A Research on Identifying Intertwined 4IR Technologies in the Supply Chain Context


Authors : Özden Özkanlısoy

Volume/Issue : Volume 9 - 2024, Issue 8 - August

Google Scholar : https://tinyurl.com/3ckm66sa

Scribd : https://tinyurl.com/yc283c3m

DOI : https://doi.org/10.38124/ijisrt/IJISRT24AUG1097

Abstract : The Fourth Industrial Revolution is the conversion of industries, economies, and so supply chains by a fusion related to technological, business, and social disruptive forces. The disruptive forces that cause the conversion discourse are the technologies it has enabled. This industrial revolution has a crucial impact on all industries, especially the manufacturing industry, and this effect sustains exponentially. The utilisation of The Fourth Industrial Revolution technologies and the digital transformation of supply chains is a pivotal step today towards enhancing their competitiveness and their supply chain performance and being able to follow the supply chains of the future. However, implementing them alone is not enough; new ways to get the most benefit from them must be inquired. The combined utilisation of certain industrial revolution technologies boosts their efficiency and their contributions to companies and supply chains. This study investigated the correlational relationships of the eight most used The Fourth Industrial Revolution technologies in the supply chain context and determined the technologies with the highest relationship with each other and called them intertwined technologies. The sample size consists of 393 companies. The study is a guide for companies and supply chains that will implement these technologies or invest in a novel one.

Keywords : The Fourth Industrial Revolution, Intertwined Technologies, Supply Chain Management.

References :

