic Forum.
- Tao, F., Zhang, M., & Nee, A. Y. C. (2019). Digital twin driven smart manufacturing. Academic Press. p. 42.
- Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2018). Supply chain risk management and artificial intelligence: State of the art and future research directions. International Journal of Production Research, 57(7), 2179-2202. https://doi.org/10.1080/ 00207543.2018.1530476
- Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 32(9), 775-788. https://doi.org/ 10.1080/09537287.2020.1768450
- Zhang, G., MacCarthy, B. L., & Ivanov, D. (2022). The cloud, platforms, and digital twins-Enablers of the digital supply chain. In B.L. MacCarthy, & D. Ivanov (Eds.) The digital supply chain (pp. 77-92). Elsevier.
- Leng, J., Zhou M., Xiao Y., Zhang H., Liu Q., Shen W., Su Q., & Li L., (2021). Digital twins based remote semi-physical commissioning of flow-type smart manufacturing systems. Journal of Cleaner Production, 306, 1-15. https://doi.org/10.1016/ j.jclepro.2021.127278
- Ivanov, D., Dolgui, A., Das, A., & Sokolov, B. (2019). Digital supply chain twins: Managing the ripple effect, resilience, and disruption risks by data driven optimization, simulation, and visibility. In D. Ivanov, A. Dolgui, & B. Sokolov (Eds.), Handbook of ripple effects in the supply chain (pp. 309-332). Springer. https://doi.org/10.1007/978-3-030-14302-2_15
- Srinivasan, R., & Swink, M. (2015). Leveraging supply chain integration through planning comprehensiveness: an organizational information processing theory perspective. Decision Sciences, 46(5), 823-861. https://doi.org/10.1111/deci.12166
- Besanko, D., Dranove, D., & Shandley, M. (2000). The economics of strategy (2nd ed.). John Wiley & Sons.
- Burns, L.R., Goldsmith, J.C., & Sen, A. (2014). Horizontal and vertical integration of physicians: A tale of two tails. In L. Friedman, J. Goes & G.T. Savage (Eds.), Annual review of health care management: Revisiting the evolution of health systems organization (advances in health care management, vol. 15) (pp. 39-117). Emerald Group Publishing. https://doi.org/10.1108/S1474-8231(2013)0000015009
- Jahangirian, M, Eldabi, T., Naseer, A., Stergioulas, L.K., & Young, T. (2010). Simulation in manufacturing and business: A review. European Journal of Operational Research, 203, 1–13. https://doi.org/10.1016/j.ejor.2009.06.004
- Elangovan, U. (2022). Industry 5.0: The future of the industrial economy (1st ed.). CRC Press. https://doi.org/10.1201/9781003190677
- Thames, L., & Schaefer, D. (2017). Industry 4.0: An overview of key benefits, technologies, and challenges. In L. Thames, & D. Schaefer (Eds.), Cybersecurity for Industry 4.0 (pp. 1-33). Springer. https://doi.org/10.1007/978-3-319-50660-9_1
- Boyes, H. (2015). Cybersecurity and cyber-resilient supply chains. Technology Innovation Management Review, 5(4), 28-34.
- Simon, J., & Omar, A. (2019). Cybersecurity investments in the supply chain: Coordination and a strategic attacker. European Journal of Operational Research, 282(1), 1-29. https://doi.org/10.1016/j. ejor.2019.09.017
- Guembe, B., Azeta, A., Misra, S., Osamor, V. C., Fernandez-Sanz, L., & Pospelova, V. (2022). The emerging threat of ai-driven cyber-attacks: A review. Applied Artificial Intelligence, 36(1), 1–34. doi: 10.1080/08839514.2022.2037254
- Dobrowolska, K. (2020, November 2). Modern technology implementation: Costs and benefits. https://archdesk.com/blog/modern-technologyimplementation-costs-and-benefits/
- Karpagam, V., Kayalvizhi, A., Bharathi, N., & Balamurugan, S. (2022). Internet of things: Applications, vulnerabilities, and the need for cyber resilience. In D. Goyal, S. Balamurugan, K. Senthilnathan, I. Annapoorani & M. Israr (Eds.), Cyber-physical systems and Industry 4.0 (pp. 45-55). Apple Academic Press.
