
Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2151

A Comprehensive Taxonomy and Comparative

Analysis of Fault Tolerance Mechanisms in

Cloud-Native Microservice Architectures

Taiwo Fadoyin1

1Staffordshire University

Publication Date: 2026/01/29

Abstract: Cloud-native microservice architectures have changed modern software systems but they also introduce

distinctive and common reliability challenges as a result of extreme distribution, runtime dynamism and rapid change.

Failures in such systems are hardly isolated; instead, they come from complex interactions between services, platforms and

control policies which usually lead to cascading and metastable behaviours that conventional fault tolerance approaches fail

to capture. Considering the volume of literature on resilience patterns, existing work remains fragmented, pattern-centric

and weakly connected to observed failure models. This paper presented a systematic literature review and synthesis of fault

tolerance mechanisms for cloud-native microservices by using recent peer-reviewed research and authoritative industry

practice. The study constructed a multi-dimensional taxonomy that classified mechanisms in architectural layers,

mechanism families, fault-handling phases, and runtime control characteristics by using a structured review methodology.

A comparative matrix evaluated key mechanisms against operational criteria including latency overhead, scalability impact,

complexity and risk of failure amplification. Building on this analysis, the paper mapped mechanisms to common cloud-

native fault models and derived practitioner-oriented decision guidance. The results pointed out that resilience in cloud-

native systems is dominated not by redundancy alone but by effective containment, observability and context-aware control.

Misconfigured retries and static policies consistently amplify failures while adaptive and observability-driven approaches

remain under-explored. The paper concluded by identifying concrete research gaps and testable hypotheses as well as

providing both actionable design guidance and a foundation for future resilience engineering research.

Keywords: Cloud-Native, Microservices, Fault Tolerance, Resilience Engineering, Kubernetes, Service Mesh, Chaos Engineering,

Reliability.

How to Cite: Taiwo Fadoyin (2026) A Comprehensive Taxonomy and Comparative Analysis of Fault Tolerance Mechanisms in

Cloud-Native Microservice Architectures. International Journal of Innovative Science and Research Technology,

11(1), 2151-2163. https://doi.org/10.38124/ijisrt/26jan1075

I. INTRODUCTION

Cloud-native microservice architectures (CNMA) have

fundamentally changed the failure pattern of modern software

systems. Microservices give scalability and agility by

decomposing applications into loosely coupled and

independently deployable services but they also multiply

failure modes through dense dependency chains, partial
failures and network unreliability (Dragoni et al., 2022).

Different from monolithic systems where failures are usually

binary and centrally observable, microservice failures are

always probabilistic, cascading and temporally misaligned in

services. Empirical research from large-scale cloud outages

shows that a single latent fault can propagate across service

boundaries within seconds which are amplified by retries,

timeouts and autoscaling feedback loops (Huang et al., 2022).

The cloud-native paradigm also complicates this

complexity. Cloud-native systems are not just distributed but
they are highly dynamic and determined by container

orchestration, ephemeral workloads and continuous

deployment pipelines. Kubernetes, the de facto orchestration

platform, introduces automated healing and scaling but also

creates new failure classes related to control-plane instability

and configuration drift (Kubernetes, 2025). Service meshes

and API gateways add observability and traffic control but

studies show that they can increase latency variance and

introduce correlated failures under load (Waseem, 2023).
Moreover, multi-tenancy and “noisy neighbour” effects in

shared cloud infrastructure undermine traditional

assumptions about resource isolation and predictability

(Isaac, 2025).

These characteristics basically change the fault

tolerance game. Classical fault tolerance models in static

distributed systems assume a relatively stable topology and

predictable failure patterns (Avizienis et al., 2017). On the

other hand, CNMA operates under continuous change where

services are redeployed multiple times a day, dependencies
evolve at runtime and failures usually come from complex

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/
https://doi.org/10.38124/ijisrt/26jan1075

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2152

socio-technical interactions rather than isolated component

faults (Woods, 2021). This has led to a change from failure

prevention towards resilience engineering and Site Reliability

Engineering (SRE) where tolerating and learning from failure

is considered unavoidable (Beyer et al., 2023). However, the

literature is fragmented in application-level patterns,

platform-level mechanisms and operational practices.

This study scopes its analysis to cloud-native

microservices deployed using containers, Kubernetes-based

orchestration and service-to-service communication

frameworks like service meshes. It excludes fault tolerance

approaches developed primarily for monolithic or tightly

coupled distributed systems because their assumptions about

control and observability do not hold in cloud-native

environments (Bronson et al., 2021). The focus is on runtime

fault tolerance and operational resilience rather than offline

verification or formal correctness proofs.

Considering the volume of research, there is a critical

gap. There is no single consolidated framework that

systematically maps fault tolerance mechanisms to cloud-

native failure modes and operational constraints. Existing

studies examine isolated techniques like circuit breakers,

autoscaling or chaos engineering without integrating them

into a coherent decision structure for practitioners or

researchers (Bronson et al., 2021; Sedghpour et al., 2022;

Habibi et al., 2023). This fragmentation affects

comparability, obscures trade-offs and the design of adaptive

resilience strategies. In response, this paper makes some

contributions. It proposes a structured taxonomy of fault
tolerance mechanisms grounded in cloud-native architectural

layers and precise dependability definitions. Also, it develops

a mapping between failure models and mitigation

mechanisms that clarifies where specific techniques are

effective or insufficient. It gives a comparative analysis

matrix to support architectural decision-making under

operational constraints. These contributions aim to move the

discourse from ad-hoc resilience practices towards principle

and evidence-based fault tolerance in cloud-native systems.

II. REVIEW OF LITERATURE

 Cloud-Native Microservices Stack

Cloud-native computing is more than the deployment of

applications in the cloud because it is an architectural and

operational philosophy centred on elasticity, automation and

failure-aware design (Pahl, 2015; CNCF, 2023). The Cloud

Native Computing Foundation (CNCF) defines cloud-native

systems as those built using microservices which are

packaged in containers and dynamically orchestrated, and

managed through declarative APIs (CNCF, 2023). This

definition is popularly adopted but scholars argue that it

underplays the socio-technical dimension especially the
operational practices needed to sustain reliability at scale

(Burns et al., 2016; Beyer et al., 2016). At the foundation of

the cloud-native stack are containers which are most

commonly implemented via Docker. Containers give

lightweight process isolation and fast deployment which

enables microservices to scale independently (Merkel, 2014).

However, empirical studies show that containerisation alone

does not guarantee fault isolation but shared kernel

dependencies can propagate failures across services which

challenges the assumption that containers naturally improve

reliability (Zhang et al., 2022).