  1. Vasin, S., Gamidullaeva, L., Shkarupeta, E., Palatkin, I., & Vasina, T. (2018). Emerging trends and opportunities for Industry 4.0 development in Russia. European Research Studies Journal, 21(3), 63-76.
  2. Müller, J. M., & Voigt, K. I. (2018). The impact of Industry 4.0 on supply chains in engineer-to-order industries – An exploratory case study. IFAC-PapersOnLine, 51(11), 122–127. https://doi.org/ 10.1016/j.ifacol.2018.08.245
  3. Lee, C. K. M., Lv, Y., Ng, K. K. H., Ho, W., & Choy, K. L. (2018). Design and application of internet of things-based warehouse management system for smart logistics. International Journal of Production Research, 56(8), 2753–2768. https://doi.org/10.1080/ 00207543.2017.1394592
  4. Kotarba, M. (2017). Measuring digitalization–key metrics. Foundations of Management, 9(1), 123-138. https://doi.org/10.1515/fman-2017-0010
  5. Ashurst, C., Doherty, N. F., & Peppard, J. (2008). Improving the impact of IT development projects: the benefits realization capability model. European Journal of Information Systems, 17(4), 352-370. https://doi.org/10.1057/ejis.2008.33
  6. Hanley, T., Daecher, A., Cotteleer, M., & Sniderman, B. (2018). The Industry 4.0 paradox. Deloitte Insights. https://www2.deloitte.com/insights/us/en/focus/industry-4-0/challenges-on-pathto-digital-transformation/ summary.html
  7. Queiroz, M. M., Ivanov, D., Dolgui, A., & Fosso Wamba, S. (2022). Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review. Annals of Operations Research, 319(1), 1159-1196. https://doi.org/10.1007/s10479-020-03685-7
  8. Kupiainen, J. (2006). Translocalisation over the Net: Digitalisation, information technology and local cultures in Melanesia. E-learning and Digital Media, 3(3), 279-290. https://doi.org/10.2304/elea.2006.3.3. 279
  9. Stolterman, E., & Fors, A. C. (2004). Information technology and the good life. In Kaplan B., Truex, D.P., Wastell, D., Wood-Harper, A.T., & DeGross, J.I. (Eds) information systems research. Springer. https://doi.org/10.1007/1-4020-8095-6_45
  10. Gyimah-Concepcion, M. (2020). Technology in supply-chain management and logistics: what does the future hold? In A. Pagano, & M. Liotine (Eds), Technology in supply chain management and logistics: Current practice and future applications. Elsevier. doi:10.1016/b978-0-12-815956-9.00010-7. p.194.
  11. Deloitte, (2020, September 2). Yeni nesil teknolojilerin COVID-19 mücadelesindeki önemi- ülke örnekleri. https://www2.deloitte.com/content/ dam/Deloitte/tr/Documents/consulting/yeni-nesil-teknolojilerin-covid-19-mucadelesindeki-onemi.pdf
  12. Boudreau, M.C., Loch, K.D., Robey, D., & Straud, D. (1998). Going global: Using information technology to advance the competitiveness of the virtual transnational organization. Academy of Management Perspectives, 12(4), 120–128. https://doi.org/10.5465/ ame.1998.1334008
  13. Tiwari, S. (2021). Supply chain integration and Industry 4.0: A systematic literature review. Benchmarking: An International Journal, 28(3), 990-1030. https://doi.org/10.1108/BIJ-08-2020-0428
  14. Jazdi, N. (2014, May 22-24). Cyber physical systems in the context of Industry 4.0. 2014 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, Romania. DOI: 10.1109/ AQTR.2014.6857843
  15. Hofmann, E., Sternberg, H., Chen, H., Pflaum, A., & Prockl, G. (2019). Supply chain management and Industry 4.0: conducting research in the digital age. International Journal of Physical Distribution & Logistics Management, 49(10), 945-955. https://doi.org/10.1108/IJPDLM-11-2019-399
  16. Sadiku, M.N., Wang, Y., Cui, S., & Musa, S.M. (2017). Cyber-physical systems: A literature review. European Scientific Journal, 13(36), 52–58. https://doi.org/10.19044/esj.2017.v13n36p52
  17. Haddara, M., & Elragal, A. (2015). The readiness of ERP systems for the factory of the future. Procedia Computer Science, 64, 721-728. https://doi.org/ 10.1016/j.procs.2015.08.598
  18. Kusiak, A. (2023). Smart manufacturing. In S.Y. Nof (Ed.) Springer handbook of automation (pp. 973-985). Springer. https://doi.org/10.1007/978-3-030-96729-1_45
  19. Brettel, M., Friederichsen, N., Keller, M., & Rosenberg, M. (2014). How virtualization, decentralization and network building change the manufacturing landscape: An Industry 4.0 perspective. International Journal of Information and Communication Engineering, 8(1), 37–44.
  20. Cook, W., Driscoll, A., & Tenbergen, B. (2018). Airborne CPS: A simulator for functional dependencies in cyber physical systems: a traffic collision avoidance system implementation. 2018 4th International Workshop on Requirements Engineering for Self-Adaptive, Collaborative, and Cyber Physical Systems (RESACS), Banff, AB, Canada, IEEE. DOI: 10.1109/RESACS.2018.00011
  21. Dimitrakopoulos, G., & P. Demestichas. (2010). Intelligent transportation systems. IEEE Vehicular Technology Magazine, 5(1), 77–84. doi: 10.1109/ MVT.2009.935537
  22. Vierhauser, M., Cleland-Huang, J., Bayley, S., Krismayer, T., Rabiser, R., & Grünbacher, P. (2018, August 29-31). Monitoring CPS at runtime – A case study in the UAV domain. 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA), Prague, Czech Republic, IEEE. DOI: 10.1109/SEAA.2018.00022
  23. Ashibani, Y., & Mahmoud, Q. H. (2017). Cyber physical systems security: Analysis, challenges and solutions. Computers & Security, 68(July 2017), 81-97. https://doi.org/10.1016/j.cose.2017.04.005