- Rao, S. K., & Prasad, R. (2018). Impact of 5G technologies on Industry 4.0. Wireless Personal Communications, 100(1), 145-159. https://doi.org/ 10.1007/s11277-018-5615-7
- Taboada, I., & Shee, H. (2020). Understanding 5G technology for future supply chain management. International Journal of Logistics Research and Applications, 24(4), 392-406. https://doi.org/10.1080/ 13675567.2020.1762850
- Zhao, J., & Li, Y. (2022). Supply chain security evaluation model and index system based on a 5G information system. Neural Computing and Applications, 34(15), 12271-12281. https://doi.org/ 10.1007/s00521-021-06584-5
- Kaginalkar, A., Kumar, S., Gargava, P., & Niyogi, D. (2021). Review of urban computing in air quality management as smart city service: An integrated IoT, AI, and cloud technology perspective. Urban Climate, 39, 1-27. https://doi.org/10.1016/j.uclim.2021.100972
- Rahimi, H., Zibaeenejad, A., & Safavi, A. A. (2018, November). A novel IoT architecture based on 5G-IoT and next generation technologies. In 2018 IEEE 9th annual information technology, electronics and mobile communication conference (IEMCON) (pp. 81-88). Vancouver, BC, Canada. IEEE. doi: 10.1109/IEMCON.2018.8614777.
- Özkanlısoy, Ö., & Bulutlar, F. (2022). Measuring using disruptive technology in the supply chain context: scale development and validation. Journal of Theoretical and Applied Electronic Commerce Research, 17(4), 1336-1360. https://doi.org/10.3390/ jtaer17040068
- Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6, 35–39. https://doi.org/ 10.1177/875647939000600106
- Li, J., Ye, Z., & Zhang, C. (2022). Study on the interaction between big data and artificial intelligence. Systems Research and Behavioral Science, 39(3), 641-648. https://doi.org/10.1002/sres.2878
- Oussous A, Benjelloun F-Z, Lahcen A, Belfkih S. 2018. Big data technologies: a survey. Journal of King Saud University-Computer and Information Sciences 30(4), 431–448. DOI 10.1016/j.jksuci.2017.06.001
- Arena, F., & Pau, G. (2020). An overview of big data analysis. Bulletin of Electrical Engineering and Informatics, 9(4), 1646-1653.
- Bag, S., Dhamija, P., Singh, R. K., Rahman, M. S., & Sreedharan, V. R. (2023). Big data analytics and artificial intelligence technologies based collaborative platform empowering absorptive capacity in health care supply chain: An empirical study. Journal of Business Research, 154, 1-18. https://doi.org/ 10.1016/j.jbusres.2022.113315
- Thayyib, P. V., Mamilla, R., Khan, M., Fatima, H., Asim, M., Anwar, I., ... & Khan, M. A. (2023). State-of-the-art of artificial intelligence and big data analytics reviews in five different domains: a bibliometric summary. Sustainability, 15(5), 1-38. doi.org/10.3390/su15054026
- Khan, Z. F., & Alotaibi, S. R. (2020). Applications of artificial intelligence and big data analytics in m‐health: A healthcare system perspective. Journal of Healthcare Engineering, 2020(1), 1-15. https://doi.org/ 10.1155/2020/8894694
- Rahmani, A.M., Azhir, E., Ali, S., Mohammadi, M., Ahmed O.H., Yassin Ghafour, M., Hasan Ahmed S., & Hosseinzadeh M. (2021). Artificial intelligence approaches and mechanisms for big data analytics: A systematic study. PeerJ Computer Science, 7, 1-28. https://doi.org/10.7717/peerj-cs.488
- Gad-Elrab, A. A. (2021). Modern business intelligence: Big data analytics and artificial intelligence for creating the data-driven value. In R. M.X. Wu & M. Mircea (Eds.) E-Business-Higher Education and Intelligence Applications (pp. 135-156). London, UK: IntechOpen.
- Addo-Tenkorang, R., & Helo, P. T. (2016). Big data applications in operations/supply-chain management: A literature review. Computers & Industrial Engineering, 101(November 2016), 528-543. https://doi.org/10.1016/j.cie.2016.09.023
- Winkelhaus, S., & Grosse, E. H. (2022). Smart warehouses—a sociotechnical perspective. In B.L. MacCarthy, & D. Ivanov (Eds.), The digital supply chain (pp. 47-60). Elsevier.