Container orchestration mostly through Kubernetes

addresses this limitation by introducing automated

scheduling, self-healing and declarative state management
(Burns et al., 2016). Kubernetes’s control plane continuously

reconciles desired and actual system states by restarting failed

pods and rescheduling workloads. This mechanism improves

availability but critics argue that Kubernetes primarily

addresses crash faults and is less effective against semantic

failures such as incorrect responses or cascading latency

which are common in microservices (Alshuqayran et al.,

2016; Dragoni et al., 2017). Service discovery mechanisms

enable the dynamic location of services as instances scale up

and down. Early approaches depended on client-side

discovery (e.g. Netflix Eureka) but platform-native discovery
via Kubernetes DNS has become dominant. Nevertheless,

DNS-based discovery has been criticised for limited

contextual awareness especially under partial failures where

services are reachable but degraded (Nadareishvili et al.,

2016).

To manage external traffic, API gateways act as a single

entry point, handling routing, authentication and rate limiting.

Gateways simplify client interactions but they also introduce

centralisation risks. Studies point out that poorly designed

gateways can become performance bottlenecks or single

points of failure which contradicts microservice
decentralisation principles (Richardson, 2018). Service

meshes like Istio and Linkerd have come as a dedicated

service-to-service communication layer. Service meshes

promise consistent resilience policies without polluting

application code by offloading retries, circuit breaking and

mutual TLS to sidecar proxies (Varghese & Buyya, 2018).

However, empirical evaluations show non-trivial latency

overheads and operational complexity which raises questions

about their suitability for latency-sensitive systems (Zhou et

al., 2023).

The observability stack which comprises metrics, logs

and distributed tracing is commonly recognised as an

enabling layer instead of a peripheral concern. Tools like

Prometheus and OpenTelemetry support real-time fault

detection and diagnosis. But observability does not prevent

failures. It just shortens detection and recovery cycles which

changes the debate from fault avoidance to fault response

(Sigelman et al., 2010).

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2153

Fig 1 Cloud-Native Microservices Stack Diagram

 Fault Tolerance and Dependability Concepts

Fault tolerance in cloud-native systems is grounded in

classical dependability theory which differentiates between

faults, errors and failures (Laprie, 1992). A fault is the root

cause, an error is an incorrect system state and a failure occurs

when service deviates from its specification. This difference

is usually blurred in practitioner discourse which results in

imprecise resilience strategies (Avizienis et al., 2004).

Reliability refers to the probability that a system

performs correctly over a given time period whereas

availability measures the proportion of time a system is

operational (Avizienis et al., 2004). In microservices, high

availability can coexist with low reliability because frequent

restarts may keep services “up” while masking systemic

instability. Metrics like Mean Time Between Failures

(MTBF) and Mean Time to Recovery (MTTR) are therefore

insufficient in isolation because they fail to capture user-

perceived service quality (Basiri et al., 2016).

This limitation brought the adoption of Site Reliability

Engineering (SRE) concepts especially Service Level

Indicators (SLIs), Service Level Objectives (SLOs) and

Service Level Agreements (SLAs) (Beyer et al., 2016).

Different from traditional uptime metrics, SLOs focus on

user-centric outcomes like latency percentiles and error rates.

Empirical research from large-scale cloud providers shows

that SLO-driven design leads to more effective fault

prioritisation than infrastructure-centric metrics (Wilkes,

2020). However, critics argue that SLOs are difficult to

standardise across heterogeneous microservices which limits

their comparability (Chen et al., 2021). Closely related are
Recovery Time Objective (RTO) and Recovery Point

Objective (RPO) which define acceptable downtime and data

loss respectively. They are mostly used in disaster recovery

planning but their application to microservices is contested.

Stateless services align well with aggressive RTOs but

stateful components like databases impose structural

constraints that orchestration alone cannot overcome

(Kleppmann, 2017).

The main contemporary debate is about resilience

versus reliability. Reliability assumes predictable failure
modes whereas resilience emphasises adaptive capacity

under uncertainty (Woods, 2018). Cloud-native systems

always prioritise resilience through techniques like chaos

engineering which deliberately injects faults to expose

weaknesses (Basiri et al., 2016). Proponents argue that this

improves real-world robustness but sceptics question its

practicality outside hyperscale environments because of cost

and operational risk (Zhang et al., 2022). Fault tolerance

mechanisms work in multiple enabling layers. At the

application layer, patterns like retries, timeouts, bulkheads

and circuit breakers dominate. These patterns are well-
theorised (Nygard, 2018) but always misused. Unbounded

retries, for instance, are a documented cause of cascading

failures (Alshuqayran et al., 2016). At the service-to-service

layer, service meshes provide uniform policy enforcement

but risk abstracting failure semantics away from developers.

At the orchestration layer, Kubernetes’ self-healing improves

crash resilience but remains reactive rather than predictive.

The observability layer supports all others which enables

rapid diagnosis but not eliminate design flaws.

The literature agrees on a critical insight that fault

tolerance in cloud-native microservices is not a single
mechanism but an emergent property of interacting layers,

metrics and practices. Fragmented treatments of these

elements obscure trade-offs and hinder systematic design

which established the need for integrative frameworks and

taxonomies.

III. REVIEW METHODOLOGY

A systematic literature review (SLR) was conducted to

identify, evaluate and synthesise existing research on fault

tolerance mechanisms in cloud-native microservice
architectures. The review followed established guidance from

evidence-based software engineering for transparency,

reproducibility and methodological rigour (Kitchenham,

2009; Keele, 2007) and was reported using a light PRISMA-

style structure to document study identification, screening,

and inclusion (Page et al., 2021).

 Search Strategy and Data Sources

The search was developed to capture both academic and

practitioner-oriented research which defines the strong

industry influence on cloud-native technologies. Five

primary databases were searched which were IEEE Xplore,
ACM Digital Library, SpringerLink, ScienceDirect

(Elsevier) and arXiv. Google Scholar was used only for

backward and forward snowballing to identify additional

relevant studies not retrieved through database searches.

These sources were selected because they index the majority

of peer-reviewed systems, software architecture and

distributed computing research relevant to microservices.

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2154

The search was conducted between November and December

2025. A structured search string was developed iteratively

and adapted slightly to meet database-specific syntax

requirements. The main search string was (“microservice*”

OR “cloud-native”) AND (“fault tolerance” OR resilience

OR reliability OR “self-healing” OR “circuit breaker”) AND

(Kubernetes OR “service mesh” OR Istio OR Linkerd).

This formulation made sure that retrieved studies

addressed cloud-native microservices explicitly, rather than

general distributed systems or legacy service-oriented

architectures. A summary of the overall screening process is

illustrated using a PRISMA-style flow diagram.

Fig 2 PRISMA Flow Chart

 Inclusion and Exclusion Criteria

Clear inclusion and exclusion criteria were established

before screening to avoid selection bias. Studies were

included if published between 2015 and 2026, addressed fault

tolerance, resilience or reliability in cloud-native or

microservice systems, examined architectural, platform or
operational mechanisms like containers and orchestration,

and were peer-reviewed articles or conference papers or

reputable industry reports. Studies were excluded if they

focused on monolithic or traditional SOA systems, discussed

distributed systems without explicit microservice relevance,

were non-English publications or duplicated existing studies

without substantial new contributions.