  24. Mahmoud, R., Yousuf, T., Aloul, F., & Zualkernan, I. (2015, December 14-16). Internet of things (IoT) security: Current status, challenges and prospective measures. 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST). London, United Kingdom, IEEE. doi: 10.1109/ICITST.2015.7412116
  25. Lee, K. (2016). How the internet of things will change your world. IdeaBook 2016. http://digital.supplychainquarterly.com/supplychain/ideabook_2016/?folio=50&sub_id=Hxh5qJH8aRP9&pg=1#pg1
  26. Hermann, M., Pentek, T., & Otto, B. (2016, January 5-8). Design principles for Industrie 4.0 scenarios. 2016 49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA, IEEE. DOI: 10.1109/HICSS.2016.488
  27. Malone, T. W. (1999). Is empowerment' just a fad? Control, decision-making, and information technology. BT Technology Journal, 17(4), 141-144. https://doi.org/10.1023/A:1009663512936
  28. Ben-Daya, M., Hassini, E., & Bahroun, Z. (2019). Internet of things and supply chain management: A literature review. International Journal of Production Research, 57(15-16), 4719-4742. https://doi.org/ 10.1080/00207543.2017.1402140
  29. Nižetić, S., Šolić, P., González-De, D. L. D. I., & Patrono, L. (2020). Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. Journal of Cleaner Production, 274, 1-32. https://doi.org/10.1016/j.jclepro.2020. 122877
  30. Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243. doi:10.1109/TII.2014.2300753
  31. Özkanlısoy, Ö. & Bulutlar, F. (2023). Impact of sustainability on supply chain: Contributions and new performance measurements in the disruptive technology era. In M. Russ (Ed.) Cases on enhancing business sustainability through knowledge management systems (pp. 199-250). IGI Global. doi: 10.4018/978-1-6684-5859-4
  32. Min, H. (2010). Artificial intelligence in supply chain management: Theory and applications. International Journal of Logistics: Research and Applications, 13(1), 13-39. DOI: 10.1080/13675560902736537
  33. Pournader, M., Ghaderi, H., Hassanzadegan, A., & Fahimnia, B. (2021). Artificial intelligence applications in supply chain management. International Journal of Production Economics, 241, 1-16. https://doi.org/10.1016/j.ijpe.2021.108250
  34. Manners-Bell, J., & Lyon, K. (2019). The logistics and supply chain innovation handbook: Disruptive technologies and new business models. Kogan Page Publishers.
  35. Brzóska, J., & Knop, L. (2020). Business model changes in the presence of challenges brought by Industry 4.0. In Nogalski, B. & P. Bula (Ed.). The future of management: Industry 4.0 and digitalization (pp. 22-41). Jagiellonian University Press. DOI: 10.4467/K7123.106/20.20.15521
  36. Urbanek, G. (2020). The future of branding.  In Nogalski, B. (Ed.), The future of management: Industry 4.0 and digitalization (pp. 210-224). Jagiellonian University Press.
  37. Naz, F., Kumar, A., Majumdar, A., & Agrawal, R. (2021). Is artificial intelligence an enabler of supply chain resiliency post COVID-19? An exploratory state-of-the-art review for future research. Operations Management Research, 15, 378-398. https://doi.org/10.1007/s12063-021-00208-w
  38. Shankar, V. (2018), How artificial intelligence (AI) is reshaping retailing. Journal of Retailing, 94(4), 5–11.
  39. Wappa, P. (2011). Wykorzystanie metod sztucznej inteligencji w logistyce. Ekonomia i Zarządzanie, 3(4), 109-121.
  40. Merlino, M., & Sproge, I. (2017). The augmented supply chain. Procedia Engineering, 178, 308-318. https://doi.org/10.1016/j.proeng.2017.01.053
  41. Keow, A.K.S., & Nee, A.Y.H. (2018). Robotics in supply chain: Emerging technologies for supply chain management. WouPress.
  42. Pan, M., Linner, T., Pan, W., Cheng, H., & Bock, T. (2018). A framework of indicators for assessing construction automation and robotics in the sustainability context. Journal of Cleaner Production, 182, 82-95. https://doi.org/10.1016/j.jclepro.2018. 02.053
  43. Kohl, J. L., van der Schoor, M. J., Syré, A. M., & Göhlich, D. (2020). Social sustainability in the development of service robots. Proceedings of the Design Society: DESIGN Conference (vol. 1). Cambridge University Press. DOI: https://doi.org/10.1017/dsd.2020.59
  44. Mishra, D., Gunasekaran, A., & Papadopoulos, T. (2018). Big data and supply chain management: A review and bibliometric analysis. Annals of Operations Research, 270(1-2), 313-336. https://doi.org/10.1007/s10479-016-2236-y
  45. Bi, Z., & Cochran, D. (2014). Big data analytics with applications. Journal of Management Analytics, 1(4), 249–265. https://doi.org/10.1080/23270012.2014. 992985
  46. Artun, O., & Levin, D. (2015). Predictive marketing: easy ways every marketer can use customer analytics and big data. John Wiley & Sons.
  47. Davenport, T. H., & Dyché, J. (2013). Big data in big companies. International Institute for Analytics, 3, 1-31.
  48. Souza, G. C. (2014). Supply chain analytics. Business Horizons, 57(5), 595-605. https://doi.org/10.1016/ j.bushor.2014.06.004
  49. Naganathan, V. (2018). Comparative analysis of big data, big data analytics: Challenges and trends. International Research Journal of Engineering and Technology, 5(5), 1948-1964.