- Vieira, A. A., Dias, L. M., Santos, M. Y., Pereira, G. A., & Oliveira, J. A. (2019). Simulation of an automotive supply chain using big data. Computers & Industrial Engineering, 137, 1-14. https://doi.org/10.1016/j.cie.2019.106033
- Tolk, A. (2015, July). The next generation of modeling & simulation: integrating big data and deep learning. In Proceedings of the Conference on Summer Computer Simulation (pp. 1-8).
- Ranjan, R. (2014). Modeling and simulation in performance optimization of big data processing frameworks. IEEE Cloud Computing, 1(4), 14-19.
- Lee, J., Davari Arkadani, H., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintanance & service innovation. Procedia CIRP, 38, 3-7. https://doi.org/10.1016/j.procir.2015.08.026
- Watson, D. P., & Scheidt, D. H. (2005). Autonomous systems. Johns Hopkins APL technical digest, 26(4), 368-376.
- Tarkoma, S. & Katasonov, A. (2011). Internet of things strategic research agenda (IoT–SRA). Finnish Strategic Centre for Science, Technology, and Innovation: For Information and Communications (ICT) Services, Businesses, and Technologies, Finland. https://www.internetofthings.fi/extras/ internet-of-things-strategic-research-agenda.pdf
- Pramanik, P. K. D., Pal, S., & Choudhury, P. (2018). Beyond automation: the cognitive IoT. artificial intelligence brings sense to the Internet of Things. Cognitive Computing for Big Data Systems Over IoT: Frameworks, Tools and Applications, 1-37.
- Kuzlu, M., Fair, C., & Guler, O. (2021). Role of artificial intelligence in the Internet of Things (IoT) cybersecurity. Discover Internet of Things, 1(1), 1-14. https://doi.org/10.1007/s43926-020-00001-4
- İyigün, İ., & Görçün, Ö. F. (2019). Endüstri 4.0: Lojistik ve tedarik zinciri yönetiminde teknoloji kullanimi eğilimleri. Ekev Akademi Dergisi, ICOAEF Özel Sayısı, 119-134.
- Hemdan, E.ED., El-Shafai, W., & Sayed, A. (2023). Integrating digital twins with IoT-based blockchain: Concept, architecture, challenges, and future scope. Wireless Personal Communications, 131, 2193–2216. https://doi.org/10.1007/s11277-023-10538-6
- Madni, A. M., Madni, C. C., & Lucero, S. D. (2019). Leveraging digital twin technology in model-based systems engineering. Systems, 7(1), 1-13. https://doi.org/10.3390/systems7010007
- Ericsson. (2020, September 18). How 5G and Edge Computing can enhance virtual reality. https://www.ericsson.com/en/blog/2020/4/how-5g-and-edge-computing-can-enhance-virtual-reality#:~:text=Enabling%20AR%2FVR%20experiences%20with%205G%20and%20edge%20compute&text=Because%20the%20graphics%20require%20heavy,device%20and%20the%20edge%20cloud.
- Wongkitrungrueng, A., & Assarut, N. (2020). The role of live streaming in building consumer trust and engagement with social commerce sellers. Journal of Business Research, 117, 543-556. https://doi.org/ 10.1016/j.jbusres.2018.08.032
- Christopher, M. (2023). Logistics & supply chain management (6th ed.). Pearson. p. 305.
The Fourth Industrial Revolution is the
conversion of industries, economies, and so supply chains
by a fusion related to technological, business, and social
disruptive forces. The disruptive forces that cause the
conversion discourse are the technologies it has enabled.
This industrial revolution has a crucial impact on all
industries, especially the manufacturing industry, and
this effect sustains exponentially. The utilisation of The
Fourth Industrial Revolution technologies and the digital
transformation of supply chains is a pivotal step today
towards enhancing their competitiveness and their supply
chain performance and being able to follow the supply
chains of the future. However, implementing them alone
is not enough; new ways to get the most benefit from
them must be inquired. The combined utilisation of
certain industrial revolution technologies boosts their
efficiency and their contributions to companies and
supply chains. This study investigated the correlational
relationships of the eight most used The Fourth Industrial
Revolution technologies in the supply chain context and
determined the technologies with the highest relationship
with each other and called them intertwined technologies.
The sample size consists of 393 companies. The study is a
guide for companies and supply chains that will
implement these technologies or invest in a novel one.
Keywords :
The Fourth Industrial Revolution, Intertwined Technologies, Supply Chain Management.