 Screening Process

The screening process was done in three stages.

Duplicate records were removed. Also, titles and abstracts

were screened to assess relevance against the inclusion

criteria. Finally, full-text screening was performed to confirm

eligibility. Studies excluded at the full-text stage were

documented with reasons for exclusion to maintain

auditability which meets PRISMA reporting guidance (Page

et al., 2021).

 Quality Appraisal
For the assessment of the methodological quality of

included studies, a simple quality appraisal rubric was used.

Each study was scored on a scale of 0–2 across four criteria:

(1) clarity of research objectives and methodology; (2)

presence and rigour of evaluation or empirical validation; (3)

relevance to cloud-native microservice architectures; and (4)

reproducibility including availability of experimental setup,

configuration detail or tooling information. The maximum

possible score was eight. Quality scores were used to inform

interpretation of findings rather than as strict exclusion

thresholds, reducing the risk of discarding practically relevant
studies (Kitchenham, 2009).

 Data Extraction and Synthesis

A structured data extraction form (DEF) was developed

to ensure consistent capture of relevant information from

each study. Extracted fields include fault tolerance

mechanism type, architectural layer (application, service

mesh, orchestration, infrastructure, or observability), failure

model addressed, tools or frameworks used (e.g., Kubernetes,

Istio), evaluation metrics (such as latency, error rate,

availability, or MTTR), and reported trade-offs or limitations.

The extracted data were synthesised using a qualitative
thematic approach, enabling the development of a multi-

dimensional taxonomy and comparative analysis of

mechanisms across architectural layers and failure models.

IV. FAILURE MODELS AND THREATS IN

CLOUD-NATIVE MICROSERVICES

Failure in cloud-native microservice architectures must

be conceptualised as a normal operating condition instead of

an exceptional event. This is a decisive break from traditional

reliability models that assume relatively static system
boundaries and infrequent change. Microservices

intentionally trade local complexity for global coordination,

introducing frequent deployments, elastic scaling and

extensive network communication. This design improves

agility but it also increases exposure to partial failures and

complex fault interactions (Newman, 2021; Burns, Grant and

Oppenheimer, 2016). A major implication is that failure

models based mainly on component crashes or hardware

faults are no longer sufficient to explain observed system

behaviour. Some authors argue that microservices simply

have classic distributed systems failures at a smaller

granularity. However, empirical evidence shows that
decomposition itself alters failure dynamics by increasing the

number of inter-service dependencies and feedback loops

which amplifies propagation paths even when individual

services are well-engineered (Bronson et al., 2021). This

supports the view that cloud-native systems require failure

models that clearly account for interaction effects rather than

isolated faults.

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2155

 Process, Resource and Platform-Induced Failures

Crash and process failures are common in microservices

but their causes are always platform-mediated. In

containerised environments, services are usually terminated

because of failed health checks, memory limit violations or

orchestrator policies rather than clear application defects.

Kubernetes, for example, prioritises fast recovery through

restarts and rescheduling which improves availability but can
obscure persistent faults and create unstable services that

repeatedly fail and recover without resolution (Burns, Grant

and Oppenheimer, 2016). Resource exhaustion also

complicates failure detection. CPU throttling and memory

pressure may degrade latency and throughput long before a

container is terminated. These soft failures are very

dangerous because they propagate upstream as increased

response times or timeouts usually misattributed to network

or dependency issues. Some researchers argue that

autoscaling reduces resource exhaustion but evidence from

production systems shows that scaling reactions can lag
behind demand spikes or even exacerbate load through cold-

start overheads (Huang et al., 2022). This challenges

optimistic assumptions about platform-level self-healing.

 Network and Dependency-Driven Failures

Network communication is quintessential to

microservice operation and a common source of failure.

Different from classical network partitions, failures in cloud-

native systems are usually partial, transient and asymmetric

which affects only subsets of services or requests. This

ambiguity makes it difficult to distinguish between

application bugs, network degradation and overloaded
dependencies (Bronson et al., 2021). DNS resolution delays

and stale service discovery data during scaling events also

compound these issues. Dependency failures are very critical

because synchronous request chains allow downstream

slowness to propagate rapidly upstream. Resilience patterns

like retries and circuit breakers are mostly promoted but

empirical studies show that these mechanisms can worsen

outages when misconfigured. Huang et al. (2022) show that

retry amplification and feedback between load, retries and

autoscaling can lead to metastable states in which systems

oscillate between partial recovery and renewed failure. This
evidence contradicts the view that resilience patterns are

naturally protective and explains the importance of adaptive

and context-aware configuration.

 Cascading Failures and Emergent Behaviour

Cascading failures are one of the most severe threats in

cloud-native systems because they come from interactions

rather than single points of failure. A localised slowdown can

trigger retries, increase load, activate autoscaling and

overwhelm healthy components. Such cascades are difficult

to predict using static models because they depend on runtime

conditions and control policies (Bronson et al., 2021). Some
practitioners argue that improved observability and chaos

testing reduce the likelihood of cascades. These practices

improve detection and preparedness but evidence shows that

they do not eliminate systemic risk especially in large-scale

systems with tightly coupled services (Huang et al., 2022).

Cascading failures are therefore a structural risk natural to

microservice architectures rather than just an operational

deficiency.

 Data Consistency and Semantic Failures

Data consistency failures are usually ignored because

they do not always manifest as service unavailability.

Microservices commonly use eventual consistency and avoid

distributed transactions to preserve availability and
scalability. However, this design choice introduces risks like

stale reads, lost updates and inconsistent state visibility which

affect correctness rather than uptime (Kleppmann, 2017).

These semantic failures are very challenging to detect

because they may only come under specific timing or

concurrency conditions and are poorly captured by

infrastructure-level metrics. Proponents argue that

compensating transactions and sagas adequately address

these risks but empirical evidence shows that such

mechanisms change complexity to application logic and

increase the burden on developers to reason about failure
states (Newman, 2021; Bronson et al., 2021). This trade-off

remains a contested area in cloud-native design.

 Configuration, Change and Security-Induced Failures

Configuration and deployment errors have come as

major causes of outages in modern cloud-native

environments. The high velocity of change introduced by

continuous deployment pipelines increases the likelihood of

misconfigurations, incompatible policy updates and

unintended interactions between services. Industry analyses

always report that change-related issues now exceed

hardware failures as primary outage drivers (Uptime Institute,
2023). This challenges the assumption that automation alone

improves reliability and shows the need for stronger

validation and governance mechanisms. Security

mechanisms introduce additional failure modes. Mutual

authentication, certificate rotation, and policy enforcement

improve security but can cause widespread failures when

credentials expire or policies are misapplied. These failures

usually present as sudden and system-wide communication

breakdowns which are indistinguishable from network faults

at the symptom level (Newman, 2021). This establishes the

need to treat security controls as part of the reliability model
rather than as orthogonal concerns.