  50. Gunasekaran, A., Subramanian, N., & Rahman, S. (2017). Improving supply chain performance through management capabilities. Production Planning & Control, 28(6-8), 473–477. https://doi.org/10.1080/ 09537287.2017.1309680.
  51. Ghadge, A., Er Kara, M., Moradlou, H., & Goswami, M. (2020). The impact of Industry 4.0 implementation on supply chains. Journal of Manufacturing Technology Management, 31(4), 669-686. https://doi.org/10.1108/JMTM-10-2019-0368.
  52. Koh, L., Orzes, G., & Jia, F. (2019). The fourth industrial revolution (Industry 4.0): Technologies’ disruption on operations and supply chain management. International Journal of Operations & Production Management, 39, 817–828. https://doi.org/ 10.1108/IJOPM-08-2019-788
  53. Betti, Q., Montreuil, B., Khoury, R., & Hallé, S. (2020). Smart contracts-enabled simulation for hyperconnected logistics. In M.A. Khan, M.T. Quasim, F. Algarni, & A. Abdullah (Eds.), Decentralised internet of things: A blockchain perspective (pp. 109-149). Springer. https://doi.org/ 10.1007/978-3-030-38677-1
  54. Hawlitschek, F., Benedikt, N., & Timm, T. (2018). The limits of trust-free systems: A literature review on blockchain technology and trust in the sharing economy. Electronic Commerce Research and Applications, 29(May-June), 50-63. https://doi.org/ 10.1016/j.elerap.2018.03.005.
  55. Akaba, T. I., Norta, A., Udokwu, C., & Draheim, D. (2020, April 8-8). A framework for the adoption of blockchain-based e-procurement systems in the public sector: A case study of Nigeria. Responsible Design, Implementation and Use of Information and Communication Technology: 19th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society, I3E 2020, Skukuza, South Africa (pp. 3-14). Springer International Publishing. https://doi.org/10.1007/978-3-030-44999-5_1
  56. Mougayar, W., & Buterin, V. (2016). The business blockchain: Promise, practice, and application of the next internet technology. Wiley. p. 71.
  57. Omar, I. A., Jayaraman, R., Debe, M. S., Salah, K., Yaqoob, I., & Omar, M. (2021). Automating procurement contracts in the healthcare supply chain using blockchain smart contracts. IEEE Access, 9, 37397-37409. DOI: 10.1109/ACCESS.2021.3062471
  58. Zheng, Z., Xie, S., Dai, H. N., Chen, W., Chen, X., Weng, J., & Imran, M. (2020). An overview on smart contracts: Challenges, advances and platforms. Future Generation Computer Systems, 105, 475-491. https://doi.org/10.1016/j.future.2019.12.019
  59. Wan, P. K., Huang, L., & Holtskog, H. (2020). Blockchain-enabled information sharing within a supply chain: A systematic literature review. IEEE Access, 8, 49645-49656. doi: 10.1109/ACCESS. 2020.2980142
  60. Babich, V., & Hilary, G. (2019). Distributed ledgers and operations: What operations management researchers should know about blockchain technology. Manufacturing & Service Operations Management, 22(2), 1-18. https://doi.org/10.1287/ msom.2018.0752
  61. Abeyratne, S. A., & Monfared, R. P. (2016). Blockchain ready manufacturing supply chain using distributed ledger. International Journal of Research in Engineering and Technology, 5(9), 1–10. p. 3.
  62. Casey, M. J., & Wong, P. (2017). Global supply chains are about to get better, thanks to blockchain. In C. Tucker, D. Tapscott, & M. Iansiti, & K. R. Lakhani (Eds.), Blockchain (pp. 125-134). Harvard Business Review Press.
  63. Wang, L., Törngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37(2), 517-527. https://doi.org/10.1016/j.jmsy.2015. 04.008
  64. Dallasega, P., Rauch, E., & Linder, C. (2018). Industry 4.0 as an enabler of proximity for construction supply chains: A systematic literature review. Computers in Industry, 99, 205-225. https://doi.org/10.1016/j.compind.2018.03.039
  65. Vazquez-Martinez, G. A., Gonzalez-Compean, J. L., Sosa-Sosa, V. J., Morales-Sandoval, M., & Perez, J. C. (2018). Cloud Chain: A novel distribution model for digital products based on supply chain principles. International Journal of Information Management, 39, 90-103. https://doi.org/10.1016/j.ijinfomgt.2017.12. 006
  66. Ros, S., Caminero, A. C., Hernández, R., Robles-Gómez, A., & Tobarra, L. (2014). Cloud-based architecture for web applications with load forecasting mechanism: A use case on the e-learning services of a distant university. The Journal of Supercomputing, 68(3), 1556-1578. DOI 10.1007/s11227-014-1125-x
  67. Vaquero, L. M., Rodero-Merino, L., Caceres, J., & Lindner, M. (2008). A break in the clouds: Towards acloud definition. ACM Sigcomm Computer Communication Review, 39 (1), 50–55. https://doi.org/10.1145/1496091.1496100
  68. Aymerich, F. M., Fenu, G., & Surcis, S. (2008, August 4-6). An approach to a cloud computing network. In 2008 First International Conference on the Applications of Digital Information and Web Technologies (ICADIWT) Ostrava, IEEE. DOI: 10.1109/ICADIWT.2008.4664329
  69. Vickery, S. K., Droge, C., Setia, P., & Sambamurthy, V. (2010). Supply chain information technologies and organisational initiatives: Complimentary versus independent effects on agility and firm performance. International Journal of Production Research, 48(23), 7025–7042. https://doi.org/10.1080/0020754090 3348353
  70. Iyer, B., & Henderson, J. C. (2010). Preparing for the future: understanding the seven capabilities cloud computing. MIS Quarterly Executive, 9(2), 117-131.
  71. Kamble, S., Gunasekaran, A., & Gawankar, S. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408-425. https://doi.org/10.1016/j. psep.2018.05.009
  72. Caputo, A., Marzi, G., & Pellegrini, M.M. (2016) The Internet of Things in manufacturing innovation processes: Development and application of a conceptual framework. Business Process Management Journal, 22(2), 383-402. https://doi.org/10.1108/ BPMJ-05-2015-0072
  73. Nyman, H.J., & Sarlin, P. (2014, January 6-9). From bits to atoms: 3D printing in the context of supply chain strategies. Proceedings of the Annual Hawaii International Conference on System Sciences 47th Annual Hawaii International Conference on System Sciences (HICSS-47), Waikoloa, Big Island, IEEE. DOI: 10.1109/HICSS.2014.518
  74. Mohr, S., & Khan, O. (2015). 3D Printing and its disruptive impacts on supply chains of the future. Technology Innovation Management Review, 5(11), 20-25.
  75. Niaki, M.K., & Nonino, F. (2017). Additive manufacturing management: a review and future research agenda. International Journal of Production Research, 55(5), 1419-1439. https://doi.org/10.1080/ 00207543.2016.1229064
  76. Petrick, I.J., & Simpson, T.W. (2013). 3D Printing disrupts manufacturing: How economies of one create new rules of competition. Research-Technology Management, 56(6), 12-16. https://doi.org/10.5437/ 08956308X5606193
  77. Rogers, H., Baricz, N., & Pawar, K. S. (2016). 3D printing services: classification, supply chain implications and research agenda. International Journal of Physical Distribution & Logistics Management, 46(10), 886-907.
  78. Rad, F. F., Oghazi, P., Palmié, M., Chirumalla, K., Pashkevich, N., Patel, P. C., & Sattari, S. (2022). Industry 4.0 and supply chain performance: A systematic literature review of the benefits, challenges, and critical success factors of 11 core technologies. Industrial Marketing Management, 105, 268-293. https://doi.org/10.1016/j.indmarman.2022. 06.009
  79. Rejeb, A., Keogh, J. G., Wamba, S. F., & Treiblmaier, H. (2021). The potentials of augmented reality in supply chain management: A state-of-the-art review. Management Review Quarterly, 71, 819–856 https://doi.org/10.1007/s11301-020-00201-w
  80. Devagiri, J. S., Paheding, S., Niyaz, Q., Yang, X., & Smith, S. (2022). Augmented Reality and Artificial Intelligence in industry: Trends, tools, and future challenges. Expert Systems with Applications, 207(November 2020), 1-13. https://doi.org/10.1016/j. eswa.2022.118002
  81. Gattullo, M., Scurati, G. W., Fiorentino, M., Uva, A. E., Ferrise, F., & Bordegoni, M. (2019). Towards augmented reality manuals for industry 4.0: A methodology. Robotics and Computer-Integrated Manufacturing, 56, 276-286. https://doi.org/10.1016/j. rcim.2018.10.001
  82. Kim, S., Nussbaum, M. A., & Gabbard, J. L. (2019). Influences of augmented reality head-worn display type and user interface design on performance and usability in simulated warehouse order picking. Applied Ergonomics, 74, 186-193. https://doi.org/10.1016/j.apergo.2018.08.026
  83. Glockner, H., Jannek, K., Mahn, J., & Theis, B. (2014). Augmented reality in logistics: Changing the way we see logistics: A DHL perspective. DHL Customer Solutions & Innovation. https://www.dhl.com/discover/content/dam/dhl/downloads/interim/full/dhl-csi-augmented-reality-report.pdf
  84. Lu, M. (2018). Five ways augmented reality enhances supply chain management. ASCM Insights. https://www.ascm.org/ascm-insights/five-ways-augmented-reality-enhancessupply-chain-management/
  85. Büyüközkan, G., & Güler, M. (2019). Lojistik 4.0 teknolojilerinin analizi için metodolojik yaklaşım. Journal of Entrepreneurship and Innovation Management, 8(1), 21–47.
  86. Saucedo Martínez, J., Pérez Lara, M., Marmolejo Saucedo, J., Salais Fierro, T., & Vasant, P. (2018). Industry 4.0 framework for management and operations: A review. Journal of Ambient Intelligence and Humanized Computing, 9(3), 789-801. https://doi.org/10.1007/s12652-017-0533-1
  87. Anderson, J.M., Nidhi, K., Stanley, K.D., Sorensen, P., Samaras, C., & Oluwatola, O.A. (2016). Autonomous vehicle technology: A guide for policymakers. Rand Corporation.
  88. Gao, P., Hensley, R., & Zielke, A. (2014). A road map to the future for the auto industry. McKinsey Quarterly, October, 1–11. https://img.etb2bimg.com/ files/retail_files/reports/data_file-A-road-map-to-the-future-for-the-auto-industry-McKinsey-Quarterly-Report-1426754280.pdf
  89. Garza, A.P., (2011). Look ma, no hands: Wrinkles and wrecks in the age of autonomous vehicles. New Engl. Law Rev. 46, 581–616.
  90. Luettel, T., Himmelsbach, M., & Wuensche, H. J. (2012). Autonomous ground vehicles concepts and a path to the future. Proceedings of the IEEE, 100(Centennial-Issue), 1831-1839. doi: 10.1109/ JPROC.2012.2189803
  91. Perussi, J. B., Gressler, F., & Seleme, R. (2019). Supply chain 4.0: Autonomous vehicles and equipment to meet demand. International Journal of Supply Chain Management, 8(4), 33–41.
  92. Schwab, K. (2017). The fourth industrial revolution. New York: World Economic Forum.
  93. Tao, F., Zhang, M., & Nee, A. Y. C. (2019). Digital twin driven smart manufacturing. Academic Press. p. 42.
  94. Baryannis, G., Validi, S., Dani, S., & Antoniou, G. (2018). Supply chain risk management and artificial intelligence: State of the art and future research directions. International Journal of Production Research, 57(7), 2179-2202. https://doi.org/10.1080/ 00207543.2018.1530476