 Observability and Failure Localisation Across the Stack

Failures in cloud-native systems manifest in multiple

layers, from application code and sidecar proxies to

orchestration platforms and infrastructure. The separation

between fault origin and failure observation complicates

diagnosis and recovery. Distributed tracing, metrics and logs

are therefore quintessential for correlating symptoms across

layers and reconstructing causal chains (Sigelman et al.,

2019). Without such correlation, remediation efforts risk

addressing surface-level symptoms while systemic faults
persist. This layered failure system gives the analytical

foundation for the fault tolerance taxonomy developed in

subsequent sections. Effective resilience strategies must be

grounded in an accurate understanding of why failures occur,

how they propagate and where they become observable

within the cloud-native stack.

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2156

Table 1 Failure Types, Symptoms, Root Causes, and Observability Signals in Cloud-Native Microservices

Failure type Typical symptom

at runtime

Likely root cause Key observability

signals

(logs/metrics/traces)

Typical mitigation

(not guaranteed)

Process/container crash Pod restarts,

transient

unavailability,

request failures

Unhandled

exceptions, failed

health probes, and

memory limit

violations

Container restart count,

crash loop events, and

error logs preceding

termination

Improved exception

handling, memory

profiling, and health

probe tuning

Network latency and packet

loss

Increased tail

latency,
intermittent

timeouts

Congested virtual

networks, sidecar
proxy overhead,

transient partitions

Latency histograms,

timeout counters, and
trace spans showing

stalled hops

Timeouts with

backoff, traffic
shaping, locality-

aware routing

DNS / service discovery

failure

Sudden request

failures after

scaling or

redeployment

Stale DNS records,

delayed endpoint

propagation

Name resolution errors,

connection failures after

rollout

Reduced DNS TTLs,

readiness gating, and

controlled rollout

CPU throttling Gradual latency

increase without

explicit failure

cgroup CPU limits

exceeded under

bursty load

CPU throttling metrics,

elevated request latency

Resource limit

tuning, autoscaling

thresholds review

Memory pressure / OOM

kill

Abrupt pod

termination,

request failures

Memory leaks,

underestimated

memory limits

OOMKilled events,

memory usage growth

trends

Heap tuning,

memory limits

review, and leak

detection

Downstream dependency

slowdown

Increased

upstream latency
or error rates

Overloaded or

degraded dependent
service

Traces showing

elongated downstream
spans, dependency error

metrics

Circuit breakers, load

shedding,
dependency isolation

Cascading failure/retry

storm

System-wide

degradation,

oscillating

recovery

Aggressive retries

amplifying load

during partial failure

Spike in retry counts,

correlated latency

increase across services

Retry backoff,

coordination with

rate limiting

Data consistency anomaly Incorrect or stale

responses without

outage

Eventual

consistency, missing

compensations

Application logs, trace-

level state divergence

Saga correctness

checks, idempotent

handlers

Configuration/deployment

failure

Immediate post-

deployment

outage

Misconfigured

manifests,

incompatible policies

Deployment events,

config diffs, sudden error

spikes

Progressive delivery,

validation and

rollback

Security-induced

communication failure

Widespread

request rejection

Expired certificates,

misapplied auth

policies

TLS handshake errors,

authentication failure

logs

Certificate rotation

automation, policy

testing

V. THE PROPOSED TAXONOMY OF

FAULT TOLERANCE MECHANISMS

Fault tolerance in cloud-native microservice

architectures is usually discussed through isolated patterns or

platform features but these approaches fail to explain how

mechanisms interact in architectural layers and operational

phases. Existing classifications usually use a single axis like

pattern type or deployment layer which obscures trade-offs

and contributes to misapplication of resilience techniques

(Newman, 2021; Kleppmann, 2017). This paper proposes a

multi-dimensional taxonomy that is designed to explain not
only what mechanisms exist but also how and why they alter

system behaviour under failure.

The taxonomy is grounded in three principles. First,

dimensions are orthogonal to make sure that classification

along one dimension does not implicitly encode assumptions

from another. For example, retries and circuit breakers may

coexist at the same layer but differ fundamentally in intent

and failure impact. Also, categories are mutually informative

rather than mutually exclusive. Cloud-native systems

routinely implement the same mechanism at multiple layers

and this multiplicity is analytically important because

placement affects observability, control and failure

amplification (Burns, Grant and Oppenheimer, 2016).

Finally, each mechanism is traceable to failure models

established in the paper, ensuring that the taxonomy is

explanatory rather than descriptive. This traceability

addresses a major weakness in existing surveys that
enumerate patterns without linking them to observed failure

dynamics (Bronson, Charapko, Aghayev and Zhu, 2021).

 Dimension A: Architectural Layer of Enforcement

The first dimension classifies mechanisms by the

architectural layer at which decisions are enforced. At the

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2157

application layer, fault tolerance is implemented through

code-level constructs like retries, fallbacks, idempotent

handlers and compensating logic. This layer gives semantic

awareness which allows developers to differentiate between

safe and unsafe retries or to degrade functionality selectively.

However, application-level resilience introduces

heterogeneity and increases the risk of inconsistent behaviour

across services especially in large systems with multiple
teams (Newman, 2021). At the service layer, mechanisms are

enforced through sidecars or service meshes. This approach

centralises policy and reduces developer burden but it also

introduces indirection that can obscure causal relationships

between configuration changes and runtime behaviour.

Empirical studies of service mesh traffic management show

that small configuration changes in retries or timeouts can

significantly alter latency distributions and error rates which

explains the sensitivity of this layer to misconfiguration

(Sedghpour, Klein and Tordsson, 2022).

The platform or orchestrator layer, most commonly

Kubernetes, governs health checking, replica management,

rescheduling and autoscaling. These mechanisms primarily

influence availability and recovery time rather than

correctness. Orchestration-level self-healing improves

resilience to crash failures but it can conceal persistent faults

by repeatedly restarting unhealthy services which changes

failure from visible outages to chronic instability (Burns,

Grant and Oppenheimer, 2016). At the infrastructure layer,

redundancy in nodes, zones or regions mitigates correlated

failures but does not address higher-level interaction faults

like cascading retries or semantic inconsistencies. This
limitation supports the argument that infrastructure

redundancy alone is insufficient for microservice reliability

which is contrary to assumptions inherited from traditional

high-availability design (Kleppmann, 2017).

Fig 3 Layered Taxonomy Diagram

 Dimension B: Mechanism Family

The second dimension groups mechanisms by their

primary mode of action. Redundancy and replication reduce

the likelihood of single-instance failure causing service

unavailability but they increase coordination complexity and

cost. In microservices, replication usually interacts poorly

with aggressive retries because redundant replicas may all be

subjected to amplified load during partial failure (Bronson,
Charapko, Aghayev and Zhu, 2021). Time-based controls

including timeouts, retries and exponential backoff aim to

bound waiting and recover from transient faults. Their

effectiveness depends critically on idempotency and bounded

retry budgets. Evidence from large-scale systems shows that

uncoordinated retries can escalate load and precipitate

cascading failures, challenging the common assumption that

retries are benign by default (Huang, Magnusson,

Muralikrishna, et al., 2022). Control-flow mechanisms like

circuit breakers and bulkheads change execution paths to

prevent failure propagation. Circuit breakers are most
effective as containment mechanisms that force fast failure

when dependencies degrade. However, poorly tuned

thresholds can induce false positives which lead to

unnecessary service isolation. Bulkheads limit resource

sharing and protect critical paths but trade efficiency for

isolation which makes them unsuitable as blanket solutions

(Nygard, 2007; Newman, 2021).

State management mechanisms, including sagas and

idempotent operations, address semantic failures rather than

availability alone. While eventual consistency improves

scalability, it introduces correctness risks that manifest as
silent data anomalies rather than outages. Kleppmann (2017)

demonstrates that these risks are inherent trade-offs rather

than implementation defects, reinforcing the need to treat

state management as a first-class fault tolerance concern.

Traffic management mechanisms like load balancing, rate

limiting and load shedding which regulates demand relative

to capacity. These mechanisms are effective in preventing

overload propagation but may externalise failure to clients

which raises questions about fairness and user experience that

must be evaluated against service-level objectives (Beyer,

Jones, Petoff and Murphy, 2016). Self-healing and
orchestration mechanisms automate recovery through

restarts, rescheduling and scaling. These mechanisms reduce

mean time to recovery but they depend mostly on accurate

health signals. Misconfigured probes or autoscaling policies

can destabilise systems by reacting to symptoms rather than

causes (Kubernetes, 2025).

Observability-driven resilience uses metrics, logs and

traces to detect anomalies and trigger remediation.

Distributed tracing, in particular, has been shown to improve

the diagnosis of dependency-induced latency and failure

propagation which addresses a critical gap in microservice
observability (Sigelman et al., 2019). Chaos engineering is

included as a validation mechanism instead of an operational

control. Its value is in exposing hidden dependencies and

interaction faults that are otherwise difficult to predict.

However, its effectiveness depends on integration with

design and remediation practices; otherwise, it can be

symbolic rather than transformative (Basiri et al., 2016).

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2158

Table 2 Definitional Mapping of Fault Tolerance Mechanism Classes Across Architectural Layers

Mechanism class Formal definition (primary

function)

Primary

architectural

layer(s)

Typical mechanisms

and examples

Failure types

primarily addressed

Redundancy and

replication

Mechanisms that reduce the

probability of service

unavailability by maintaining

multiple concurrently active

instances or replicas of a

component.

Infrastructure,

platform

Multi-replica services,

multi-zone

deployments, active–

active regions

Crash failures, node

failures, zone-level

outages

Time-based

controls

Mechanisms that bound waiting
time and regulate reattempt

behaviour in the presence of

transient faults.

Application,
service

Timeouts, retries with
exponential backoff,

jitter

Transient network
faults, intermittent

dependency

unavailability

Control-flow

controls

Mechanisms that alter execution

paths based on observed failure

conditions to prevent propagation

and overload.

Application,

service

Circuit breakers,

bulkheads, fallback

execution paths

Persistent

dependency failures,

cascading failures

State

management

mechanisms

Mechanisms that preserve

correctness under partial failure by

managing distributed state

transitions explicitly.

Application Idempotent operations,

sagas, compensating

transactions

Data consistency

anomalies, partial

updates

Traffic

management

mechanisms

Mechanisms that regulate request

admission and routing to align

demand with available capacity.

Service,

infrastructure

Load balancing, rate

limiting, load shedding

Overload,

dependency

saturation

Self-healing and

orchestration

Mechanisms that automatically
restore service availability by

replacing or rescheduling failed

components.

Platform Health probes, restarts,
rescheduling,

autoscaling

Crash failures,
resource exhaustion

Observability-

driven resilience

Mechanisms that use runtime

signals to detect, diagnose, or

trigger corrective actions during

failures.

Cross-layer Metrics-based alerts,

distributed tracing,

automated remediation

triggers

Latent failures, slow

degradation,

cascading failures

Chaos

engineering

(validation)

Mechanisms that intentionally

inject faults to expose hidden

dependencies and validate

resilience assumptions.

Cross-layer Fault injection, latency

injection, dependency

failure simulation

Interaction faults,

emergent failure

modes

 Dimension C: Fault-Handling Phase

Mechanisms can also be classified by the phase of fault
handling they primarily support like prevention, detection,

containment, recovery or adaptation. This temporal framing

shows that many resilience discussions overemphasise

recovery but ignore detection latency and containment

effectiveness. For instance, replication supports recovery but

does little to prevent cascading load whereas circuit breakers

prioritise containment. Observability tools primarily support

detection but their absence usually prolongs outages more

than the absence of redundancy (Beyer, Jones, Petoff and

Murphy, 2016).

Fig 4 Fault-Handling Lifecycle.

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2159

 Dimension D: Runtime Behaviour and Control

The final dimension distinguishes mechanisms by

runtime behaviour. Reactive mechanisms respond after

failure manifestation while proactive mechanisms attempt to

anticipate failure. Static configurations give predictability but

are brittle under changing workloads whereas adaptive

mechanisms respond to runtime signals but introduce

complexity and tuning risk. Empirical analyses of metastable
failures show that static retry and scaling policies can interact

to produce oscillatory behaviour which supports arguments

for adaptive control under certain conditions (Huang et al,

2022).

For consistency, a mechanism is classified by its

primary causal function and enforcement point. Where

mechanisms involve multiple dimensions, classification

gives dominant influence rather than incidental effects. This

rule-based mapping avoids ambiguity and enables

comparative analysis. Decision guidance comes from this
taxonomy. Retries are appropriate for transient faults only

when idempotency and bounded budgets are enforced.

Circuit breakers are preferable for persistent dependency

degradation. Bulkheads are justified when protecting critical

services from shared resource exhaustion. These

recommendations are grounded in empirical evidence on

failure amplification and metastability rather than pattern

folklore (Bronson et al., 2021; Huang et al., 2022).

VI. COMPARATIVE ANALYSIS

AND SYNTHESIS

Taxonomies alone do not support engineering decisions

unless they are supported by explicit comparison and

synthesis. In cloud-native microservice architectures, fault

tolerance mechanisms interact in non-linear ways and their

effectiveness depends on workload characteristics, failure
modes and operational maturity. This paper moves from

classification to a structured comparative analysis by

evaluating mechanisms against concrete criteria and

synthesising decision guidance grounded in empirical and

operational evidence. The comparative analysis used a

consistent rubric reflecting concerns repeatedly identified in

reliability engineering and microservices research. Each

mechanism is evaluated in terms of latency overhead, cost

overhead, implementation complexity, operational

complexity, scalability impact, breadth of failure coverage

and risk of unintended amplification like retry storms or
cascading load. These criteria are not arbitrary. Latency and

cost directly affect user experience and economic viability

while operational complexity and amplification risk have

been shown to dominate real-world outages more than

theoretical availability gains (Beyer, Jones, Petoff and

Murphy, 2016; Bronson, Charapko, Aghayev and Zhu, 2021).