  95. Ivanov, D., & Dolgui, A. (2021). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control, 32(9), 775-788. https://doi.org/ 10.1080/09537287.2020.1768450
  96. Zhang, G., MacCarthy, B. L., & Ivanov, D. (2022). The cloud, platforms, and digital twins-Enablers of the digital supply chain. In B.L. MacCarthy, & D. Ivanov (Eds.) The digital supply chain (pp. 77-92). Elsevier.
  97. Leng, J., Zhou M., Xiao Y., Zhang H., Liu Q., Shen W., Su Q., & Li L., (2021). Digital twins based remote semi-physical commissioning of flow-type smart manufacturing systems. Journal of Cleaner Production, 306, 1-15. https://doi.org/10.1016/ j.jclepro.2021.127278
  98. Ivanov, D., Dolgui, A., Das, A., & Sokolov, B. (2019). Digital supply chain twins: Managing the ripple effect, resilience, and disruption risks by data driven optimization, simulation, and visibility. In D. Ivanov, A. Dolgui, & B. Sokolov (Eds.), Handbook of ripple effects in the supply chain (pp. 309-332). Springer. https://doi.org/10.1007/978-3-030-14302-2_15
  99. Srinivasan, R., & Swink, M. (2015). Leveraging supply chain integration through planning comprehensiveness: an organizational information processing theory perspective. Decision Sciences, 46(5), 823-861. https://doi.org/10.1111/deci.12166
  100. Besanko, D., Dranove, D., & Shandley, M. (2000). The economics of strategy (2nd ed.). John Wiley & Sons.
  101. Burns, L.R., Goldsmith, J.C., & Sen, A. (2014). Horizontal and vertical integration of physicians: A tale of two tails. In L. Friedman, J. Goes & G.T. Savage (Eds.), Annual review of health care management: Revisiting the evolution of health systems organization (advances in health care management, vol. 15) (pp. 39-117). Emerald Group Publishing. https://doi.org/10.1108/S1474-8231(2013)0000015009
  102. Jahangirian, M, Eldabi, T., Naseer, A., Stergioulas, L.K., & Young, T. (2010). Simulation in manufacturing and business: A review. European Journal of Operational Research, 203, 1–13. https://doi.org/10.1016/j.ejor.2009.06.004
  103. Elangovan, U. (2022). Industry 5.0: The future of the industrial economy (1st ed.). CRC Press. https://doi.org/10.1201/9781003190677
  104. Thames, L., & Schaefer, D. (2017). Industry 4.0: An overview of key benefits, technologies, and challenges. In L. Thames, & D. Schaefer (Eds.), Cybersecurity for Industry 4.0 (pp. 1-33). Springer. https://doi.org/10.1007/978-3-319-50660-9_1
  105. Boyes, H. (2015). Cybersecurity and cyber-resilient supply chains. Technology Innovation Management Review, 5(4), 28-34.
  106. Simon, J., & Omar, A. (2019). Cybersecurity investments in the supply chain: Coordination and a strategic attacker. European Journal of Operational Research, 282(1), 1-29. https://doi.org/10.1016/j. ejor.2019.09.017
  107. Guembe, B., Azeta, A., Misra, S., Osamor, V. C., Fernandez-Sanz, L., & Pospelova, V. (2022). The emerging threat of ai-driven cyber-attacks: A review. Applied Artificial Intelligence, 36(1), 1–34. doi: 10.1080/08839514.2022.2037254
  108. Dobrowolska, K. (2020, November 2). Modern technology implementation: Costs and benefits. https://archdesk.com/blog/modern-technologyimplementation-costs-and-benefits/
  109. Karpagam, V., Kayalvizhi, A., Bharathi, N., & Balamurugan, S. (2022). Internet of things: Applications, vulnerabilities, and the need for cyber resilience. In D. Goyal, S. Balamurugan, K. Senthilnathan, I. Annapoorani & M. Israr (Eds.), Cyber-physical systems and Industry 4.0 (pp. 45-55). Apple Academic Press.
  110. Rao, S. K., & Prasad, R. (2018). Impact of 5G technologies on Industry 4.0. Wireless Personal Communications, 100(1), 145-159. https://doi.org/ 10.1007/s11277-018-5615-7
  111. Taboada, I., & Shee, H. (2020). Understanding 5G technology for future supply chain management. International Journal of Logistics Research and Applications, 24(4), 392-406. https://doi.org/10.1080/ 13675567.2020.1762850
  112. Zhao, J., & Li, Y. (2022). Supply chain security evaluation model and index system based on a 5G information system. Neural Computing and Applications, 34(15), 12271-12281. https://doi.org/ 10.1007/s00521-021-06584-5
  113. Kaginalkar, A., Kumar, S., Gargava, P., & Niyogi, D. (2021). Review of urban computing in air quality management as smart city service: An integrated IoT, AI, and cloud technology perspective. Urban Climate, 39, 1-27.  https://doi.org/10.1016/j.uclim.2021.100972
  114. Rahimi, H., Zibaeenejad, A., & Safavi, A. A. (2018, November). A novel IoT architecture based on 5G-IoT and next generation technologies. In 2018 IEEE 9th annual information technology, electronics and mobile communication conference (IEMCON) (pp. 81-88). Vancouver, BC, Canada. IEEE. doi: 10.1109/IEMCON.2018.8614777.
  115. Özkanlısoy, Ö., & Bulutlar, F. (2022). Measuring using disruptive technology in the supply chain context: scale development and validation. Journal of Theoretical and Applied Electronic Commerce Research, 17(4), 1336-1360. https://doi.org/10.3390/ jtaer17040068
  116. Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6, 35–39. https://doi.org/ 10.1177/875647939000600106
  117. Li, J., Ye, Z., & Zhang, C. (2022). Study on the interaction between big data and artificial intelligence. Systems Research and Behavioral Science, 39(3), 641-648. https://doi.org/10.1002/sres.2878