Table 3 Comparative Analysis of Fault Tolerance Mechanisms Across Evaluation Criteria

Mechanism Latency

overhead

Cost

overhead

Implementation

complexity

Operational

complexity

Scalability

impact

Failure

coverage

breadth

Risk of

unintended

amplification

Retries (with backoff &

jitter)

Medium Low Low Medium Medium Medium High

Circuit breakers Low Low Medium High High Medium Medium

Bulkheads (resource

isolation)

Low Medium Medium Medium Medium Low Low

Replication/redundancy Low High Medium Medium High Medium Medium

Load balancing Low Medium Low Medium High Medium Low

Rate limiting / load

shedding

Low Low Medium Medium High Low Low

Kubernetes self-healing

(restarts, rescheduling)

Medium Medium Low Low High Low Low

Autoscaling (HPA/VPA) Medium Medium Medium High High Medium Medium

Service mesh resilience

policies

Medium Medium Low High High High Medium

Observability-driven

mechanisms

Low Medium Medium Medium High High Low

State management

(sagas, idempotency)

Low Low High Medium Medium Medium Low

 Retries have low implementation cost and broad

applicability but score poorly on amplification risk when

used indiscriminately. Empirical evidence from large-

scale systems shows that retries without bounded budgets,

exponential backoff and jitter always transform partial

failures into system-wide degradation by multiplying load

on already stressed dependencies (Huang et al., 2022).

Their value is conditional. Retries are effective for

genuinely transient faults and idempotent operations but

they should be avoided for persistent dependency

slowdowns or state-mutating requests. This contradicts

simplistic guidance that treats retries as a default

resilience mechanism.

 Circuit breakers score higher on containment and lower

on amplification risk especially in dependency-heavy

microservices. They protect upstream capacity and

stabilise latency distributions during partial outages by

enforcing fast failure. However, their effectiveness

depends on careful threshold selection and accurate error

classification. Misconfigured breakers can cause false

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2160

positives and unnecessary isolation which can be as

disruptive as the original fault (Nygard, 2019). This trade-

off explains why circuit breakers are most effective when

combined with strong observability and SLO-aligned

tuning rather than static defaults.

 Replication and redundancy improve availability and

reduce sensitivity to crash failures but impose clear cost

and consistency penalties. In microservices, replication
interacts with traffic patterns and retries, and does not

prevent coordinated overload across replicas during

cascading failures. Kleppmann (2017) shows that

replication alone does not resolve semantic or interaction

faults which supports the argument that redundancy must

be complemented by containment and traffic control

rather than treated as a sufficient solution.

 Service meshes provide standardised enforcement of

retries, timeouts, rate limiting, and mutual authentication

which reduces heterogeneity across services.

Comparative studies indicate that meshes improve policy
consistency but introduce measurable latency overhead

and significant operational complexity especially during

configuration changes (Sedghpour, Klein and Tordsson,

2022). Their value increases with system scale and team

count but may be unjustified in small or latency-critical

deployments. This challenges narratives that present

service meshes as universally beneficial.

 Kubernetes health checks and self-healing mechanisms

provide a strong baseline for crash recovery and

availability. They score well on recovery speed but poorly

on failure diagnosis and semantic correctness. Platform-
level restarts can mask persistent defects and change

failures from visible outages to chronic instability if

probes are mis-specified or depend on downstream

services (Burns, Grant and Oppenheimer, 2016). As a

result, health checks are necessary but insufficient for

robust fault tolerance.

 Observability-driven mechanisms including distributed

tracing and metrics-based alerting score low on direct

failure prevention but high on detection and recovery

effectiveness. Evidence from production systems shows

that low detection latency significantly shortens incident

duration and improves learning even when underlying
mechanisms remain unchanged (Sigelman et. al., 2019).

This supports the argument that observability should be

treated as an enabling resilience mechanism rather than a

passive monitoring tool.

A common debate in the literature concerns whether

resilience should prioritise simplicity or adaptivity. Static

mechanisms like fixed retries and thresholds are easier to

reason about but have been shown to interact poorly under

changing workloads. On the other hand, adaptive

mechanisms promise stability but introduce tuning risk and
opacity. Empirical studies of metastable failures show that

static policies are usually the root cause of oscillatory

behaviour, lending support to adaptive control in complex

systems, provided sufficient observability exists (Huang et.

al., 2022). This does not mean that adaptivity is always

superior but it weakens arguments for purely static

configurations in dynamic cloud-native environments.

Fig 5 Comparative Trade-Offs Key Fault

Tolerance Mechanisms

VII. PRACTITIONER-ORIENTED

DECISION FRAMEWORK

Translating fault-tolerance theory into practice requires

decision logic that respects operational constraints rather than

abstract pattern catalogues. In cloud-native microservice

environments, failures are heterogeneous and context-

dependent, so effective resilience depends on selecting and
composing mechanisms based on failure type, service

criticality, latency budgets and deployment topology. This

synthesises the preceding taxonomy and comparative

analysis into a practitioner-oriented framework that supports

defensible, situation-aware choices.

The proposed selection flow begins with failure

characterisation because different failure classes demand

fundamentally different responses. Transient network faults

and short-lived dependency errors are best addressed through

bounded timeouts and retries with exponential backoff and
jitter provided operations are idempotent. Empirical evidence

shows that unbounded retries are a major contributor to

cascading failures and metastable behaviour, particularly in

dependency-rich microservices (Bronson et. al, 2021; Huang

et al., 2022). Consequently, the framework explicitly rejects

retries as a default and treats them as conditional controls.

The second decision factor is service criticality. Highly

critical services like authentication or payments must

prioritise containment and predictable degradation over

throughput maximisation. For these services, circuit breakers

and bulkheads are preferred to aggressive retries because fast

failure protects upstream capacity and preserves overall
system stability (Nygard, 2019; Newman, 2021). On the

other, lower-criticality services can tolerate occasional

latency inflation or partial unavailability which allows

simpler controls with lower operational overhead.

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2161

Latency budget also affects feasible mechanisms.

Service mesh interception and layered retries introduce

measurable latency even under normal conditions.

Performance evaluations of service mesh traffic policies

show that standardisation improves consistenc but latency-

sensitive workloads experience non-trivial overhead which

makes mesh-based resilience unsuitable for strict tail-latency

objectives unless carefully tuned (Sedghpour, Klein and
Tordsson, 2022). The framework positions latency budget as

a gating criterion rather than an afterthought. Deployment

model influences resilience priorities. Single-cluster

deployments benefit most from containment and recovery

mechanisms whereas multi-region systems must combine

redundancy with traffic steering and failover logic. However,

replication in regions increases consistency complexity and

does not address semantic failures which establishes the need

to pair redundancy with explicit state management strategies

(Kleppmann, 2017). These decision steps is best

communicated visually as Figure 8, a flowchart that narrows
the mechanism set as contextual constraints are applied.