  118. Oussous A, Benjelloun F-Z, Lahcen A, Belfkih S. 2018. Big data technologies: a survey. Journal of King Saud University-Computer and Information Sciences 30(4), 431–448. DOI 10.1016/j.jksuci.2017.06.001
  119. Arena, F., & Pau, G. (2020). An overview of big data analysis. Bulletin of Electrical Engineering and Informatics, 9(4), 1646-1653.
  120. Bag, S., Dhamija, P., Singh, R. K., Rahman, M. S., & Sreedharan, V. R. (2023). Big data analytics and artificial intelligence technologies based collaborative platform empowering absorptive capacity in health care supply chain: An empirical study. Journal of Business Research, 154, 1-18. https://doi.org/ 10.1016/j.jbusres.2022.113315
  121. Thayyib, P. V., Mamilla, R., Khan, M., Fatima, H., Asim, M., Anwar, I., ... & Khan, M. A. (2023). State-of-the-art of artificial intelligence and big data analytics reviews in five different domains: a bibliometric summary. Sustainability, 15(5), 1-38. doi.org/10.3390/su15054026
  122. Khan, Z. F., & Alotaibi, S. R. (2020). Applications of artificial intelligence and big data analytics in m‐health: A healthcare system perspective. Journal of Healthcare Engineering, 2020(1), 1-15. https://doi.org/ 10.1155/2020/8894694
  123. Rahmani, A.M., Azhir, E., Ali, S., Mohammadi, M., Ahmed O.H., Yassin Ghafour, M., Hasan Ahmed S., & Hosseinzadeh M. (2021). Artificial intelligence approaches and mechanisms for big data analytics: A systematic study. PeerJ Computer Science, 7,  1-28. https://doi.org/10.7717/peerj-cs.488
  124. Gad-Elrab, A. A. (2021). Modern business intelligence: Big data analytics and artificial intelligence for creating the data-driven value. In R. M.X. Wu & M. Mircea (Eds.) E-Business-Higher Education and Intelligence Applications (pp. 135-156). London, UK: IntechOpen.
  125. Addo-Tenkorang, R., & Helo, P. T. (2016). Big data applications in operations/supply-chain management: A literature review. Computers & Industrial Engineering, 101(November 2016), 528-543. https://doi.org/10.1016/j.cie.2016.09.023
  126. Winkelhaus, S., & Grosse, E. H. (2022). Smart warehouses—a sociotechnical perspective. In B.L. MacCarthy, & D. Ivanov (Eds.), The digital supply chain (pp. 47-60). Elsevier.
  127. Vieira, A. A., Dias, L. M., Santos, M. Y., Pereira, G. A., & Oliveira, J. A. (2019). Simulation of an automotive supply chain using big data. Computers & Industrial Engineering, 137, 1-14. https://doi.org/10.1016/j.cie.2019.106033
  128. Tolk, A. (2015, July). The next generation of modeling & simulation: integrating big data and deep learning. In Proceedings of the Conference on Summer Computer Simulation (pp. 1-8).
  129. Ranjan, R. (2014). Modeling and simulation in performance optimization of big data processing frameworks. IEEE Cloud Computing, 1(4), 14-19.
  130. Lee, J., Davari Arkadani, H., Yang, S., & Bagheri, B. (2015). Industrial big data analytics and cyber-physical systems for future maintanance & service innovation. Procedia CIRP, 38, 3-7. https://doi.org/10.1016/j.procir.2015.08.026
  131. Watson, D. P., & Scheidt, D. H. (2005). Autonomous systems. Johns Hopkins APL technical digest, 26(4), 368-376.
  132. Tarkoma, S. & Katasonov, A. (2011). Internet of things strategic research agenda (IoT–SRA). Finnish Strategic Centre for Science, Technology, and Innovation: For Information and Communications (ICT) Services, Businesses, and Technologies, Finland. https://www.internetofthings.fi/extras/ internet-of-things-strategic-research-agenda.pdf
  133. Pramanik, P. K. D., Pal, S., & Choudhury, P. (2018). Beyond automation: the cognitive IoT. artificial intelligence brings sense to the Internet of Things. Cognitive Computing for Big Data Systems Over IoT: Frameworks, Tools and Applications, 1-37.
  134. Kuzlu, M., Fair, C., & Guler, O. (2021). Role of artificial intelligence in the Internet of Things (IoT) cybersecurity. Discover Internet of Things, 1(1), 1-14. https://doi.org/10.1007/s43926-020-00001-4
  135. İyigün, İ., & Görçün, Ö. F. (2019). Endüstri 4.0: Lojistik ve tedarik zinciri yönetiminde teknoloji kullanimi eğilimleri. Ekev Akademi Dergisi, ICOAEF Özel Sayısı, 119-134.
  136. Hemdan, E.ED., El-Shafai, W., & Sayed, A. (2023). Integrating digital twins with IoT-based blockchain: Concept, architecture, challenges, and future scope. Wireless Personal Communications, 131, 2193–2216. https://doi.org/10.1007/s11277-023-10538-6
  137. Madni, A. M., Madni, C. C., & Lucero, S. D. (2019). Leveraging digital twin technology in model-based systems engineering. Systems, 7(1), 1-13. https://doi.org/10.3390/systems7010007
  138. Ericsson. (2020, September 18). How 5G and Edge Computing can enhance virtual reality. https://www.ericsson.com/en/blog/2020/4/how-5g-and-edge-computing-can-enhance-virtual-reality#:~:text=Enabling%20AR%2FVR%20experiences%20with%205G%20and%20edge%20compute&text=Because%20the%20graphics%20require%20heavy,device%20and%20the%20edge%20cloud.
  139. Wongkitrungrueng, A., & Assarut, N. (2020). The role of live streaming in building consumer trust and engagement with social commerce sellers. Journal of Business Research, 117, 543-556. https://doi.org/ 10.1016/j.jbusres.2018.08.032
  140. Christopher, M. (2023). Logistics & supply chain management (6th ed.). Pearson. p. 305.