Fig 6 Fault Tolerance Selection Flowchart for

Cloud-Native Systems

VIII. OPEN RESEARCH CHALLENGES

AND FUTURE DIRECTIONS

Considering substantial progress in fault tolerance for

cloud-native microservice architectures, many foundational

challenges are unresolved. These challenges show not

incremental engineering gaps but issues between adaptivity,

correctness and operational trust which makes them fertile
ground for further research.

A first critical challenge concerns adaptive resilience.

Most fault tolerance mechanisms in practice depend on static

thresholds and manually tuned policies considering clear

evidence that workload characteristics and failure dynamics

evolve over time. Empirical studies of metastable failures

show that static retry budgets, autoscaling rules and circuit

breaker thresholds can interact to produce oscillatory or

unstable behaviour under changing conditions (Huang et al.,

2022). A promising research direction is the development of
adaptive mechanisms that continuously self-tune using

telemetry like latency distributions, error rates and saturation

signals. A testable hypothesis is that adaptive control can

reduce cascading failures without increasing false positives,

provided adaptation is constrained by explicit SLOs rather

than raw metrics.

A second challenge is in resilience under multi-tenant

interference. Cloud-native platforms are normally shared and

resource contention from noisy neighbours is a constant

source of performance degradation and partial failure.

Bulkheads and resource limits provide partial isolation but
empirical evidence suggests that interference effects usually

occur across abstraction boundaries which application-level

assumptions (Burns, Grant and Oppenheimer, 2016). Future

research should examine whether cross-layer coordination

between orchestration, scheduling and application-level

controls can provide stronger isolation guarantees without

excessive overprovisioning. The long-standing tension

between resilience and data consistency is another unresolved

problem. Microservices always depend on sagas and eventual

consistency to preserve availability but semantic failures

caused by inconsistent state can be more damaging than
transient outages (Kleppmann, 2017). A key research

question is whether new consistency models or verification

techniques can bound semantic risk while retaining the

scalability benefits of decentralised data management.

Testing resilience realistically is a methodological

challenge. Chaos engineering has shown value in exposing

hidden dependencies but its effectiveness depends on

alignment with user-facing SLOs rather than arbitrary fault

injection (Basiri et al., 2016). Future work should investigate

SLO-driven chaos experiments as a systematic validation

methodology. Explainable auto-remediation is emerging as a
critical trust issue. As systems automate recovery actions,

operators must understand why specific interventions occur.

A core hypothesis is that auto-remediation mechanisms that

provide causal explanations will achieve higher adoption and

safer operation than opaque, purely reactive controls.

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2162

IX. CONCLUSION

This paper has proposed a multi-dimensional taxonomy

and a practitioner-oriented decision framework for fault

tolerance in cloud-native microservice architectures beyond

descriptive surveys toward evidence-based engineering

guidance. The taxonomy clarifies how mechanisms like

bounded timeouts, retries, circuit breakers, bulkheads and
observability controls map to architectural layers and failure

models which enables system designers to reason about trade-

offs rather than adopt patterns uncritically (Kleppmann,

2017; Newman, 2021). The comparative analysis explains

that no single mechanism dominates across latency overhead,

operational complexity, scalability impact and failure

coverage which establishes the necessity of context-aware

compositions rather than defaults (Huang et al., 2022;

Sedghpour, Klein and Tordsson, 2022). The decision

framework combines failure type, service criticality, latency

budget and deployment model to produce recommendations.
The synthesis also surfaces future research challenges that

have both theoretical depth and practical urgency including

adaptive resilience, interference-aware isolation,

consistency-resilience trade-offs, realistic resilience testing

and explainable auto-remediation. Framing these as testable

hypotheses establishes an agenda for rigorous research

contributions. This study contributes both to the scientific

understanding of cloud-native reliability and to engineering

practice that can be evaluated and extended in future work by

bridging analytical structure and operational utility.

REFERENCES

[1]. Alshuqayran, N., Ali, N. and Evans, R. (2016) ‘A

systematic mapping study in microservice

architecture’, Service-Oriented Computing and

Applications, 10(4), pp. 415–439.

[2]. Avizienis, A., Laprie, J.-C., Randell, B. and

Landwehr, C. (2017) ‘Basic concepts and taxonomy

of dependable and secure computing’, IEEE

Transactions on Dependable and Secure Computing,

1(1), pp. 11–33.

[3]. Basiri, A., Behnam, N., de Rooij, R., Hochstein, L.,
Kosewski, L., Reynolds, J. and Rosenthal, C. (2016)

‘Chaos engineering’, IEEE Software, 33(3), pp. 35–

41.

[4]. Beyer, B., Jones, C., Petoff, J. and Murphy, N.R.

(2023) Site Reliability Engineering: How Google

Runs Production Systems. 2nd edn. Sebastopol, CA:

O’Reilly Media.

[5]. Bronson, N., Charapko, A., Aghayev, A. and Zhu, T.

(2021) ‘Metastable failures in distributed systems’,

Proceedings of the Workshop on Hot Topics in

Operating Systems (HotOS ’21). New York: ACM.

[6]. Bronson, Nathan, Aghayev, Abutalib, Charapko,
Aleksey and Zhu, Timothy (2021) ‘Metastable

failures in distributed systems’, Proceedings of the

18th Workshop on Hot Topics in Operating Systems

(HotOS ’21). New York, NY: Association for

Computing Machinery, pp. 221–227.

[7]. Burns, B., Grant, B., Oppenheimer, D., Brewer, E. and

Wilkes, J. (2016) ‘Borg, Omega, and Kubernetes’,

ACM Queue, 14(1), pp. 10–29.

[8]. Cloud Native Computing Foundation (CNCF) (2023)

Cloud Native Definition. Available at:

https://github.com/cncf/toc/blob/main/DEFINITION.

md (Accessed: 16 January 2026).

[9]. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M.,
Mustafin, R. and Safina, L. (2022) ‘Microservices:

Yesterday, today, and tomorrow’, in Present and

Ulterior Software Engineering. Cham: Springer, pp.

195–216.

[10]. Habibi, F., Lorido-Botran, T., Showail, A., Sturman,

D.C. and Nawab, F. (2023) ‘MSF-Model: Queuing-

Based Analysis and Prediction of Metastable Failures

in Replicated Storage Systems’, arXiv preprint

arXiv:2309.16181.

[11]. Huang, Lexiang, Magnusson, Matthew,

Muralikrishna, Abishek Bangalore, Estyak, Salman,
Isaacs, Rebecca, Aghayev, Abutalib, Zhu, Timothy

and Charapko, Aleksey (2022) ‘Metastable failures in

the wild’, Proceedings of the 16th USENIX

Symposium on Operating Systems Design and

Implementation (OSDI ’22). Carlsbad, CA: USENIX

Association, pp. 73–90.

[12]. Isaacs, R. (2025) Analysing Metastable Failures.

Amazon Science / AWS Research Report. Available

at:

https://assets.amazon.science/a4/ff/894a054e485f9d8

0936e796fbd07/analyzing-metastable-failures.pdf

[13]. Keele, S. (2007) Guidelines for Performing
Systematic Literature Reviews in Software

Engineering. EBSE Technical Report.

[14]. Kitchenham, B. (2009) ‘Systematic literature reviews

in software engineering: A systematic literature

review’, Information and Software Technology, 51(1),

pp. 7–15.

[15]. Kleppmann, M. (2017). Designing Data-Intensive

Applications: The Big Ideas Behind Reliable,

Scalable, and Maintainable Systems. Sebastopol, CA:

O’Reilly Media.

[16]. Kubernetes (2025) ‘Configure liveness, readiness and
startup probes’, Kubernetes Documentation.

Available at:

https://kubernetes.io/docs/tasks/configure-pod-

container/configure-liveness-readiness-startup-

probes/

[17]. Laprie, J.-C. (1992) ‘Dependability: Basic concepts

and terminology’, in Avizienis, A. and Laprie, J.-C.

(eds.) Dependable Computing and Fault-Tolerant

Systems. Springer, pp. 3–12.

[18]. Merkel, D. (2014) ‘Docker: Lightweight Linux

containers for consistent development and

deployment’, Linux Journal, 2014(239), pp. 2–15.
[19]. Nadareishvili, I., Mitra, R., McLarty, M. and

Amundsen, M. (2016). Microservice Architecture:

Aligning Principles, Practices, and Culture.

Sebastopol, CA: O’Reilly Media.

[20]. Newman, S. (2021). Building Microservices:

Designing Fine-Grained Systems. 2nd edn.

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/
https://doi.org/10.1109/MS.2016.52
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://assets.amazon.science/a4/ff/894a054e485f9d80936e796fbd07/analyzing-metastable-failures.pdf
https://assets.amazon.science/a4/ff/894a054e485f9d80936e796fbd07/analyzing-metastable-failures.pdf
https://assets.amazon.science/a4/ff/894a054e485f9d80936e796fbd07/analyzing-metastable-failures.pdf
https://assets.amazon.science/a4/ff/894a054e485f9d80936e796fbd07/analyzing-metastable-failures.pdf
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Volume 11, Issue 1, January – 2026 International Journal of Innovative Science and Research Technology

ISSN No:-2456-2165 https://doi.org/10.38124/ijisrt/26jan1075

IJISRT26JAN1075 www.ijisrt.com 2163

[21]. Nygard, M. (2019). Release It!: Design and Deploy

Production-Ready Software. 2nd edn. Dallas, TX:

Pragmatic Bookshelf.

[22]. Page, M.J., McKenzie, J.E., Bossuyt, P.M., et al.

(2021) ‘The PRISMA 2020 statement’, BMJ, 372,

n71.

[23]. Richardson, C. (2018). Microservices Patterns: With

Examples in Java. Shelter Island, NY: Manning
Publications.

[24]. Sedghpour, M.R.S., Klein, C. and Tordsson, J. (2022)

‘An empirical study of service mesh traffic

management policies for microservices’, Proceedings

of the ACM/SPEC International Conference on

Performance Engineering (ICPE ’22). New York:

ACM, pp. 25–36.

[25]. Sigelman, B., Barroso, L.A., Burrows, M.,

Stephenson, P., Plakal, M., Beaver, D., Jaspan, S. and

Shanbhag, C. (2010) ‘Dapper, a large-scale distributed

systems tracing infrastructure’, Google Technical
Report.

[26]. Sigelman, B., Barroso, L.A., Burrows, M.,

Stephenson, P., Plakal, M., Beaver, D., Jaspan, S. and

Shanbhag, C. (2019) ‘Distributed tracing in practice’,

Communications of the ACM, 62(4), pp. 40–47.

[27]. Uptime Institute (2023) Annual Outage Analysis

2023. New York: Uptime Institute.

[28]. Varghese, B. and Buyya, R. (2018) ‘Next generation

cloud computing: New trends and research

directions’, Future Generation Computer Systems, 79,

pp. 849–861.

[29]. Wilkes, J. (2020). Site Reliability Engineering in
Practice. San Francisco, CA: Addison-Wesley.

[30]. Waseem, M., Shah, B., Babar, M.A. and Khan, M.I.

(2023) ‘Understanding the issues, their causes and

solutions in microservices systems: An empirical

study’, arXiv preprint arXiv:2302.01894.

[31]. Woods, D. (2018) ‘Essentials of resilience

engineering’, Resilience Engineering Perspectives, 2,

pp. 21–44

https://doi.org/10.38124/ijisrt/26jan1075
http://www.ijisrt.com/
https://doi.org/10.1145/3489525.3511682
https://doi.org/10.1145/3290354

	1Staffordshire University
	Abstract: Cloud-native microservice architectures have changed modern software systems but they also introduce distinctive and common reliability challenges as a result of extreme distribution, runtime dynamism and rapid change. Failures in such syste...
	How to Cite: Taiwo Fadoyin (2026) A Comprehensive Taxonomy and Comparative Analysis of Fault Tolerance Mechanisms in Cloud-Native Microservice Architectures. International Journal of Innovative Science and Research Technology,
	11(1), 2151-2163. https://doi.org/10.38124/ijisrt/26jan1075
	I. INTRODUCTION
	II. REVIEW OF LITERATURE
	 Cloud-Native Microservices Stack
	 Fault Tolerance and Dependability Concepts

	III. REVIEW METHODOLOGY
	 Search Strategy and Data Sources
	 Inclusion and Exclusion Criteria
	 Screening Process
	 Quality Appraisal
	 Data Extraction and Synthesis

	IV. FAILURE MODELS AND THREATS IN CLOUD-NATIVE MICROSERVICES
	 Process, Resource and Platform-Induced Failures
	 Network and Dependency-Driven Failures
	 Cascading Failures and Emergent Behaviour
	 Data Consistency and Semantic Failures
	 Configuration, Change and Security-Induced Failures
	 Observability and Failure Localisation Across the Stack

	V. THE PROPOSED TAXONOMY OF
	FAULT TOLERANCE MECHANISMS
	 Dimension A: Architectural Layer of Enforcement
	 Dimension B: Mechanism Family
	 Dimension C: Fault-Handling Phase
	 Dimension D: Runtime Behaviour and Control

	VI. COMPARATIVE ANALYSIS
	AND SYNTHESIS
	VII. PRACTITIONER-ORIENTED
	DECISION FRAMEWORK
	VIII. OPEN RESEARCH CHALLENGES
	AND FUTURE DIRECTIONS
	IX. CONCLUSION