The Fourth Industrial Revolution is the conversion of industries, economies, and so supply chains by a fusion related to technological, business, and social disruptive forces. The disruptive forces that cause the conversion discourse are the technologies it has enabled. This industrial revolution has a crucial impact on all industries, especially the manufacturing industry, and this effect sustains exponentially. The utilisation of The Fourth Industrial Revolution technologies and the digital transformation of supply chains is a pivotal step today towards enhancing their competitiveness and their supply chain performance and being able to follow the supply chains of the future. However, implementing them alone is not enough; new ways to get the most benefit from them must be inquired. The combined utilisation of certain industrial revolution technologies boosts their efficiency and their contributions to companies and supply chains. This study investigated the correlational relationships of the eight most used The Fourth Industrial Revolution technologies in the supply chain context and determined the technologies with the highest relationship with each other and called them intertwined technologies. The sample size consists of 393 companies. The study is a guide for companies and supply chains that will implement these technologies or invest in a novel one.

Keywords : The Fourth Industrial Revolution, Intertwined Technologies, Supply Chain Management.

Never miss an update from Papermashup

Get notified about the latest tutorials and downloads.

Subscribe by Email

Get alerts directly into your inbox after each post and stay updated.
Subscribe
OR

Subscribe by RSS

Add our RSS to your feedreader to get regular updates from us.
Subscribe